第六章__钢的过冷奥氏体转变图
- 格式:ppt
- 大小:4.75 MB
- 文档页数:48
过冷奥氏体等温冷却转变曲线概述●冷却是钢热处理时的最关键工序,冷却工艺不同可造成钢的热处理组织和性能有巨大差异,合理制订热处理工艺需要准确的理论依据。
●奥氏体的等温冷却转变曲线是冷却工艺的理论依据。
●实验研究建立奥氏体的等温冷却转变曲线的方法是本学科典型的研究方法之一。
内容1.引言2.过冷奥氏体等温冷却转变曲线的建立3.过冷奥氏体等温冷却转变曲线分析重点难点1.引言2.过冷奥氏体等温冷却转变曲线的建立•3.过冷奥氏体等温冷却转变曲线分析目标掌握建立过冷奥氏体等温冷却曲线图的实验方法;掌握过冷奥氏体转变中的相变驱动力及原子扩理解热处理工艺的全过程及关键;能利用过冷奥氏体等温转变曲线分析钢在热处理过程中的各种组织变化。
初步形成实验研究解决具体问题的思维模式,具备一定的实验设计能力。
知识目标能力目标素质目标学情分析●授课对象为大学二年级第一学期或二年级第二学期的工科专业学生。
●学生对奥氏体在温度变化过程中的转变的认识往往还停留在铁碳相图这一阶段。
同时实验条件的不足使得用实验方法建立过冷奥氏体等温冷却转变曲线只能通过课堂讲授来理解,这对课程学习均产生不利影响。
设计●主要采用讲授法教学,合理引导学生兴趣,提高课堂教学效率,采用线图、表格、金相照片等多种总结手段对比、归纳进行教学。
●精心设计课堂引言,动学生积极性,交代清楚本课堂要讲授和讨论的问题。
●注意讲授法和其他多种教学方法的有机结合。
过冷奥氏体的等温冷却转变曲线热处理的三个步骤:-Step1.加热-Step2.保温-Step3.冷却图1-1 两种不同的热处理工艺-1.连续冷却转变-2.等温冷却转变-Step1.加热到高于A1的某个温度。
-Step2.在高于A1的某个温度长时间保温。
-Step3.以不同的冷却速度和方式冷却,其目的为获得不同的组织,使得钢具有不同的性能。
-Step1+Step2=奥氏体化-Step3 则是热处理的关键步骤1. 引言奥氏体转变为珠光体?Step1+Step2=奥氏体化获得微观组织: 均匀、稳定的奥氏体组织Step3.当温度降低到低于723℃时:1.稳定奥氏体→ 不稳定奥氏体2.然后,不稳定奥氏体→?(unknow)2.1. ?=珠光体可以!这从相图中也可以直接看出2.2. ?=暂时未知图1-2. 简化铁碳合金相图●等温热处理试验◆共析钢等温热处理实验步骤:Step1.加热;Step2.保温;Step3.淬火;Step4.盐浴保温;Step5.淬火;2134562. 过冷奥氏体等温冷却转变曲线的建立◆步骤Step1.加热Step2.保温Step3.淬火Step4.盐浴Step5.淬火Step6.观察微观组织◆目的1+2.奥氏体化,获得均匀稳定的奥氏体组织;3.迅速降温至低于A1线的某个温度;4.在3步所给定的温度下盐浴保温;5.淬火以保留4步所获得的热处理微观组织;6.观察区分第5步所获得5506502s5s10s30s40s过冷奥氏体+珠光体过冷奥氏体+珠光体过冷奥氏体+珠光体珠光体过冷奥氏体过冷奥氏体+托氏体过冷奥氏体+托氏体托氏体在不同温度下保温将获得不同的组织;如图,从上至下依次为:珠光体(P);索氏体(S);托氏体(T);上贝氏体(B上);下贝氏体(B下);马氏体(M);过冷奥氏体等温冷却转变曲线每一种组织在不同的温度下都有转变的开始和终了点,将开始点和终了点依次相连就得到了过冷奥氏体等温冷却转变曲线。
§6-3 钢在冷却时的转变一、过冷奥氏体等温冷却转变曲线1、过冷奥氏体等温冷却转变曲线建立以共析钢为例:取尺寸相同的T8钢试样,A化后,迅速冷却到A1以下不同温度保温,进行等温转变,测出转变的开始点与转变结束点。
将开始点与结束点分别连接起来,就得到奥氏体等温转变曲线。
该曲线称为TTT图(Time Temperature TransformationDiagram)或C曲线。
2、孕育期:转变开始线与纵坐标轴之间的距离。
孕育期越短,过冷奥氏体越不稳定,转变越快。
孕育期最短处称为鼻温3、影响C曲线的因素A的成分越均匀,晶粒越粗,其稳定性越高,C曲线右移;A含碳量越高,稳定性越高,C曲线右移,共析钢C曲线最靠右;合金元素,除Co外所有合金元素均使C曲线右移,并使C曲线改变形状。
二、共析钢过冷奥氏体的转变产物及性能、珠光体型转变(P)转变温度:A1~鼻温(550℃)之间(高温转变)转变规律:是通过碳、铁的扩散完成转变。
铁原子重新排列由fcc bcc,碳从铁中扩散出,形成转变产物:珠光体型组织铁素体和渗碳体的机械混合物产物形态:渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。
珠光体型组织按层间距大小分为珠光体(P)、索氏体(S)和屈氏体(T)珠光体3800×索氏体8000×屈氏体8000×2、贝氏体型转变(B)转变温度:鼻温(550℃)~Ms之间(中温转变)转变规律:半扩散型转变,铁原子不扩散,只能做微小的位置调整,由fcc→bcc。
碳原子有一定扩散能力,部分碳原子从铁中扩散出来,形成碳化物。
转变产物:贝氏体型组织,渗碳体分布在过饱和的铁素体基体上的两相混合物。
上贝氏体(B上):550℃~350℃之间形成形态:呈羽毛状, 小片状的渗碳体分布在成排的铁素体片之间。
光学显微照片1300×电子显微照片5000×上贝氏体性能:铁素体片较宽,塑性变形抗力较低;渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。
《金属热处理》思考题第二章钢在加热时的转变1.说明A1、A3、Acm、Ac1、,Ac3、Accm、Ar1、Ar3、Arcm各临界点的意义。
2.奥氏体形成的全过程经历了那几个阶段?简答各阶段的特点。
3.奥氏体的形核部位在哪里优先及条件?4.哪些因素影响(及如何影响)奥氏体的形成速度?其中最主要的因素是什么?5.为什么说钢的加热相变珠光体向奥氏体转变的过程受碳扩散的控制? 用图示加以说明。
6.粒状珠光体,片状珠光体(粗片状与细片状),回火马氏体转变为奥氏体时共转变速度有何差别?7.什么是奥氏体的起始晶粒度,实际晶粒度,本质晶粒度?8.为什么细晶粒钢强度高,塑性,韧性也好?9.钢件加热时欠热,过热,过烧有何不同?能否返修?10.奥氏体是高温相,在一般钢中冷却下来就已经不存在了,谈论A体晶粒大小,还有什么实际意义?11.钢件加热时过热会造成什么不良后果?12. 什么是珠光体向奥氏体转变过热度?它对钢的组织转变有何影响?第三章珠光体转变与钢的退火和正火1.简述珠光体的形成过程。
2.什么是珠光体?性能如何?如何获得珠光体?3.珠光体有哪几种组织形态?片状珠光体的片间间距决定于什么?它对钢的性能有何影响?4.珠光体的形成条件、组织形态和性能方面有何特点?5.粒状珠光体,片状珠光体(粗片状与细片状),回火马氏体转变为奥氏体时共转变速度有何差别?6.亚共析钢中铁素体和过共析钢中渗碳体有哪几种组织形态?它们对性能有何影响?7.若共析钢加热到A体状态,然后进行等温转变和连续冷却转变,均获得片状珠光体,但其组织特征有何区别?8.为什么说钢的珠光体转变过程受碳扩散的控制? 用图示加以说明。
9.分析渗碳体球化过程的机制和高碳钢要进行球化退火的原因。
10.45钢制零件820℃加热后分别进行退火和正火,其显微组织有什么不同?性能有什么不同?11.何谓球化退火?为什么过共析钢必须采用球化退火而不采用完全退火?12.正火与退火的主要区别是什么?生产中应如何选择正火及退火?第四章马氏体转变1.钢中常见的马氏体形态和亚结构有哪几种?2.马氏体组织有哪几种基本类型?它们在形成条件、晶体结构、组织形态、性能有何特点?3.钢获得马氏体组织的条件是什么?与钢的珠光体相变,马氏体相变有何特点?4.条状M体和片状M体在强度,硬度,韧性等方面的性能差异如何?5.0.2%C,1.0%C钢淬火后的M体形态和亚结构有什么异同?6.钢中常见的马氏体形态和亚结构有哪几种?7.M体的强化机构有哪几个方面?8.Ms点位置高低有什么实际意义?它受哪些因素的影响?其中主要的因素是什么?9.淬火钢中A残的存在有什么影响?决定A残量的因素有哪些?在热处理操作上如何控制?10.试分析如何通过控制热处理工艺因素提高中碳钢件和高碳钢件的强韧性。
等温转变图TTT 图,C 曲线。
连续转变图CCT 图。
过冷奥氏体转变图是对钢材进行热处理(确定冷却速率)的重要依据。
过冷奥氏体两种转变图0时间温度加热保温连续冷却临界温度等温冷却1. 等温转变图:概貌表示奥氏体急速冷却到临界点A1以下,在各不同温度下的保温过程中,其转变量与转变时间的关系曲线图,也称TTT曲线,因为其形状象字母C,所以又称C 曲线。
共析钢的C曲线两条C 型曲线中,左边的一条与M s共析钢的C 曲线1. 等温转变图:过冷奥氏体转变开始线线为过冷奥氏体转变开始线。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)右边的一条C 型曲线与M f 线为过冷奥氏体转变终了线。
1. 等温转变图:过冷奥氏体转变终了线共析钢的C 曲线1. 等温转变图:过冷奥氏体区A1~M s间及转变开始线以左的区域为过冷奥氏体区。
共析钢的C曲线1. 等温转变图:转变产物区共析钢的C曲线转变终了线以右及Mf线以下为转变产物区。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)转变开始线与终了线之间及Ms线与M线之间为转变区。
f共析钢的C曲线鼻尖转变开始线与纵坐标之间的距离为孕育期,孕育期越小,过冷奥氏体稳定性越小。
孕育期最短处称为C曲线的“鼻尖”。
对于碳钢,“鼻尖”处的温度为550℃。
共析钢的C曲线过冷奥氏体的稳定性(C 曲线左右位置)取决于相变驱动力和扩散这两个因素。
在“鼻尖”以上,过冷度越小,相变驱动力也越小;在“鼻尖”以下,温度越低,虽然相变驱动力增加,但原子扩散越困难,后者是相变的控制因素,因而使得孕育期延长,奥氏体稳定性增加。
1. 等温转变图:存在鼻尖的原因共析钢的C 曲线鼻尖此处的孕育期主要受相变驱动力控制此处的孕育期主要受原子扩散控制(1)含碳量的影响共析钢的过冷奥氏体最稳定,C曲线最靠右。
由共析钢成分开始,含碳量增加或减少都使C曲线左移。
而Ms 与Mf点则随含碳量增加而下降。
1. 等温转变图:影响C曲线因素亚共析钢、共析钢、过共析钢的C 曲线比较注意在下图中,与共析钢相比,亚共析钢和过共析钢C曲线的上部还各多一条先共析相的析出线。
《材科热处理原理》思考题第一章固态相变概论1. 金属固态相变的主要类型有哪些?2. 热力学主要的状态函数与状态变数之间的关系如何?3. 金属固态相变按(1)相变前后热力学函数、(2)原子迁移情况、(3)相变方式分为哪几类?4. 金属固态相变有哪些特点?5. 固态相变的驱动力和阻力包括什么?加以说明。
6. 固态相变的过程中形核和长大的方式是什么?加以说明。
7. 何谓热处理?热处理的目的是什么?热处理在机械加工过程中作用有那些?热处理与合金相图有何关系?8. 金属固态相变主要有哪些变化?9. 说明下列符号的物理意义及加热速度和冷却速度对他们的影响?Ac1、Ar1、Ac3、Ar3、Accm、Arcm10. 一些概念:固态相变、热处理、平衡转变、不平衡转变、同素异构转变、多形性转变、共析转变、包析转变、平衡脱溶沉淀、调幅分解、有序化转变、伪共析转变、马氏体转变、贝氏体转变、块状转变、不平衡脱溶沉淀、一级相变、二级相变、扩散型相变、非扩散型相变、半扩散型相变、共格界面、半共格界面、非共格界面、惯习面、位向关系、应变能、界面能、过渡相、均匀形核、非均匀形核、晶界形核、位错形核、空位形核、界面过程、传质过程、协同型方式长大、非协同型方式长大、切变机制、台阶机制第二章钢中奥氏体的形成1. 奥氏体(A)的晶体结构,组织形态与性能有什么特点?2. 奥氏体形成的热力学条件是什么?共析钢的珠光体(平衡态组织)向奥氏体转变属于何种转变?试说明珠光体向奥氏体转变过程。
3. 钢在实际热处理加热和冷却过程时的临界点为什么偏离相图上的临界点?实际的临界点如何表示?实际的临界点与加热和冷却速度有什么关系?4. 试以碳扩散的观点说明奥氏体长大机理。
(奥氏体的形成包括哪几个过程?为什么说奥氏体形成是以C 扩散为基础并受碳扩散控制的?)5. 说明奥氏体形成时铁素体先消失的原因。
6. 非共析钢的奥氏体的形成与共析钢的奥氏体的形成有哪些异同?7. 共析碳钢奥氏体等温形成动力学(TTA图)有什么特点?非共析钢和共析碳钢奥氏体等温形成动力学图有什么异同?8. 影响奥氏体等温形成的形核率的因素有哪些?如何计算A线长大速度?影响奥氏体转变速度的因素有哪些?如何影响?(奥氏体等温形成动力学(形核与长大)的经验公式)(为什么温度升高,奥氏体转变速度加快?)(合金元素对奥氏体的形成速度有什么影响?)9. 合金钢的奥氏体形成动力学有什么特点?10. 连续加热时奥氏体形成动力学有什么特点?试以连续加热时奥氏体的形成动力学曲线,说明奥氏体形成时临界点的变化。