期望与方差的性质
- 格式:ppt
- 大小:843.00 KB
- 文档页数:34
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
概率的期望与方差概率是概率论中的重要概念,它描述了某个事件发生的可能性。
在概率论中,期望与方差是两个与概率密切相关的重要概念。
本文将就概率的期望与方差进行探讨。
一、期望期望是概率论中描述随机变量平均数的指标。
它代表了随机事件在一次试验中发生的长期平均结果。
概率的期望可以以数学期望的方式进行计算。
对于一个离散型随机变量X,其概率质量函数可以表示为:P(X=x1)=p1, P(X=x2)=p2, ..., P(X=xn)=pn其期望E(X)可以通过以下公式计算:E(X)=x1*p1 + x2*p2 + ... + xn*pn对于一个连续型随机变量X,其概率密度函数可以表示为:f(x)其期望E(X)可以通过以下公式计算:E(X)=∫xf(x)dx二、方差方差是衡量随机变量离散程度的指标。
它是随机变量与其期望的差值的平方的期望,用来描述随机事件的波动程度。
对于一个离散型随机变量X,其方差Var(X)可以通过以下公式计算:Var(X)=E[(X-E(X))^2]=∑(xi-E(X))^2 * P(X=xi)对于一个连续型随机变量X,其方差Var(X)可以通过以下公式计算:Var(X)=E[(X-E(X))^2]=∫(x-E(X))^2 * f(x)dx三、概率的期望与方差的意义1. 期望表示了一次试验中随机变量的平均结果,可以用来预测概率分布的中心位置。
2. 方差表示了一次试验中随机变量的波动程度,用来衡量随机事件的不确定性。
3. 期望和方差是概率分布的两个基本性质,可以通过它们来描绘随机事件的特征。
四、概率的期望与方差的应用1. 期望和方差在金融学中有着广泛的应用,用来衡量金融资产的收益和风险。
2. 在统计学中,期望和方差是估计参数和检验假设的重要工具。
3. 期望和方差也在工程、物理等领域中有广泛的应用,用来分析实验数据和优化系统性能。
总结:概率的期望与方差是概率论中重要的概念,用来描述随机事件的平均结果和波动程度。
随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)),(-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。
离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
数学期望与方差的运算性质教程一:复习公式离散随机变量(),(,)(,)(,)(,)i j ij i j ij i jP X Y a b p Eh X Y h a b p ==→=∑连续随机变量()()()2,~,(,)(,),R f x y Eg g x y f x y dxdy ξηξη→=⎰⎰二:期望运算性质()E aX bY c aEX bEY c ++=++应用例题、袋中装有m 个不同色小球,有返回取球n 次,出现X 种不同颜色,求EX 解答:用i X ⎧=⎨⎩1第i颜色球在n次取球中出现0第i颜色球在n次取球中没出现,则m X X X ++= 1由于()()1101,111,n ni i P X P X m m ⎛⎫⎛⎫==-==-- ⎪ ⎪⎝⎭⎝⎭()111/ni EX m =--,()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--==++=∑=nmi i m m m EX X X E EX 11111三、协方差:若,EX EY θμ==,()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦称为随机变量X 、Y 的协方差.covariance()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦()()()()()()()()()()()EYEX XY E XY E XY E Y E X E XY E E Y E X E XY E Y X XY E ⨯-=-=+--=+--=+-+-+=+--=θμθμθμμθθμθμθμθμθμθμ 例题:害虫一生产卵个数X 服从参数为λ的Poisson分布,若每个卵能孵化成下一代的概率都是p ,假定害虫后代个数为Y ,求cov(,)X Y解答:(,)()()(1)!i i jj ji j i e P X i Y j P X i P Y j X i C p p i λλ-≥-=======-!(1)(1)!!()!!()!i i j i j j i j e i e p p p p i j i j j i j λλλλ----=-=---000(,)(1)!()!i ij i ji j i i j e EXY ijP X i Y j ij p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EX iP X i Y j i p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EY jP X i Y j j p p j i j λλ-∞∞-=≤======--∑∑∑∑clear clcsyms i j p lamda positiveEXY=symsum(symsum(i*j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EX=symsum(symsum(i*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EY=symsum(symsum(j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)cov=simple(EXY-EX*EY); cov EXY =p*lamda*(lamda+1) EX = lamda EY = lamda*p cov = lamda*p可以看到,协方差不为0 例题:P180 3.4.8()[0,1][0,2],~(,)1/3()(,)f x y x y I x y ξη⨯=+,求(238)Var X Y -+syms x y positivemoment1=int(int((2*x-3*y+8)*1/3*(x+y),x,0,1),y,0,2); moment2=int(int((2*x-3*y+8)^2*1/3*(x+y),x,0,1),y,0,2); Var=moment2-moment1^2 Var = 245/81协方差计算公式()()()(),cov(,)EX a EY bX Y E X EX E Y EY E X a E Y b ===--=--()()()()E XY aY bX ab E XY aE Y bE X ab =--+=--+ ()E XY ab ba ab =--+ ()()()E XY E X E Y =-注: Y=X时得到什么公式?例题:若随机变量,X Y 独立,求它们的协方差解答:,EX EY θμ==,因为,X Y 独立,所以X Y θμ--、也相互独立()()()()cov(,)0X Y E X Y E X E Y θμθμ=--=-⨯-=⎡⎤⎣⎦注:相互独立随机变量协方差为0的逆命题不成立,如,假定随机变量~(1,1)X U -,则显然2cov(,)0X X =,但是2X X 、不独立 四、协方差和方差性质1:协方差是方差推广,方差是特殊协方差cov(,)()X X Var X =,cov(,)0X c =,cov(,)cov(,)X Y Y X =1111cov(,)cov(,)m n m ni i j j i j i j i j i j c X d Y c d X Y =====∑∑∑∑特殊地11111()cov(,)cov(,)mmmmmi i i i j i i i i j Var X X X X X =======∑∑∑∑∑111cov(,)cov(,)cov(,)m m m i j i j i i i j i j i X X X X X X ===≠⎡⎤==+⎢⎥⎣⎦∑∑∑∑1cov(,)()mi j i i j i X X Var X =≠⎡⎤=+⎢⎥⎣⎦∑∑11cov(,)()mmi j i i i j i X X Var X ==≠⎡⎤=+⎢⎥⎣⎦∑∑∑12cov(,)()mi j i i j iX X Var X =>=+∑∑特别地121212()()()2cov(,)Var X X Var X Var X X X +=++121212112212()cov(,)cov(,)cov(,)Var X X X X X X X X X X X X -=--=-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 1122122()cov(,)cov(,)cov(,)Var X X X X X X X =---- 1121222()cov(,)cov(,)cov(,)Var X X X X X X X =--+ 1212()()2cov(,)Var X Var X X X =+-这个结论说明,一般,和的方差并不等于方差之和 定理:若随机变量1,,n X X 相互独立,则111()2cov(,)()()nnni i j i i i i i j iVar X X X Var X Var X ===>=+=∑∑∑∑。
概率论中的期望与方差概率论是研究随机现象规律的一门学科,其中,期望与方差是重要的概念。
本文将介绍期望与方差的定义与性质,并探讨它们在概率论中的应用。
1. 期望的定义与性质期望是描述随机变量平均取值的指标,用E(X)表示,对于离散型随机变量,期望的定义如下:E(X) = ΣxP(X=x)其中,x为随机变量的取值,P(X=x)为该取值发生的概率。
期望具有以下性质:(1)线性性质:对于任意常数a和b,有E(aX+b) = aE(X)+b;(2)非负性质:对于任意非负的随机变量X,有E(X)≥0;(3)单调性质:对于任意两个随机变量X和Y,若X≤Y,则有E(X)≤E(Y)。
2. 方差的定义与性质方差反映随机变量的离散程度,用Var(X)表示,对于离散型随机变量,方差的定义如下:Var(X) = E[(X-E(X))^2]其中,E(X)为随机变量X的期望。
方差具有以下性质:(1)非负性质:对于任意随机变量X,有Var(X)≥0;(2)零方差性质:若Var(X)=0,则X为常数;(3)线性性质:对于任意常数a和b,有Var(aX+b) = a^2Var(X)。
3. 期望与方差的应用期望与方差在概率论中具有广泛的应用,以下是其中的几个例子:(1)二项分布:对于二项分布,其期望为np,方差为np(1-p),其中n为试验次数,p为成功概率;(2)正态分布:对于正态分布,其期望为μ,方差为σ^2,其中μ为均值,σ为标准差;(3)协方差:对于两个随机变量X和Y,其协方差定义为Cov(X,Y) = E[(X-E(X))(Y-E(Y))],可以用于衡量两个随机变量的相关性。
4. 期望与方差的计算方法在实际计算中,期望与方差可以通过概率分布函数进行计算,具体的计算方法取决于随机变量的类型。
常见的计算方法包括:(1)离散型随机变量:根据随机变量的概率质量函数,利用期望和方差的定义进行计算;(2)连续型随机变量:根据随机变量的概率密度函数,利用连续型随机变量的性质进行计算;(3)样本估计:当随机变量的概率分布未知或无法确定时,可以通过样本的统计量来估计期望与方差。