第9讲数学期望与方差(1)
- 格式:ppt
- 大小:2.25 MB
- 文档页数:47
第9讲 离散型随机变量的均值与方差【2013年高考会这样考】1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题.基础梳理离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n两个防范在记忆D (aX +b )=a 2D (X )时要注意:D (aX +b )≠aD (X )+b ,D (aX +b )≠aD (X ). 三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ); (2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(3)若X 服从超几何分布, 则E (X )=n MN. 六条性质(1)E (C )=C (C 为常数)(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或 数学期望 ,它反映了离散型随机变量取值的 平均水平 . (2)方差 称D (X )= i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 偏离程度 ,其算术平方根DX 为随机变量X 的标准差.(2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2(4)如果X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)E (X 2) (5)D (X )=E (X 2)-(E (X ))2(6)D (aX +b )=a 2·D (X )双基自测1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 解析 由题意知a +0+1+2+3=5×1,解得,a =-1.s 2=-1-2+-2+-2+-2+-25=2.答案 D2.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )的值为( ).A.73 B .4 C .-1 D .1 解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案 A3.(2010·湖北)某射手射击所得环数ξ的分布列如下:ξ78 9 10P x 0.10.3y已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.9 解析 x +0.1+0.3+y =1,即x +y =0.6.①又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.②由①②联立解得x =0.2,y =0.4. 答案 A4.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 解析 ∵X ~B (n ,p ),∴E (X )=np =1.6,D (X )=np (1-p )=1.28,∴⎩⎪⎨⎪⎧n =8,p =0.2.答案 A5.(2010·上海)随机变量ξ的概率分布列由下表给出:ξ7 8 9 10 P0.30.350.20.15该随机变量ξ的均值是________.解析 由分布列可知E (ξ)=7×0.3+8×0.35+9×0.2+10×0.15=8.2. 答案 8.2考向一 离散型随机变量的均值和方差【例1】►A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:对阵队员A 队队员胜的概率A 队队员负的概率A 1和B 1 23 13 A 2和B 2 25 35 A 3和B 32535现按表中对阵方式出场胜队得1分,负队得0分,设A 队,B 队最后所得总分分别为X ,Y (1)求X ,Y 的分布列;(2)求E (X ),E (Y ).[审题视点] 首先理解X ,Y 的取值对应的事件的意义,再求X ,Y 取每个值的概率,列成分布列的形式,最后根据期望的定义求期望. 解 (1)X ,Y 的可能取值分别为3,2,1,0.P (X =3)=23×25×25=875,P (X =2)=23×25×35+13×25×25+23×35×25=2875, P (X =1)=23×35×35+13×25×35+13×35×25=25, P (X =0)=13×35×35=325;根据题意X +Y =3,所以P (Y =0)=P (X =3)=875,P (Y =1)=P (X =2)=2875, P (Y =2)=P (X =1)=25,P (Y =3)=P (X =0)=325. X 的分布列为X 0 1 2 3 P325252875875Y 的分布列为Y 3 2 1 0 P325252878875(2)E (X )=3×875+2×2875+1×25+0×325=2215;因为X +Y =3,所以E (Y )=3-E (X )=2315.(1)求离散型随机变量的期望关键是写出离散型随机变量的分布列,然后利用公式计算.(2)由X 的期望、方差求aX +b 的期望、方差是常考题之一,常根据期望和方差的性质求解. 【训练1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E (ξ).解 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.记甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付的租车费用相同的概率为516.(2)ξ可能取的值有0,2,4,6,8.P (ξ=0)=14×12=18; P (ξ=2)=14×14+12×12=516; P (ξ=4)=12×14+14×12+14×14=516; P (ξ=6)=12×14+14×14=316; P (ξ=8)=14×14=116.甲、乙两人所付的租车费用之和ξ的分布列为ξ0 2 4 6 8 P18516516316116所以E (ξ)=0×18+2×516+4×516+6×316+8×116=72.考向二 均值与方差性质的应用【例2】►设随机变量X 具有分布P (X =k )=15,k =1,2,3,4,5,求E (X +2)2,D (2X -1),D X -.[审题视点] 利用期望与方差的性质求解.解 ∵E (X )=1×15+2×15+3×15+4×15+5×15=155=3.E (X 2)=1×15+22×15+32×15+42×15+52×15=11.D (X )=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15+(5-3)2×15=15(4+1+0+1+4)=2.∴E (X +2)2=E (X 2+4X +4)=E (X 2)+4E (X )+4=11+12+4=27.D (2X -1)=4D (X )=8,D X -1=D X = 2.若X 是随机变量,则η=f (X )一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算.【训练2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号. (1)求X 的分布列、期望和方差;(2)若η=aX +b ,E (η)=1,D (η)=11,试求a ,b 的值. 解 (1)X 的分布列为X 0 1 2 3 4 P1212011032015∴E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (X ),得a 2×2.75=11,即a =±2. 又E (η)=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2. 当a =-2时,由1=-2×1.5+b ,得b =4.∴⎩⎪⎨⎪⎧a =2,b =-2,或⎩⎪⎨⎪⎧a =-2,b =4,即为所求.考向三 均值与方差的实际应用【例3】►(2011·福建)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:X 1 5 6 7 8 P0.4a b0.1且X 1的数学期望E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 3 46 3 47 5 3 48 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.[审题视点] (1)利用分布列的性质P 1+P 2+P 3+P 4=1及E (X 1)=6求a ,b 值. (2)先求X 2的分布列,再求E (X 2),(3)利用提示信息判断.解 (1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2. 又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:X 2 3 45 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:X 2 3 4 5 6 7 8 P0.30.20.20.10.10.1所以E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8.即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2. 据此,乙厂的产品更具可购买性.解决此类题目的关键是将实际问题转化为数学问题,正确理解随机变量取每一个值所表示的具体事件,求得该事件发生的概率,本题第(1)问中充分利用了分布列的性质p 1+p 2+...+p n + (1)【训练3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用X 表示投资收益(收益=回收资金-投资资金),求X 的概率分布及E (X );(2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.解 (1)依题意,X 的可能取值为1,0,-1,X 的分布列为X 1 0 -1 P121414E (X )=12-14=14.(2)设Y 表示10万元投资乙项目的收益,则Y 的分布列为:Y 2 -2 Pαβ E (Y )=2α-2β=4α-2,依题意要求4α-2≥14,∴916≤α≤1.规范解答23——离散型随机变量的均值与方差的计算【问题研究】 期望和方差是离散型随机变量的两个重要数学特征,是高考概率考查的重要知识点,常与排列组合、导数等知识相结合,对考查生的数学应用能力、数学表达能力、创新能力都进行了考查.【解决方案】 (1)掌握好期望与方差的性质.(2)记住或理解一些特殊分布的均值与方差,如两点分布、二项分布等.(3)注意运算技巧,随机变量的均值与方差计算比较复杂,在运算时要注意一些运算技巧,如把问题归结为二项分布的期望与方差,运用期望与方差的性质简化运算,运算时注意一些项的合并.【示例】►(本小题满分12分)甲、乙两架轰炸机对同一地面目标进行轰炸,甲机投弹一次命中目标的概率为23,乙机投弹一次命中目标的概率为12,两机投弹互不影响,每机各投弹两次,两次投弹之间互不影响.(1)若至少两次投弹命中才能摧毁这个地面目标,求目标被摧毁的概率;(2)记目标被命中的次数为随机变量ξ,求ξ的分布列和数学期望.对于第(1)问,甲、乙两机的投弹都是独立重复试验概型,根据至少两次命中分类求解,或使用间接法求解,注意运用相互独立事件同时发生的概率乘法公式;对于第(2)问,根据题意,随机变量ξ=0,1,2,3,4,根据独立重复试验概型及事件之间的相互关系,计算其概率即可求出分布列,根据数学期望的计算公式求解数学期望.[解答示范] 设A k 表示甲机命中目标k 次,k =0,1,2,B l 表示乙机命中目标l 次,l =0,1,2,则A k ,B l 独立.由独立重复试验中事件发生的概率公式有P (A k )=C k 2⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫132-k ,P (B l )=C l 2⎝ ⎛⎭⎪⎫12l ⎝ ⎛⎭⎪⎫122-l. 据此算得P (A 0)=19,P (A 1)=49,P (A 2)=49.P (B 0)=14,P (B 1)=12,P (B 2)=14.(2分)(1)所求概率为1-P (A 0B 0+A 0B 1+A 1B 0)=1-⎝ ⎛⎭⎪⎫19×14+19×12+49×14=1-736=2936.(4分)(2)ξ的所有可能值为0,1,2,3,4,且P (ξ=0)=P (A 0B 0)=P (A 0)·P (B 0)=19×14=136, P (ξ=1)=P (A 0B 1)+P (A 1B 0)=19×12+49×14=16,P (ξ=2)=P (A 0B 2)+P (A 1B 1)+P (A 2B 0)=19×14+49×12+49×14=1336,(8分) P (ξ=3)=P (A 1B 2)+P (A 2B 1)=49×14+49×12=13, P (ξ=4)=P (A 2B 2)=49×14=19.(10分)综上知,ξ的分布列如下:ξ0 1 2 3 4 P1361613361319从而ξ的期望为E (ξ)=0×136+1×16+2×1336+3×13+4×19=73.(12分)概率问题的核心就是互斥事件、相互独立事件的概率计算、随机变量的分布以及均值等问题,并且都是以概率计算为前提的,在复习时要切实把握好概率计算方法.若本题第(2)问是单纯求随机变量ξ的数学期望,则可以直接根据二项分布的数学期望公式和数学期望的性质解答:令ξ1,ξ2分别表示甲、乙两机命中的次数,则ξ1~B ⎝ ⎛⎭⎪⎫2,23,ξ2~B ⎝ ⎛⎭⎪⎫2,12,故有E (ξ1)=2×23=43,E (ξ2)=2×12=1,而知E (ξ)=E (ξ1)+E (ξ2)=73.【试一试】 (2011·北京)(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354;方差为:s 2=14×[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=1116.(2)当X =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18.同理可得P (Y =18)=14;P (Y =19)=14;P (Y =20)=14;P (Y =21)=18.所以随机变量Y 的分布列为:Y 17 18 19 20 21 P1814141418EY =17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×18+18×14+19×14+20×14+21×18=19.[尝试解答] 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).故选D.答案 D1.(2012年江苏高考)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0=ξ;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1=ξ.(1)求概率()0=ξP ;(2)求ξ的分布列,并求其数学期望()ξE .2.(2012年课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
第九节随机变量的数字特征、正态分布知识点预习1.离散型随机变量的数学期望与方差(1)数学期望(2)方差2.二点分布与二项分布、超几何分布的期望、方差3.正态曲线4.正态曲线的性质5.正态变量在三个特定区间内取值的概率值预习练习题1、判断下面结论是否正确(请在括号中打“√”或“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( ) (4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(5)均值是算术平均数概念的推广,与概率无关.( ) 2、 (教材改编)某射手射击所得环数ξ的分布列如下: 已知ξ的均值E (ξ)=8.9,则y 的值为( ) A .0.4 B .0.6 C .0.7 D .0.93、设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a4、设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于( )A .5B .8C .10D .16 5、设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8 D .0.166、已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A .73B .4C .-1D .1 7、若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-88、有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.9、某糖厂用自动打包机打包,每包重量X (kg)服从正态分布N (100,1.22),一公司从该糖厂进货1 500包,则重量在(98.8,101.2)的糖包数量为________包.11、抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.例题选讲例1、某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和均值.例2、设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求a ∶b ∶c .例3、某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).例4、计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?例5、已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)( )A .4.56%B .13.59%C .27.18%D .31.74%例6、(12分)甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为P 2.(1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求P 2的值;(3)设P 2=15,若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的分布列和均值.第九节课堂练习1、若离散型随机变量X 的分布列为 则X 的数学期望E (X )=( )A .2B .2或12C .12D .12、设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是()A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )3、已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.) A .4.56% B .13.59%C .27.18% D .31.74%4、某校在一次月考中约有600人参加考试,数学考试的成绩ξ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.5、为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚,为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:(1)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少? (2)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验. ①求这两种金额之和不低于20元的概率;②若用X 表示这两种金额之和,求X 的分布列和数学期望.6、为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.7、有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:其中X表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量.8、乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与均值.9、某投资公司在2015年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.10、在某次大型考试中,某班同学的成绩服从正态分布N (80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.第九节课后作业1.若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-82.随机变量ξ的分布列如下,其中a 、b 、c 为等差数列,若E (ξ)=13,则D (ξ)的值为( )A.49B.59C.13D.233.设随机变量X ~N (μ,σ2),且X 落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等,若P (X >2)=p ,则P (0<X <2)等于( ) A.12+p B .1-p C .1-2pD.12-p 4.一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为X ,则X 的均值是________.5.若随机变量X 的概率分布密度函数是f (x )=122π·e -(x +2)28(x ∈R ),则E (2X -1)=________.6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________.7.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率; (2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和均值.8.在某次数学考试中,考生的成绩ξ服从正态分布,即ξ~N(100,100),已知满分为150分.(1)试求考试成绩ξ位于区间(80,120]内的概率;(2)若这次考试共有2 000名考生参加,试估计这次考试及格(不小于90分)的人数.9.现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及均值.10.设随机变量X 服从正态分布N (12,σ2),集合A ={x |x >X },集合B ={x |x >12},则A ⊆B 的概率为( )A.14 B.13 C.12D.2311.袋中装有大小完全相同,标号分别为1,2,3,…,9的九个球.现从袋中随机取出3个球.设ξ为这3个球的标号相邻的组数(例如:若取出球的标号为3,4,5,则有两组相邻的标号3,4和4,5,此时ξ的值是2),则随机变量ξ的均值E (ξ)为( ) A.16 B.13 C.12D.2312.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.13.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)在这15天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列.(2)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.14.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:(1)求Y,Z的值;(2)若视频率为概率,求六月份西瓜日销售额的均值和方差;(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.。
离散型随机变量的期望与方差、正态分布教学目标:1更好地理解并会求解简单问题的离散型随机变量的分布列,特别是要重点把握二项分布;2.理解正态分布的σ3原则;3.掌握离散型随机变量的均值及方差的计算方法。
重、难点:实际问题中恰当定义随机变量,求离散型随机变量的分布列及其期望。
教学过程: [知识梳理] 一、均值:一般地,若离散型随机变量X 的分布列如下:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称∑==+⋅⋅⋅+++=ni ii n n px p x p x p x p x X E 1332211)(为离散型随机变量X 的均值..或数学..期望..。
数学期望简称为期望。
离散型随机变量X 的均值..[E (X)]也称为X 的概率分布的均值,它反映了X 取值的平均水平,并且它与X 有相同的单位。
E (X)是一个常数,不依赖于样本的抽取。
样本平均值是一个随机变量,它随着抽取的样本的不同而不同。
对随机抽取的样本,随着样本容量的增大,样本平均值越来越接近于总体的均值。
E (X)越大,说明总体的平均数越大,反之,就越小。
性质:1. E (C)=C (C 为常数) 2. E (aX)=a E (X) 3. E (aX+b)=a E (X)+b 4. E (X+η)= E (X)+ E (η) 5. E (X ·η)= E (X)·E (η) (X ,η相互独立时) 6.若X 服从二点分布,则E (X)=p 7.若X ~B (n ,p ),则E (X)=n p 8.若X 服从参数为N 、M 、n 的超几何分布,则E (X)=nM/N 。
(如果X ~B (n ,p ),则由11--=k n k n nC kC ,可得np q p C np qpnpCqp kC X E n k kn k k n nk k n k k n nk kn kk n====∑∑∑-=---=------=-1111)1(1111)() 二、方差:设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则2)(EX x i -描述了x i (i=1,2,…,n)相对于均值EX 的偏离程度。
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =L 列表表示:X 1x 2x … i x … n x P1p2p…i p…n pX 的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.知识内容数学期望⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =L . 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =L .于是得到由式001110()C CC C n n n k k n k nn n n n n q p p q p qp q p q --+=++++L L 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++L ,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯I I L I L ,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =I (或D AB =).【例1】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例2】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例3】 从123456,,,,,这6个数中任取两个,则两数之积的数学期望为 .【例4】 一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现共有4颗子弹,命中后尚余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4【例5】 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、()01c ∈,),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )A .148B .124C .112D .16【例6】 一家保险公司在投保的50万元的人寿保险的保单中,估计每一千保单每年有15个理赔,若每一保单每年的营运成本及利润的期望值为200元,试求每一保单的保费.【例7】 甲乙两人独立解出某一道数学题的概率依次为1212()P P P P >,,已知该题被甲或乙解出的概率为0.8,甲乙两人同时解出该题的概率为0.3,求:⑴12P P ,; ⑵解出该题的人数X 的分布列及EX .典例分析【例8】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例9】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:⑴⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.【例10】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【例11】某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为30cm、20cm、10cm,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次一次得到的环数这个随机变量X,求X的分布列及数学期望.8910【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.⑴求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;⑵求η的分布列及期望Eη.【例13】学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且7Pξ>=.(0)10⑴求文娱队的人数;⑵写出ξ的概率分布列并计算期望.【例14】一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有X部电话占线,试求随机变量X的概率分布和它的期望.【例15】某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.40.50.6,,,且客人是否游览哪个景点互不影响,设X表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.求X的分布及数学期望.【例16】某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45、35、25,且各轮问题能否正确回答互不影响.⑴求该选手被淘汰的概率;⑵该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)【例17】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.⑴求甲、乙、丙三人均达标的概率;⑵求甲、乙、丙三人中至少一人达标的概率;⑶设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例18】在1,2,3,…,9这9个自然数中,任取3个数.⑴求这3个数中恰有1个是偶数的概率;⑵设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【例19】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为12,乙、丙面试合格的概率都是13,且面试是否合格互不影响.求:⑴至少有1人面试合格的概率;⑵签约人数X的分布列和数学期望.【例20】某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:①求至少一种电话不能一次接通的概率;②在一周五个工作日中,如果至少有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用该事件的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.⑵求一周五个工作日的这段时间(8点至10点)内,电话同时打入数ξ的期望.【例21】某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.(例如:A C D→→算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).记路线A C F B→→→中遇到堵车次数为随机变量X,求X的数学期望()E X.11510【例22】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.【例23】 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示甲、乙两人摸球后获得的奖金总额.求:⑴X 的概率分布;⑵X 的期望.【例24】 如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的A 点和1C 点处,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向每个方向移动,但不能按原路线返回.如:甲在A 时可沿AB ,AD ,1AA 三个方向移动,概率都是13,到达B 点时,可沿BC ,1BB 两个方向移动,概率都是12.已知小蚂蚁每秒钟移动的距离为1个单位.⑴如果甲、乙两只小蚂蚁都移动1秒,则它们所走的路线是异面直线的概率是多少?⑵若乙蚂蚁不动,甲蚂蚁移动3秒后,甲、乙两只小蚂蚁间的距离的期望值是多少?D1C1(乙)B1A(甲)B CDA1【例25】从集合{}12345,,,,的所有非空子集....中,等可能地取出一个.⑴记性质:γ集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;⑵记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望Eξ.【例26】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B 肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接..受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例27】⑴用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?⑵用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.求恰有两个区域用红色鲜花的概率.⑶条件同⑵,记花圃中红色鲜花区域的块数为X,求它的分布列及其数学期望EX.图二图一【例28】有甲、乙两个箱子,甲箱中有6张卡片,其中有2张写有数字0,2张写有数字1,2张写有数字2;乙箱中有6张卡片,其中3张写有数字0,2张写有数字1,1张写有数字2.⑴如果从甲箱中取出1张卡片,乙箱中取出2张卡片,那么取得的3张卡片都写有数字0的概率是多少?⑵从甲、乙两个箱子中各取一张卡片,设取出的2张卡片数字之积为X,求X的分布列和期望.【例29】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分.设A 队、B 队最后总分分别为ξη,.求ξη,的期望.【例30】 连续抛掷同一颗均匀的骰子,令第i 次得到的点数为i a ,若存在正整数k ,使126k a a a ++=L ,则称k 为你的幸运数字.⑴求你的幸运数字为4的概率;⑵若1k =,则你的得分为6分;若2k =,则你的得分为4分;若3k =,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分.求得分ξ的分布列和数学期望.【例31】 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A 处的命中率1q 为0.25,在B 处的命中率为2q ,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为⑴ 2⑵ 求随机变量ξ的数学期望E ξ;⑶ 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.【例32】 在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.⑴通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;⑵记1号、2号射箭运动员射箭的环数为ξ(ξ所有取值为01210L ,,,,)的概率分别为1P 、2P .根据教练员提供的资料,其概率分布如下表:②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.【例33】某人有10万元,准备用于投资房地产或购买股票,如果根据盈利表进行决策,那么,合理的投资方案应该是哪种?【例34】甲、乙两名工人加工同一种零件,分别检测5个工件,结果分别如下:试比较他们的加工水平.【例35】一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可销售75万元.⑴求软件成功开发且成功在发布会上发布的概率.⑵如果开发成功就召开新闻发布会的话,求开发商的盈利期望.⑶如果不召开新闻发布会,求开发商盈利的期望值,并由此决定是否应该召开新闻发布会.【例36】某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)【例37】 最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为12; 第二种方案:将10万块钱全部用来买基金.据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为311555,,; 第三种方案:将10万块钱全部存入银行一年,现在存款利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.【例38】 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令(12)i i ξ=,表示方案i实施两年后柑桔产量达到灾前产量的倍数.⑴写出12ξξ,的分布列;⑵实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?⑶不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【例39】某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为3232010(0)3qC q q q=-++>,该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:123k q ,而市场前景无法确定的利润. ⑴分别求利润123L L L ,,与产量q 的函数关系式;⑵当产量q 确定时,求期望k E ξ;⑶试问产量q 取何值时,市场无法确定的利润取得最大值.【例40】 某电器商由多年的经验发现本店出售的电冰箱的台数ξ是一个随机变量,它的分布列1()(1212)12P k ξξ===L ,,,,设每售出一台电冰箱,该台冰箱可获利300元,若售不出则囤积在仓库,每台需支付保管费100元/月,问:该电器商月初购进多少台电冰箱才能使自己的月平均收入最大?【例41】 某鲜花店每天以每束2.5元购入新鲜玫瑰花并以每束5元的价格销售,店主根据以往的销售统计得到每天能以此价格售出的玫瑰花数ξ的分布列如表所示,若某天所购进的玫瑰花未售完,则当天未售出的玫瑰花将以每束1.5元的价格降价处理完毕.⑴若某天店主购入玫瑰花40束,试求该天其从玫瑰花销售中所获利润的期望; ⑵店主每天玫瑰花的进货量x (3050x ≤≤,单位:束)为多少时,其有望从玫瑰花销售中获取最大利润?。
第九节 离散型随机变量的期望与方差、正态分布1.均值与方差理解取有限个值的离散型随机变量均值、方差的概念,能计算简单 离散型随机变量的均值、方差,并能解决一些实际问题. 2.正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的 意义. 知识点一 均值1.一般地,若离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量,且E (aX +b )=aE (X )+b . 3.(1)若X 服从两点分布,则E (X )=p . (2)若X ~B (n ,p ),则E (X )=np .易误提醒 理解均值E (X )易失误,均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.[自测练习]1.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )A.73 B .4 C .-1D .1 解析:E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案:A知识点二 方差1.设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.2.D (aX +b )=a 2D (X ).3.若X 服从两点分布,则D (X )=p (1-p ). 4.若X ~B (n ,p ),则D (X )=np (1-p ).易误提醒 (1)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ)越大,表明平均偏离程度越大,说明ξ的取值越分散.反之D (ξ)越小,ξ的取值越集中在E (ξ)附近.统计中常用标准差D (ξ) 来描述ξ的分散程度.(2)D (ξ)与E (ξ)一样也是一个实数,由ξ的分布列唯一确定.(3)D (ξ)的单位与随机变量ξ的单位不同,而E (ξ)、D (ξ) 与ξ的单位相同. (4)注意E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[自测练习]2.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( )A .6B .9C .3D .4解析:由E (ξ)=13(1+2+3)=2,得D (ξ)=23,D (3ξ+5)=32×D (ξ)=6. 答案:A3.有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.解析:∵X ~B ⎝⎛⎭⎫3,14,∴D (X )=3×14×34=916. 答案:916知识点三 正态分布 1.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π.(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.2.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)=0.682_6. (2)P (μ-2σ<X ≤μ+2σ)=0.954_4. (3)P (μ-3σ<X ≤μ+3σ)=0.997_4.易误提醒 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.[自测练习]4.若随机变量ξ~N (2,1),且P (ξ>3)=0.158 7,则P (ξ>1)=________.解析:由ξ~N (2,1),得μ=2,因为P (ξ>3)=0.158 7,所以P (ξ<1)=0.158 7,所以P (ξ>1)=1-0.158 7=0.841 3.答案:0.841 3考点一 离散型随机变量的均值|(2015·高考安徽卷)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).[解] (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为X 200 300 400 P110310610E (X )=200×110+300×310+400×610=350.求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值. (2)求X 的每个值的概率. (3)写出X 的分布列. (4)由均值定义求出E (X ).1.(2016·合肥模拟)某校在全校学生中开展物理和化学实验操作大比拼活动,活动要求:参加者物理、化学实验操作都必须参加,有50名学生参加这次活动,评委老师对这50名学生实验操作进行评分,每项操作评分均按等级采用5分制(只打整数分),评分结果统计如表:学生数物理得分y化学得分x1分2分3分4分5分1分 1 3 1 0 1 2分 1 0 7 5 1 3分 2 1 0 9 3 4分 1 2 6 0 1 5分1133分”的学生被抽取的概率;(2)从这50名参赛学生中任取1名,其物理实验与化学实验得分之和为ξ,求ξ的数学期望.解:(1)从表中可以看出,“化学实验得分为4分且物理实验得分为3分”的学生有6名,所以“化学实验得分为4分且物理实验得分为3分”的学生被抽取的概率为650=325.(2)ξ所有可能的取值为2、3、4、5、6、7、8、9、10,则ξ的分布列为:ξ 2 3 4 5 6 7 8 9 10 P1504503509508501650450250350∴E (ξ)=2×150+3×450+4×350+5×950+6×850+7×1650+8×450+9×250+10×350=31150.考点二 方差问题|设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量X 为取出此2球所得分数之和,求X 的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量Y 为取出此球所得分数.若E (Y )=53,D (Y )=59,求a ∶b ∶c .[解] (1)由题意得X =2,3,4,5,6. 故P (X =2)=3×36×6=14,P (X =3)=2×3×26×6=13,P (X =4)=2×3×1+2×26×6=518,P (X =5)=2×2×16×6=19,P (X =6)=1×16×6=136.所以X 的分布列为X 2 3 4 5 6 P141351819136(2)由题意知Y 的分布列为Y 1 2 3 Paa +b +cba +b +cca +b +c所以E (Y )=a a +b +c +2b a +b +c +3c a +b +c =53,D (Y )=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59. 化简得⎩⎪⎨⎪⎧ 2a -b -4c =0,a +4b -11c =0.解得⎩⎪⎨⎪⎧a =3c ,b =2c .故a ∶b ∶c =3∶2∶1.利用均值、方差进行决策的两个方略(1)当均值不同时,两个随机变量取值的水平可见分晓,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.2.有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:X 甲 28 29 30 31 32 P 0.1 0.15 0.5 0.15 0.1 X 乙 28 29 30 31 32 P0.130.170.40.170.13其中X 表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量. 解:由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30.又D (X 甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,D (X 乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),D (X 甲)<D (X 乙),故甲种棉花的质量较好.考点三 正态分布|1.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ22)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ21)的密度曲线较Y ~N (μ2,σ22)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )<P (Y ≥t ),C 错误,D 正确.答案:D2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%解析:由已知μ=0,σ=3.所以P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12(95.44%-68.26%)=12×27.18%=13.59%.故选B.答案:B正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值; (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等. ②P (X <a )=1-P (X ≥a ),P (X <μ-a )=P (X ≥μ+a ).10.离散型随机变量的均值的综合问题的答题模板【典例】 (12分)(2015·高考山东卷)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”; (2)若甲参加活动,求甲得分X 的分布列和数学期望EX .[思路点拨] (1)根据题意明确“三位递增数”的定义,从而得到个位数字是5的“三位递增数”.(2)首先根据题意确定随机变量X 的所有可能取值,然后求出每个取值对应事件的概率,列出分布列,从而求得数学期望.[规范解答] (1)个位数是5的“三位递增数”有 125,135,145,235,245,345.(4分)(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.(8分)所以X 的分布列为则EX =0×23+(-1)×114+1×1142=421.(12分)[模板形成]理解题意求相应事件的概率↓由条件写出随机变量的取值↓求出每个取值对应事件的概率↓列出分布列并求均值↓反思解题过程注意规范化[跟踪练习] 据《中国新闻网》报道,全国很多省、市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了 3 600人就是否应该“取消英语听力”的问题进行调查,调查统计的结果如下表:(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,则应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望E (ξ).解:(1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60. ∴持“无所谓”态度的人数为3 600-2 100-120-600-60=720. ∴应在持“无所谓”态度的人中抽取720×3603 600=72(人).(2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生有120180×6=4(人),社会人士有60180×6=2(人),于是第一组的在校学生人数ξ的所有可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,即ξ的分布列为∴E (ξ)=1×15+2×35+3×15=2.A 组 考点能力演练1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 解析:因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.答案:C2.(2016·长春质量监测)已知随机变量ξ服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15解析:P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 答案:C3.(2016·九江一模)已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( )A .6B .7C .8D .9解析:∵(k -4)+k 2=5,∴k =7,故选B.答案:B4.在某次数学测试中,学生成绩ξ服从正态分布N (100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为( )A .0.05B .0.1C .0.15D .0.2解析:根据正态曲线的对称性可知,ξ在(80,100)内的概率为0.4,因为ξ在(0,100)内的概率为0.5,所以ξ在(0,80)内的概率为0.1,故选B.答案:B5.设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8D .0.16解析:由D (X )=8p (1-p )=1.28,∴p =0.2或p =0.8. 答案:C6.一枚质地均匀的正六面体骰子,六个面上分别刻着1点到6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷得的向上的点数比乙大,则甲掷得的向上的点数的数学期望是________.解析:共有36种可能,其中,甲、乙掷得的向上的点数相等的有6种,甲掷得的向上的点数比乙大的有15种,所以所求期望为6×5+5×4+4×3+3×2+215=143.答案:1437.(2016·贵州七校联考)在我校2015届高三11月月考中理科数学成绩ξ~N (90,σ2)(σ>0),统计结果显示P (60≤ξ≤120)=0.8,假设我校参加此次考试有780人,那么试估计此次考试中,我校成绩高于120分的有________人.解析:因为成绩ξ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤ξ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78(人).答案:788.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为________. 解析:因为随机变量ξ服从正态分布N (3,4),P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,解得a =73.答案:739.市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得20x +0.025×20+0.006 5×20+0.003×2×20=1,所以x =0.012 5.(2)新生上学所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以估计1 200名新生中有144名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P (X =0)=⎝⎛⎭⎫344=81256,P (X =1)=C 14×14×⎝⎛⎭⎫343=2764,P (X =2)=C 24×⎝⎛⎭⎫142×⎝⎛⎭⎫342=27128,P (X =3)=C 34×⎝⎛⎭⎫143×34=364,P (X =4)=⎝⎛⎭⎫144=1256.所以X 的分布列为E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1(或E (X )=4×14=1).所以X 的数学期望为1.10.(2016·郑州模拟)某商场每天(开始营业时)以每件150元的价格购入A 商品若干件(A 商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A 商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A 商品低价处理完毕,且处理完毕后,当天不再购进A 商品).该商场统计了100天A 商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x +y =70)前6小时内的销售量t (单位:件)4 5 6 频数30xy(1)若某天该商场共购入6件该商品,在前6个小时中售出4件.若这些商品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A 商品时所获得的平均利润最大,求x 的取值范围. 解:(1)设“恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客”为事件A ,则P (A )=C 14C 12C 26=815.(2)设销售A 商品获得的利润为ξ(单位:元),依题意,视频率为概率,为追求更多的利润,则商场每天购进的A 商品的件数取值可能为4件,5件,6件. 当购进A 商品4件时,E (ξ)=150×4=600,当购进A 商品5件时,E (ξ)=(150×4-50)×0.3+150×5×0.7=690, 当购进A 商品6件时,E (ξ)=(150×4-2×50)×0.3+(150×5-50)×x100+150×6×70-x100=780-2x ,由题意780-2x ≤690,解得x ≥45,又知x ≤100-30=70,所以x 的取值范围为[45,70],x ∈N *.B 组 高考题型专练1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) A .2 386 B .2 718 C .3 413D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:由题意可得,P(0<x≤1)=12P(-1<x≤1)=0.341 3,设落入阴影部分的点的个数为n,则P=S阴影S正方形=0.341 31=n10 000,则n=3 413,选C.答案:C2.(2015·高考福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为所以E(X)=1×16+2×16+3×23=52.3.(2015·高考陕西卷)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得从而ET=25×0.2+30(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立.且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P(A)=1-P(A)=0.91.。
数学期望与方差的计算引言数学期望与方差是统计学中两个重要的概念。
它们是描述一个随机变量分布特征的常用指标,对于理解和分析数据具有重要意义。
本文将介绍数学期望与方差的概念、计算方法以及它们的应用。
数学期望数学期望又称平均值,是描述一个随机变量的平均水平的指标。
对于离散型随机变量,数学期望的计算公式为:$$ E(X)=\\sum_{i=1}^n x_i p_i $$其中,X为随机变量,x i为随机变量可能取的值,p i为随机变量取每个值的概率。
对于连续型随机变量,数学期望的计算公式为:$$ E(X)=\\int_{-\\infty}^{+\\infty} x f(x) dx $$其中,f(x)为随机变量的概率密度函数。
数学期望可以理解为在大量重复实验中,随机变量平均取值的水平。
方差方差是描述一个随机变量分散程度的统计指标。
方差越大,随机变量的取值越分散;方差越小,随机变量的取值越集中。
方差的计算公式为:Var(X)=E[(X−E(X))2]方差可以理解为每个随机变量与其期望的偏差的平方的加权平均。
数学期望与方差的计算方法离散型随机变量对于离散型随机变量,计算数学期望的方法如下:1.计算每个随机变量取值对应的概率。
2.将随机变量取值与对应的概率相乘。
3.将所有结果相加,得到数学期望。
计算方差可以使用以下方法:1.计算数学期望。
2.将每个随机变量取值与数学期望的差值的平方相乘。
3.将所有结果相加,得到方差。
连续型随机变量对于连续型随机变量,计算数学期望的方法如下:1.计算随机变量的概率密度函数。
2.将随机变量的取值与概率密度函数相乘。
3.对结果进行积分,得到数学期望。
计算方差可以使用以下方法:1.计算数学期望。
2.将随机变量的取值与数学期望的差值的平方与概率密度函数相乘。
3.对结果进行积分,得到方差。
数学期望与方差的应用数学期望与方差作为描述随机变量特征的指标,在统计学和概率论中有重要的应用。
数学期望在实际问题中可以用于计算平均值,如统计学中的样本均值就是数学期望的一种估计。
第9讲 离散型随机变量的均值、方差和正态分布板块一 知识梳理·自主学习[必备知识]考点1 离散型随机变量的均值与方差1.若离散型随机变量X 的分布列为x p (1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称D (X )=错误!x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根错误!为随机变量X 的标准差.2.均值与方差的性质(1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)(3)两点分布与二项分布的均值、方差考点2正态分布1.正态曲线的性质(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值错误!;(4)曲线与x轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移,如图甲所示;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高",表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.2.正态分布的三个常用数据(1)P(μ-σ〈X≤μ+σ)=0.6826;(2)P(μ-2σ〈X≤μ+2σ)=0.9544;(3)P(μ-3σ<X≤μ+3σ)=0.9974.[必会结论]均值与方差的作用均值是随机变量取值的平均值,常用于对随机变量平均水平的估计,方差反映了随机变量取值的稳定与波动、集中与离散的程度,常用于对随机变量稳定于均值情况的估计.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.()(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()(3)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()(4)期望是算术平均数概念的推广,与概率无关.()答案(1)√(2)√(3)√(4)×2.[2018·九江模拟]已知随机变量X服从正态分布N(5,4),且P(ξ>k)=P(ξ〈k-4),则k的值为()A.6 B.7C.8 D.9答案B解析∵错误!=5,∴k=7.故选B.3.马老师从课本上抄录的一个随机变量X的概率分布列如下表:3 ?请小牛同学计算X 的数学期望,尽管“!”处完全无法看清,且两个“?"处字迹模糊,但能断定这两个“?”处的数值相同,据此,小牛给出了正确答案E (X )=________.答案 2解析 令“?”为a ,“!”为b ,则2a +b =1。
n 超几何分布列的数学期望和方差(030012 太原五中王志军)一、准备知识:1.组合数性质:(1)C m =C n−m;(2)C m +C m+1 =C m+1 ;(3)C k−1=kC k(即k C k =nC k−1 );n n n n n+1 n−1 n n n n−12.二项式定理和二项式系数的性质:(1) (C0 )2 + (C1)2 + (C2 )2 +…+(C n)2 =C nn n n n 2n证明提示:利用二项式定理,比较恒等式(1 +x)n(1 +x)n=(1 +x)2n中“=”号左右两边展开式的x n 的系数,再利用组合数性质(1)可证得.(2) C0 C n+ C1 C n−1 + C2 C n−2 +…+C m C n−m = C nM N−M M N−M M N−M M N−M N证明提示:利用二项式定理,比较恒等式(1 +x)M(1 +x)N−M=(1 +x)N中“=”号左右两边展开式的x n 的系数,再利用组合数性质(1)可证得.3.方差的性质(1)D(aX +b) =a2D X ;(2)D X =E X2−(E X)2;4.二项分布及其数学期望和方差(1)二项分布:在一次随机试验中,某事件可能发生也可能不发生,在 n 次独立重复试验中这个事件发生的次数X 是一个随机变量.如果在一次试验中某事件发生的概率是 P,那么在 n 次独立重复试验中这个事件恰好发生 k 次的概率是P(X=k)=C k p k q n−k ,(其中n nk=0,1,2,…,n,q =1 −p).于是得到随机变量X 的概率分布如下:X 0 1 …k …nP C0 p0q nn C1 p1q n−1n…C k p k q n−kn…C n p n q0n并记b(k;n, p) = C k p k q n−k .(2)若X ~Β(n,p),则E X=np(3)若X ~Β(n,p),则D X=np(1—p)二、超几何分布列:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为C n Cn C C C mk C C C C k C n −k ∗P (X = k ) = M N −M,k = 0,1, 2,⋯,m ,其中m = min{M ,n } ,且n ≤ N , M ≤ N ,n , M , N ∈ N .N为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布 ( hypergeometriC distribution ),记 X ~ H (n ;M , N ) .C k C n −k可知其满足随机变量的分布列性质:(1)非负性P (X = k ) =M N −MN≥ 0,k = 0,1,2,⋯,mC 0 C nC 1 C n −1 C m C n −m (2)可 加 性 M N −M + M N −M +…+ M N −M =1 n n nN N NmkC kCn −k (3)X 的数学期望EX = ∑M N −M= 1( 0 ⋅C 0Cnk =0+1⋅C 1Cn −1n N+ 2 ⋅C 2Cn −2+…+ k ⋅C k C n −k+…+ m ⋅C m Cn −m)n M N −MNM N −MM N −MM N −MM N −M= 1( M ⋅CCn −1 + M ⋅C 1Cn −2+…+ M ⋅C k −1 C n −k+…+ M ⋅Cm −1C n −m )n M −1NN −MM −1N −MM −1N −MM −1N −M=M( C 0C n −1+ C 1C n −2 +…+C k −1 C n −k +…+ C m −1C n −m ) nM −1 NN −MM −1N −M M −1 N −M M −1 N −M=MC n −1 nN −1NnM =,因此, NEX =nMN(4) X 的方差D X = E X 2− (E X )22 kn −k= ∑ M N −M - (nM )2 k =0 NN=1( 02 ⋅C 0Cn+12⋅C 1 Cn −1 + 22⋅C 2 Cn −2+…+ k 2 ⋅C k C n −k+…+ m 2 ⋅C m Cn −m)- (nM)2n M N −MNM N −MM N −MM N −MM N −MN= 1(1⋅ MCCn −1 + 2 ⋅M C 1Cn −2+…+ k ⋅ MC k −1 Cn −k+…+ m ⋅M C m −1Cn −m)- (nM)2n M −1NN −MM −1N −MM −1 N −MM −1 N −MNn C C CC CCCM =[ ( C 0C n −1 + C 1 C n −2 + … + C k −1 C n −k + … + C m −1C n −m ) + ( nM −1 NN −M M −1 N −M M −1 N −M M −1 N −M 0 ⋅C 0 C n −1 +1⋅C 1 C n −2 +…+ (k − 1) ⋅C k −1 C n −k +…+(m − 1) ⋅C m −1C n −m )]- (nM)2 M −1 N −M M −1 N −M M −1 N −M M −1 N −MN= M [ C n −1 +( M − 1)C n −2 ]- (nM )2nN −1 NnM n (n − 1)M (M − 1)=N +N (N − 1) N −2 NnM - ( )2 N= nM - (nM )2 N N n (n − 1)M (M − 1) +N (N − 1) ,因此, X 的方差DX = nM N - (nM )2 Nn (n − 1)M (M − 1) + N (N − 1)三、超几何分布的数学期望和方差与二项分布的数学期望和方差的 关系根据极限知识,很容易得到:1. 在超几何分布中,当N → +∞ 时, M→ p (二项分布中的 p )N2. 当N → +∞ 时,超几何分布的数学期望EX = nM→ np = E X (二项分布的数学期望)N3. 当 N → +∞时 , 超 几 何 分 布 的 方 差 DX = nM- N(nM )2 + n (n − 1)M (M − 1) → np − (np )2 + n (n − 1) p 2 = np (1 − p ) = D X (二项分布的方差) N N (N − 1)4. 当N → +∞ 时,超几何分布可近似为二项分布.C C。
概率分布(数学期望,平均值,方差,标准差)2018展开全文我们已经了解概率的基础,概率中通常将试验的结果称为随机变量。
随机变量将每一个可能出现的试验结果赋予了一个数值,包含离散型随机变量和连续型随机变量。
掷硬币就是一个典型的离散型随机变量,离散随机变量可以取无限个但可数的数值。
而连续变量相反,它在某一个区间内能取任意的数值。
时间就是一个典型的连续变量,1.25分钟、1.251分钟,1.2512分钟,它能无限分割。
既然随机变量可以取不同的值,统计学家就用概率分布描述随机变量取不同值的概率。
相对应的,有离散型概率分布和连续型概率分布。
对于离散型随机变量x,定义一个概率函数叫f(x),它给出了随机变量取每一个值的概率。
拿出一个骰子,掷到6的概率是f(6) = 1/6,掷到1和6的概率则是f(1)+f(6) = 1/3。
数学期望(均值)理解一:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
是最基本的数学特征之一。
它反映随机变量平均取值的大小。
其公式如下:xk :表示观察到随机变量X的样本的值。
pk : 表示xk发生的概率。
数学期望反映的是平均水平。
通过它,我们能够了解一个群体的平均水平(比如说,一个班平均成绩80)。
但另外一个方面,它所包含的信息也是十分有限的,首先是个体信息被压缩了,其次如果单纯看期望的话,是看不出样本的数量。
(平均成绩为80,在1人班和100人班的含义是不一样的)通过这个问题想说明,在刻画群体特征的时候,多个数字特征配合才能达到效果。
(上面的例子:可以是期望 + 数量)理解二:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和严格的定义如下:2.数学期望的含义这个很重要,我们一定要明白概念的含义,联系到实际的应用场景中表达的真正意义,数学期望的存在是为了表达什么?答:反映随机变量平均取值的大小3.数学期望(均值)和算术平均值(平均数)的关系(期望和平均数的关系)谈谈我对于这两个概念的理解(1)平均数是根据实际结果统计得到的随机变量样本计算出来的算术平均值,和实验本身有关,而数学期望是完全由随机变量的概率分布所确定的,和实验本身无关。
(第一次作业)1.随机变量X 的分布列为则E(5X +4)等于( ) A .15 B .11 C .2.2 D .2.3答案 A解析 ∵E(X)=1×0.4+2×0.3+4×0.3=2.2,∴E(5X +4)=5E(X)+4=11+4=15. 2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的个数,则E(X)等于( ) A.35 B.815 C.1415 D .1 答案 A解析 离散型随机变量X 服从N =10,M =3,n =2的超几何分布,∴E(X)=nM N =2×310=35.3.一套重要资料锁在一个保险柜中,现有n 把钥匙依次分给n 名学生依次开柜,但其中只有一把真的可以打开柜门,平均来说打开柜门需要试开的次数为( ) A .1 B .n C.n +12D.n -12答案 C解析 已知每一位学生打开柜门的概率为1n ,∴打开柜门需要试开的次数的平均数(即数学期望)为1×1n +2×1n +…+n ×1n =n +12,故选C.4.某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分;命中次数为X ,得分为Y ,则E(X),D(Y)分别为( ) A .0.6,60 B .3,12 C .3,120 D .3,1.2 答案 C解析 X ~B(5,0.6),Y =10X ,∴E(X)=5×0.6=3,D(X)=5×0.6×0.4=1.2.D(Y)=100D(X)=120.5.(2019·银川一模)已知随机变量X 的分布列如表所示,其中α∈(0,π2),则E(X)=( )A.2 C .0 D .1答案 D解析 由随机变量的分布列的性质,得sinα4+sinα4+cosα=1,即sinα+2cosα=2,由⎩⎪⎨⎪⎧sinα=2-2cosα,sin 2α+cos 2α=1,得5cos 2α-8cosα+3=0,解得cosα=35或cosα=1(舍去),则sinα=45,则E(X)=-sinα4+2cosα=-14×45+2×35=1.故选D.6.(2018·浙江)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .D (ξ)减小 B .D(ξ)增大C .D (ξ)先减小后增大 D .D(ξ)先增大后减小答案 D解析 由题可得E(ξ)=12+p ,所以D(ξ)=-p 2+p +14=-(p -12)2+12,所以当p 在(0,1)内增大时,D (ξ)先增大后减小.故选D.7.(2019·衡水中学调研卷)已知一次试验成功的概率为p ,进行100次独立重复试验,当成功次数的标准差的值最大时,p 及标准差的最大值分别为( ) A.12,5 B.45,25 C.45,5 D.12,25 答案 A解析 记ξ为成功次数,由独立重复试验的方差公式可以得到D(ξ)=np(1-p)≤n(p +1-p 2)2=n 4,当且仅当p =1-p =12时等号成立,所以D(ξ)max =100×12×12=25,D (ξ)max =25=5.8.(2019·山东潍坊模拟)已知甲、乙两台自动车床生产同种标准件,X 表示甲车床生产1 000件产品中的次品数,Y 表示乙车床生产1 000件产品中的次品数,经考察一段时间,X ,Y 的分布列分别是:X 0 1 2 3 P0.70.10.10.1Y 0 1 2 P0.50.30.2据此判定( )A .甲比乙质量好B .乙比甲质量好C .甲与乙质量相同D .无法判定 答案 A解析 E(X)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,E(Y)=0×0.5+1×0.3+2×0.2=0.7.由于E(Y)>E(X),故甲比乙质量好.9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E(X)=( )A.126125B.65 C.168125 D.75答案 B解析 由题意知X =0,1,2,3,P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,∴E(X)=0×27125+1×54125+2×36125+3×8125=150125=65. 10.(2019·合肥一模)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中每个白球计1分,每个红球计2分,记X 为取出3个球的总分值,则E(X)=( ) A.185 B.215 C .4 D.245答案 B解析 由题意知,X 的所有可能取值为3,4,5,且P(X =3)=C 33C 53=110,P(X =4)=C 32·C 21C 53=35,P(X =5)=C 31·C 22C 53=310,所以E(X)=3×110+4×35+5×310=215. 11.(2019·山东潍坊期末)某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( ) A .3 B.83 C .2 D.53答案 B解析 在一轮投篮中,甲通过的概率为P =89,未通过的概率为19.由题意可知,甲3个轮次通过的次数X 的可能取值为0,1,2,3,则P(X =0)=(19)3=1729,P(X =1)=C 31×89×(19)2=24729,P(X =2)=C 32×(89)2×19=192729,P(X =3)=(89)3=512729. ∴随机变量X 分布列为数学期望E(X)=0×1729+1×24729+2×192729+3×512729=83. 12.(2017·课标全国Ⅱ,理)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D(X)=________. 答案 1.96解析 依题意,X ~B(100,0.02),所以D(X)=100×0.02×(1-0.02)=1.96.13.(2015·重庆,理)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望. 答案 (1)14 (2)35解析 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C 21C 31C 51C 103=14. (2)X 的所有可能值为0,1,2,且P(X =0)=C 83C 103=715,P(X =1)=C 21C 82C 103=715,P(X =2)=C 22C 81C 103=115.综上可知,X 的分布列为X 0 1 2 P715715115故E(X)=0×715+1×715+2×115=35(个).14.(2019·《高考调研》原创题)为了评估天气对某市运动会的影响,制定相应预案,衡水市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X ,求X 的数学期望和方差.答案 (1)0.35 (2)5.64,2.989 2解析 (1)设8月份一天中发生雷电天气的概率为p ,由已知,得p =14.5731=0.47.因为每一天发生雷电天气的概率均相等,且相互独立,所以在运动会开幕后的前3天比赛中,恰好有2天发生雷电天气的概率P =C 32×0.472×(1-0.47)=0.351 231≈0.35. (2)由题意,知X ~B(12,0.47).所以X 的数学期望E(X)=12×0.47=5.64, X 的方差D(X)=12×0.47×(1-0.47)=2.989 2.15.(2019·福建龙海二中摸底)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为14,不堵车的概率为34;汽车走公路②堵车的概率为p ,不堵车的概率为1-p 若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为716,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数X 的分布列和数学期望.答案 (1)13 (2)56解析 (1)依题意,“三辆汽车中恰有一辆汽车被堵”包含只有甲被堵,只有乙被堵和只有丙被堵三种情形.∴C 21×14×34×(1-p)+(34)2×p =716,即3p =1,∴p =13.(2)X 的所有可能取值为0,1,2,3.P(X =0)=34×34×23=38,P(X =1)=716,P(X =2)=14×14×23+C 21×14×34×13=16,P(X =3)=14×14×13=148,∴X 的分布列为∴E(X)=0×38+1×716+2×16+3×148=56.16.(2019·湖北潜江二模)现有两种投资方案,一年后投资盈亏的情况如下表: 投资股市:购买基金:(1)当p =14时,求q 的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?结合结果并说明理由.答案 (1)512 (2)35<p ≤23(3)丙选择“投资股市”,理由略解析 (1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p +13+q =1.又因为p =14,所以q =512.(2)记事件A 为“甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”. 则C =AB ∪AB ∪AB ,且A ,B 独立. 由题表可知,P(A)=12,P(B)=p.所以P(C)=P(AB)+P(AB)+P(AB)=12·(1-p)+12p +12p =12+12p.因为P(C)=12+12p>45,所以p>35.又因为p +13+q =1,q ≥0,所以p ≤23,所以35<p ≤23.(3)假设丙选择“投资股市”方案进行投资,且记X 为丙投资股市的获利金额(单位:万元), 所以随机变量X 的分布列为则E(X)=4×12+0×18+(-2)×38=54.假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元), 所以随机变量Y 的分布列为则E(Y)=2×12+0×13+(-1)×16=56.因为E(X)>E(Y),所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.(第二次作业)1.(2019·广东七校联考)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,下雨会影响药材品质,基地收益如下表所示:万元;有雨时收益为10万元.额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;(2)该基地是否应该额外聘请工人,请说明理由.答案(1)预期收益为14.4万元.(2)当额外聘请工人的成本高于1.6万元时,不额外聘请工人;成本低于1.6万元时,额外聘请工人;成本恰为1.6万元时,额外聘请或不聘请工人均可以.解析(1)设下周一无雨的概率为p,由题意得,p2=0.36,解得p=0.6,基地收益X的可能取值为20,15,10,7.5,则P(X=15)=0.24,P(X=10)=0.24,P(X=7.5)=0.16.∴基地收益X的分布列为E(X)=20×0.36+15×∴基地的预期收益为14.4万元.(2)设基地额外聘请工人时的收益为Y万元,则其预期收益E(Y)=20×0.6+10×0.4-a=16-a(万元),E(Y)-E(X)=1.6-a(万元),综上,当额外聘请工人的成本高于1.6万元时,不额外聘请工人;成本低于1.6万元时,额外聘请工人;成本恰为1.6万元时,额外聘请或不聘请工人均可以.2.某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件.假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下表所示:且X 1的数学期望E(X 1)=6(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望; (3)在(1),(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:①产品的“性价比”=产品的等级系数的数学期望/产品的零售价; ②“性价比”大的产品更具可购买性.答案 (1)a =0.3,b =0.2 (2)4.8 (3)乙厂的产品更具可购买性,理由略.解析 (1)∵E(X 1)=6,∴5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2,又0.4+a +b +0.1=1,即a +b =0.5,由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知,用这个样本的分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:∴E(X 2)=3×0.3+X 2的数学期望等于4.8.(3)乙厂的产品更具可购买性,理由如下:∵甲厂产品的等级系数的数学期望等于6,价格为6元/件,∴其性价比为66=1,∵乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,∴其性价比为4.84=1.2,又1.2>1,∴乙厂的产品更具可购买性.3.(2019·武昌调研)某机构随机询问了72名不同性别的大学生,调查其在购买食物时是否看营养说明,得到如下列联表:(1)有关系?(2)从被询问的28名不看营养说明的大学生中,随机抽取2名学生,求抽到女生的人数ξ的分布列及数学期望. 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).答案 (1)能 (2)分布列为期望值为47解析 (1)由计算可得K 2的观测值k =72×(16×8-28×20)244×28×36×36≈8.416.因为8.416>7.879,所以能在犯错误的概率不超过0.005的前提下认为性别与看营说明有关系. (2)ξ的所有可能取值为0,1,2.P (ξ=0)=C 202C 282=95189,P (ξ=1)=C 81C 201C 282=80189,P (ξ=2)=C 82C 282=227.ξ的分布列为ξ的数学期望E(ξ)=0×95189+1×80189+2×227=47.4.某中学共开设了A ,B ,C ,D 四门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求A 选修课被这3名学生选择的人数X 的分布列和数学期望. 答案 (1)64 (2)916 (3)E(X)=34解析 (1)每个学生有四个不同选择,根据分步计数原理,选法总数N =4×4×4=64. (2)设“恰有2门选修课没有被这3名学生选择”为事件E ,则P(E)=C 42C 32A 2243=916,所以恰有2门选修课没有被这3名学生选择的概率为916.(3)方法一:X 的所有可能取值为0,1,2,3,且P(X =0)=3343=2764,P(X =1)=C 31×3243=2764,P(X =2)=C 32×343=964,P(X =3)=C 3343=164,所以X 的分布列为X 0 1 2 3 P27642764964164所以X 的数学期望E(X)=0×2764+1×2764+2×964+3×164=34.方法二:因为A 选修课被每位学生选中的概率均为14,没被选中的概率均为34.所以X 的所有可能取值为0,1,2,3,且X ~B(3,14),P(X =0)=(34)3=2764,P(X =1)=C 31×14×(34)2=2764,P(X =2)=C 32×(14)2×34=964,P(X =3)=(14)3=164,所以X 的分布列为X 0 1 2 3 P27642764964164所以X 的数学期望E(X)=3×14=34.5.某手机游戏研发公司为进行产品改进,对游戏用户每天在线的时间进行调查,随机抽取50名用户对其每天在线的时间进行了调查统计,并绘制了如图所示的频率分布直方图,其中每天的在线时间4 h 以上(包括4 h)的用户被称为“资深玩家”,根据频率分布直方图回答下列问题:(1)从所调查的“资深玩家”中任取3人再进行每天连续在线时间的调查,求抽取的3人中至少有2人的在线时间在[5,6]内的概率;(2)为响应社会要求,公司拟对“资深玩家”进行防沉迷限时,使其每天的在线时间小于4 h ,而公司每天对一个玩家限时0.5 h 就会损失1元,在频率分布直方图中以各组区间的中点值代表该组的数据,以游戏用户在线时间的频率作为在线时间的概率,现从所有“资深玩家”中任取3人进行一天的限时试验,记该公司因限时试验损失的钱数为X ,求X 的分布列和数学期望.答案 (1)13(2)分布列为期望值E(X)=275解析 (1)由题易知a =1-0.10-0.20-0.30-0.20-0.08=0.12,所以50名用户中,在线时间是[4,5)内的人数为0.12×50=6,在线时间在[5,6]内的人数为0.08×50=4,所以在所调查的50人中有10人是“资深玩家”.从“资深玩家”中任取3人共有C 103=120种情况,其中抽取的3人中至少有2人的在线时间在[5,6]内的共有C 42C 61+C 43=40种情况,记在所调查的“资深玩家”中任取3人,至少有2人的在线时间在[5,6]内为事件A ,则P(A)=40120=13. (2)“资深玩家”中每天的在线时间在[4,5)内的概率P 1=0.120.08+0.12=35,公司限时一天损失4.5-40.5×1=1(元); “资深玩家”中每天的在线时间在[5,6]内的概率P 2=0.080.08+0.12=25,公司限时一天损失5.5-40.5×1=3(元). 所以从“资深玩家”中任取3人进行一天的限时试验,X 的所有可能取值为3,5,7,9,则P(X =3)=C 33(35)3=27125,P(X =5)=C 32(35)2×25=54125,P(X =7)=C 31×35×(25)2=36125,P(X =9)=C 30(25)3=8125.X 的分布列是所以X 的数学期望E(X)=3×27125+5×54125+7×36125+9×8125=275.。
第9讲 随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。
2.熟练能计算随机变量的数学期望与方差。
教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。
教学学时:2学时。
教学过程:第三章 随机变量的数字特征§3.1 数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。
因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。
1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。
车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。
这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。
对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。
但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。
定义1 设X 是离散随机变量,它的概率函数是Λ ,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。