六年级数学圆柱的表面积1
- 格式:ppt
- 大小:254.00 KB
- 文档页数:10
六年级数学《圆柱的表面积》教案WTT整理的六年级数学《圆柱的表面积》教案,希望能够帮助到大家。
六年级数学《圆柱的表面积》教案1【教学内容】圆柱的表面积(1)(教材第21页例3)。
【教学目标】1、理解圆柱的表面积的意义。
2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。
【重点难点】1、掌握圆柱的侧面积和表面积的计算方法。
2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。
【教学准备】多媒体课件和圆柱体模型。
【复习导入】1、复习引入。
指名学生说出圆柱的特征。
2、口头回答下面的问题。
(1)一个圆形花池,直径是5m,周长是多少?(2)长方形的面积怎样计算?板书:长方形的面积=长×宽。
【新课讲授】1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。
师:圆柱的侧面展开是一个什么图形?生:长方形。
师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。
师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。
2、教学例3。
(1)圆柱的表面积的含义。
教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。
(2)计算圆柱的表面积。
①师:圆柱的表面展开后是什么样的?组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。
引导学生说出:圆柱的表面是由两个底面和一个侧面组成。
②组织学生自主探究、交流,该如何计算圆柱的表面积。
指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。
(3)巩固练习:教材第21页“做一做”。
组织学生独立完成,请两名学生板演后集体订正。
答案:628cm2【课堂作业】完成教材第23页练习四的第2~6题。
小学六年级数学《圆柱的表面积》教学设计及教学反思圆柱体有三个面,两个底面,一个侧面。
两个底面是完全相等的圆形,关键是侧面它是一个曲面,计算侧面的面积就成为计算圆柱表面积的关键所在。
下面就是我给大家带来的小学六年级数学《圆柱的表面积》教学设计及教学反思,希望能帮助到大家!小学六年级数学《圆柱的表面积》教学设计一本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。
教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。
学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学重点】掌握圆柱的侧面积和表面积的计算方法。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】一、引入新课1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?4、这节课我们就一起来研究“圆柱的表面积”这个问题。
六年级下册数学《圆柱的表面积》专项练习含答案(1)一个圆柱形茶叶筒的侧面贴着商标纸,圆柱底面半径是5cm,高是20cm。
这张商标纸展开后是一个长方形,它的长和宽各是多少厘米?解答:长方形的长=圆柱的底面周长=3.14×5×2=31.4(厘米)长方形的宽=圆柱的高=20厘米(2)一个圆柱侧面积是1⒉56平方分米,高是2分米,则底面半径是多少分米?解答:底面周长:12.56÷2=6.28(分米)底面半径:6.28÷3.14÷2=1(分米)(3)一个圆柱形茶叶筒的侧面贴着商标纸,圆柱底面半径是5cm,高是20cm。
这张商标纸的面积是多少?解答:底面周长=3.14×5×2=31.4(厘米)侧面积=31.4×20=628(平方厘米)(4)一个底面半径是4厘米的圆柱侧面展开后是正方形,则圆柱高多少厘米?解答:圆柱的侧面展开后,正方形的边长等于圆柱的底面周长,也就是圆柱的高等于等于圆柱的底面周长。
高=底面周长=3.14×4×2=25.12(厘米)(5)一台压路机的前轮是圆柱形,轮宽2m,直径1.2m。
前轮转动一周,压路的面积是多少平方米解答:S侧=2πrh=πdh,3.14×1.2×2=7.536(m²)(6)压路机的滚筒是一个圆柱形,它的横截面周长是⒊14米,长是⒈5米,每滚一周能压多大的路面?如果转100周,压过的路面有多大?解答:一周即求侧面积:3.14×1.5=4.71(平方米)100周:4.71×100=471(平方米)(7)一顶帽子,上面是圆柱形,用黑布做;帽檐部分是一个圆环,用红布做。
做这顶帽子,哪种颜色的布用得多?解答:黑布:圆柱的侧面积+一个底面积3.14×20×10+3.14×(20÷2)²=942(cm²)红布:大圆的面积-一个底面积3.14×[(10+20÷2)²-(20÷2)²]=942(cm²)两种颜色的布用得一样多。
六年级数学下册《圆柱的表面积》教学设计六年级数学下册《圆柱的表面积》教学设计(精选6篇)作为一名优秀的教育工作者,总不可避免地需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。
那要怎么写好教学设计呢?以下是小编整理的六年级数学下册《圆柱的表面积》教学设计,仅供参考,欢迎大家阅读。
六年级数学下册《圆柱的表面积》教学设计篇1教学内容:小学数学第十二册教材P33~P34教学目标:1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:圆柱形物体、学具、多媒体课件教学重点:圆柱侧面积的计算方法推导。
教学过程:一、猜测面积大小,激发情趣导入1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。
)2、这两个圆柱谁的侧面积谁大?为什么?3、复习:圆柱的侧面积=底面周长×高刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)2、你们觉得这两个圆柱谁的表面积大?为什么?生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?生:计算的方法师:怎么计算圆柱的表面积呢?圆柱的表面积=侧面积+两个底面的面积(板书)4、那现在你们就算算这两个圆柱的表面积是多少?生:(不知所措)没有数字怎么算啊?师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
【教师邀请两个学生讲解自己的思路,由其他学生指出问题,教师重点指导不懂的学生】板书:底面半径:24÷2÷3÷2=2(厘米)3.14×22×2+3.14×2×2×3=62.8(平方厘米)答:原来这个圆柱表面积是62.8平方厘米。
(三)例题5(选讲):用铁皮做一个如右图所示的空心管(单位:厘米),需用铁皮多少平方厘米?师:同学们已经学过求组合图形的面积,我们在做题的时候有哪些技巧?生:填补、平移、拆分……师:这道题可以用这些技巧吗?生:可以。
师:怎么来做?生:分成上下两部分。
师:嗯,下面部分就是?生:圆柱。
师:是圆柱,但是这个圆柱是?生:空心的。
师:空心的,我们计算的时候只需要计算?生:侧面积。
师:嗯,很好。
那上面部分呢?生:圆柱的一半。
师:同学们真厉害。
我们一起来做一下。
【教师先引导学生的解题思路,再结合课件详细讲解,加深学生印象】板书:上半部分:3.14×6×(12-8)÷2=37.68(平方厘米)下半部分:3.14×6×8=150.72(平方厘米)37.68+150.72=188.4(平方厘米)答:需用铁皮188.4平方厘米。
将高是0.8米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体,这个物体的表面积是多少?分析:另一部分是上下两个,一部分是三个圆柱的侧面积,可以分成两部分来计算 发现也是一个大圆,上面我们可以从上往下看,面:下面就是大圆柱一个底面积柱的底面积。
求和即可计算出其表面积。
【教师邀请两个学生讲解自己的思路,由其他学生指出问题,教师重点指导不懂的学生】板书:三个侧面积的和:3.14×(1.5×2+1×2+0.5×2)×0.8=15.072(平方米)上下面积的和:3.14×1.52×2=14.13(平方米)15.072+14.13=29.202(平方米)答:这个物体的表面积是29.202平方米。
《圆柱的表面积》说课稿尊敬的各位评委、各位老师:大家下午好!今天我说课的内容是《圆柱的表面积》.我将从“教材分析、学情分析、教学目标、教法学法、教学过程、板书设计”这6个方面来展开.一、教材分析《圆柱的表面积》是人教版六年级数学下册第三单元《圆柱与圆锥》中的内容,是小学数学《空间与图形》领域中最后一个单元的知识.是在学生学习了简单的平面图形和长方体、正方体的表面积与体积,以及圆柱的初步认识和圆柱的展开图的基础上进行教学的.学好这一部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础.二、学情分析六年级的学生,经历了多种简单图形(比如:圆、三角形、平行四边形、梯形等)的面积推导过程,初步具备了用转化思想探究问题的能力.大部分学生能够通过动手操作、观察发现、比较归纳等活动,主动地探索新知,促进知识的迁移.不仅如此,在前置学习中我还让学生同桌之间相互背诵有关圆的周长和面积的计算公式,提前扫清了用圆的相关公式解决问题时的障碍.但学生的空间观念不是很好,思考时需要有实物做支撑.三、教学目标基于之前的教材和学情分析,我制定了如下教学目标:1.通过合作探究理解和掌握圆柱体侧面积和表面积的计算方法.2.通过动手操作,建立空间观念,利用转化的思想探究问题,推导出圆柱侧面面积的计算公式.3.培养学生的观察、操作、概括的能力以及利用知识灵活地解决实际问题的能力.4.培养学生的合作学习和主动探求知识的学习品质.根据本节课的知识特点以及学生的认知规律,我确定好了教学重点和难点.通过合作探究掌握圆柱侧面积和表面积的计算方法,并能正确快速地计算出圆柱的表面积是这节课的教学重点.而理解圆柱侧面展开图与圆柱的联系,并通过小组合作推导出圆柱侧面面积计算公式是这节课的难点.四、教法学法几何初步知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径.大纲明确指出:教学要通过学生的多种感官的参与,掌握几何形体的特征,培养学生的空间观念.结合本课概念抽象和学生的空间想象力不够丰富等实际情况,我综合运用动手操作亲身实践教学法、合作学习教学法、演示法等方法来实现教学目标.我也注重学法指导,学生采用动手操作、自主探究,合作交流等学习方法,经历把新知转化为旧知的过程,通过亲身经历做、找、说等活动,做到学会并会学.五、教学过程我的教学过程主要包括4个环节.第一个环节是“温故引新,揭示课题”.在这个环节下我设计了2个方面的问题,一是圆柱有什么特点?二是什么叫做长方体的表面积?怎样计算?什么叫做正方体的表面积?怎样计算?本环节出示问题情境,学生抢答.学生在复习中回忆圆的相关计算问题及表面积的含义,为进一步探索圆柱的表面积作好准备.紧接着出示例3,揭示课题,并引导学生观察圆柱后得出圆柱的表面积是侧面积加上两个底面积.第二个环节是“亲身实践,感知探究”.圆柱的底面是两个相等的圆,对于圆的面积学生是很容易求解的,而圆柱的侧面却是个“曲面”,怎样才能求出这个“曲面”的面积就成了解决问题的关键.因为学生前一个课时学习了圆柱的展开图,学生轻易地就能想到把圆柱的侧面展开成平面图形,通过平面图形推导出圆柱侧面的面积公式.为此我又设计了三个小组活动.活动1:化曲为直.活动要求:四人合作,利用老师提供的圆柱和工具,把四个圆柱展开,并且圆柱侧面的展开图分别要有长方形、正方形、平行四边形、不规则图形,四人中每个学生拿其中的一样.学生之前已经学习过圆柱的展开图,小组合作能够快速完成这个活动.通过这个活动,把学生理解上的难点“由曲变直”很好地突破了,让学生更加全面直观地感受曲面和平面之间的关系,培养学生的空间观念,有利于提高学生的学习兴趣,也培养了学生要全面思考和严谨的学习态度.活动2:公式推导.学生利用手中的图形推导出圆柱的侧面积计算公式. 因为学生经历过平行四边形,三角形,圆等面积公式的探究活动,学生通过观察、对比就能够得出结论.小组汇报后,我再借助电子白板展示动态效果,这样就可以帮助学生更好的理解圆柱侧面展开图无论是长方形、正方形、平行四边形还是不规则图形的面积最终都是用圆柱的底面周长乘高来计算.活动3:与同桌间说一说自己的推导过程.这个环节一定要舍得花时间,语言是思维的外壳,让学生在交流中不仅锻炼了语言表达能力,更让学生想清楚了推导过程,发展了学生的逻辑思维.建构主义认为,真正的数学学习不是对于外部所授予知识的简单接受和积累,而是学生以自己已有的知识和经验为基础的主动建构过程.在上面这一系列的探究活动过程中,学生的眼、手、脑等多种感官参与到感知活动中,探究的精神得到了张扬,自主学习的能力得到了实实在的落实.教学的重点、难点在学生的探究实践中得到了突破.我的教学过程第三个环节是:学以致用,拓展提高.这一环节是内化知识、训练思维、培养能力、形成技能的重要环节.题在精不在多,我准备了三个层次的题.第一个层次是基础练习,包括以下几道题.基础练习,重在巩固新知识,加深对新知识的理解.基础练习中也富有层次性,是从有侧面展开图的支撑到没有展开图的支撑.基础练习在这一环节占的比重较大.第二层次是综合练习.综合练习从学生的最近的发展区出发,选取生活中熟悉的物体,提高学生解决实际问题的能力,增强学生学好数学的信心,做到学以致用.第三层次是挑战自我.挑战自我这道题是让组内学有余力的学生给其他学生出题,锻炼了学优生的思维,又再一次给组内其他学生巩固了基础知识.三个层次的习题安排,既可以让后进生够得着,又可以让学优生吃得饱,一堂课下来争取做到每个学生都有所发展.教学的最后一个环节是课堂总结,布置作业.让学生借助板书说说这节课的收获,并且说出是如何获得收获的.通过此环节,可以反馈这堂课的教学效果,让学生对本节课所学的知识有系统的认识,并加深学生对知识的理解和归纳梳理.六、板书设计.我的板书设计很简洁,这样既突出了掌握圆柱侧面积和表面积计算方法这个重点,又突破了用转化方法探究圆柱侧面积的教学难点,给学生留下了深刻的印象.以上就是我的说课内容,谢谢大家的聆听!。
《圆柱的表面积》教学设计《圆柱的表面积》教学设计(精选17篇)作为一名老师,时常需要编写教学设计,教学设计是一个系统化规划教学系统的过程。
一份好的教学设计是什么样子的呢?以下是小编为大家整理的《圆柱的表面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆柱的表面积》教学设计篇1预设目标:1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。
2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质。
教学重、难点:1、理解和掌握圆柱体的侧面积和表面积的计算方法。
2、培养学生科学的学习态度。
教学过程:一、检查复习,引入新课。
1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。
2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。
3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。
板书:圆柱的表面积二、引导探究,学习新知。
1、侧面积的意义和计算方法。
⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。
⑵想一想用我们已有的知识,能不能求出这个曲面的面积。
(你能求出这个曲面的面积吗?)小组讨论:有什么好办法求出圆柱的侧积吗?⑶剪一剪自制圆柱,汇报交流结果。
⑷说一说:圆柱体的侧面可转化为已学过的平面图形是什么?它的侧面积正好等于底面周长乘高的乘积。
板书:圆柱的侧面积=底面周长×高⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。
小结:计算圆柱体的侧面积的方法是什么?⑹做一做:课本76页例1及77页的第一题。
2、表面积的意义及计算方法⑴自读课本:什么是圆柱的表面积?板书:圆柱的表面积=侧面积+2个底面积⑵练一练:(小黑板出示)⑶小结:圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。
圆柱的表面积学习目标1.经历圆柱展开与卷成圆柱等活动,理解圆柱的表面积的意义,知道圆柱的侧面展开后可以是一个长方形,探索圆柱侧面积的计算方法,并掌握圆柱的表面积的计算方法,能正确计算圆柱的表面积。
2.能根据具体情境的不同情况,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,体会数学与生活的联系,丰富对现实空间的认识。
编写说明在学习长方体和正方体的表面积时,学生已经初步理解了表面积的含义,这是圆柱的表面积的学习基础。
圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面面积就是计算圆面积,对学生来说并不是新知识,所以教学的重点是探索圆柱侧面积的计算方法。
教科书突出了圆柱侧面展开图的探索过程,以及侧面展开图的长、宽与圆柱有关量之间的关系。
·如果接口不计,至少需要用多大面积的纸板?先说说你是怎么想的。
教科书创设了“做一个圆柱形纸盒,至少需要用多大面积的纸板”的简单情境,引导学生结合具体物体理解圆柱表面积的意义。
结合实际问题,让学生理解所面临的问题实际上就是求圆柱的表面积的问题,而圆柱的表面是由圆柱的两个底面与一个侧面组成的,因此可知,圆柱的表面积就是两个底面的面积与侧面面积的和。
其中,怎样求圆柱的侧面积,对学生而言,是个新问题。
·圆柱的侧面展开后是一个怎样的图形呢?你能想办法说明吗?在初步理解圆柱表面积的意义后,教科书安排了探索圆柱侧面是一个怎样的图形的内容。
这是解决求圆柱侧面积的关键问题,而且要由学生自己想办法把圆柱的侧面展开成平面,再判断是什么图形。
事实上,学生已经具有把圆周变成线段,即“化曲为直”的活动经验,所以也就有了把圆柱的曲面化为平面的可能性。
教科书呈现了两种说明的方法:一种是把圆柱形纸盒沿圆柱的高剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱。
除了这两种办法外,还有其他的一些方法,如“把圆柱沿着直尺边缘滚动一周,圆柱的侧面印下的区域是一个长方形”等。