总体分布的估计、总体期望和方差的
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
高三数学人教版总体分布的估计知识点归纳总结知识点总结总体分布的估计是统计学中常用的手法,为此整理了总体分布的估计知识点,请大家查看。
样本估计总体,是研究统计问题的一个基本思想方法,即用样本平均数估计总体平均数(即总体期望值――描述一个总体的平均水平);用样本方差估计总体方差(方差和标准差是描述一个样本和总体的波动大小的特征数,方差或标准差越小,表示这个样本或总体的波动越小,即越稳定)。
一般地,样本容量越大,这种估计就越精确。
总体估计要掌握:(1)表(频率分布表);(2)图(频率分布直方图)。
提醒:直方图的纵轴(小矩形的高)一般是频率除以组距的商(而不是频率),横轴一般是数据的大小,小矩形的面积表示频率
其中,样本指是指从全部的调查对象提取出来进行调查的个体
个体指总体中的每一个考察的对象,
总体指考察的对象的全体,
样本容量指样本中个体的数目。
例如,为了调查全国人口的寿命,抽查了十一个省市的2500名城镇居民,这个问题中2500名城镇居民的寿命的全体是样本。
2500是样本容量。
某个人的寿命是个体。
全国人口寿命是总体。
总体分布的估计知识点的全部内容就是这些,更多精彩内容请持续关注。
五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
概率与统计(理科)一、高考考试内容离散型随机变量的分布列,离散型随机变量的期望和方差。
抽样方法、总体分布的估计、正态分布、线性回归。
二、考试要求:(1)了解离散型随机变量的意义,会求某些简单的离散型随机变量的分布列。
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
(3)会用随机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。
(4)会用样本频率分布去估计总体分布。
(5)了解正态分布的意义及主要性质。
(6)了解线性回归的方法和简单应用。
三、应试策略1、正确理解有关概念。
(1)随机试验与随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件;条件每实现一次,叫做一次试验;如果试验结果预先无法确定,这种试验叫做随机试验。
(2)频率与概率:对于一个事件来说概率是一个常数;频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率。
(3)互斥事件与对立事件:对立事件一定是互斥事件,但互斥事件不一定是对立事件。
(4)互斥事件与相互独立事件:不可能同时发生的事件叫互斥事件,而相互独立事件则是指两个事件是否发生与否相互之间没有影响。
2、公式的应用(1)常用公式 ①等可能事件的概率:基本事件总数中所含基本事件数A n m A P ==)( ②互斥事件的概率:)()()(B P A P B A P +=+③对立事件的概率:1)()()(____=+=+A P A P A A P④相互独立事件的概率:)()()(B P A P B A P ⋅=⋅⑤n 次独立重复试验中事件A 恰好发生k 次的概率:k n k k n n P P C k P --=)1()((2)注意事项:①每个公式都有成立的条件,若不满足条件,则这些公式将不再成立。
②对于一个概率问题,应首先弄清它的类型,不同的类型采用不同的计算方法,一般题中总有关键语说明其类型,对于复杂问题要善于进行分解,或者运用逆向思考的方法。
12.2 总体期望值和方差的估计●知识梳理 1.平均数的计算方法(1)如果有n 个数据x 1,x 2,…,x n ,那么x =n1(x 1+x 2+…+x n )叫做这n 个数据的平均数,x 读作“x 拔”.(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,x =x ' +a .(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么x=nf x f x f x kk +++ 2211.2.方差的计算方法(1)对于一组数据x 1,x 2,…,x n ,s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]叫做这组数据的方差,而s 叫做标准差.(2)公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2].(3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a .则s 2=n1[(x 1′2+x 2′2+…+x n ′2)-n 2x '].3.总体平均值和方差的估计人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确.●点击双基1.描述总体离散型程度或稳定性的特征数是总体方差,以下统计量估计总体稳定性的是 A.样本均值xB.样本方差C.样本最大值D.样本最小值 解析:统计学的基本思想是用样本来估计总体.因此选B. 答案:B2.甲、乙两人在相同的条件下,射击10次,命中环数如下: 甲:8,6,9,5,10,7,4,8,9,5; 乙:7,6,5,8,6,9,6,8,7,7.根据以上数据估计两人的技术稳定性,结论是 A.甲优于乙 B.乙优于甲C.两人没区别D.两人区别不大解析:x 甲=101(8+6+…+5)=7.1,x 乙=101(7+6+…+7)=6.9.s 甲2=101[(8-7.1)2+…+(5-7.1)2]=3.69, s 乙2=101[(7-6.9)2+…+(7-6.9)2]=1.29.∴乙优于甲. 答案:B3.样本a 1,a 2,a 3,…,a 10的平均数为a ,样本b 1,b 2,b 3,…,b 10的平均数为b ,那么样本a 1,b 1,a 2,b 2,…,a 10,b 10的平均数为A.a +bB.21(a +b )C.2(a +b )D.101(a +b )解析:样本a 1,a 2,a 3,…,a 10中a i 的概率为P i ,样本b 1,b 2,b 3,…,b 10中b i 的概率为P i ′,样本a 1,b 1,a 2,b 2,a 3,b 3,…,a 10,b 10中a i 的概率为q i ,b i 的概率为q i ′,则P i =2q i ,故样本a 1,b 1,a 2,b 2,a 3,b 3,…,a 10,b 10的平均数为a 1q 1+b 1q 1′+a 2q 2+b 2q 2′+…+a 10q 10+b 10q 10′=21(a 1P 1+…+a 10P 10)+21(b 1P 1′+21b 2P 2′+…+21b 10P 10′)=21(a +b ).答案:B4.电池厂从某日生产的电池中抽取10个进行寿命测试,得到数据如下(单位:h ):30,35,25,25,30,34,26,25,29,21.则该电池的平均寿命估计为___________,方差估计为___________.解析:x =101(30+35+25+25+30+34+26+25+29+21)=101(0+5-5-5+0+4-4-5-1-9)+30=28, s 2=101[(30-28)2+(35-28)2+(25-28)2+(25-28)2+(30-28)2+(34-28)2+(26-28)2+(25-28)2+(29-28)2+(21-28)2]=101(4+49+9+9+4+36+4+9+1+49)=17.4.答案:28 17.4 ●典例剖析【例1】 x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,则下列各式正确的是A.x =1006040b a + B.x =1004060b a +C.x =a +bD.x =2b a +剖析:这100个数的平均数是a +b 还是21(a +b ),这都很容易让人误解.我们可以从概率及加权平均数的角度来思考.设P i 是x 1,x 2,…,x 100中x i 被抽到的概率,q i 是x 1,x 2,…,x 40中x i 被抽到的概率,r i 是x 41,x 42,…,x 100中x i 被抽到的概率,则P i =10040q i ,P i =10060r i .故x 1,x 2,…,x 100的平均数x =10040(x 1q 1+x 2q 2+…+x 40q 40)+10060(x 41r 41+…+x 100r 100)=10040a +10060b .答案:A评述:除上述解法外,你还有其他解法吗?特别提示除了上述方法外,我们还可以先分别求出x 1+x 2+…+x 40=40a ,x 41+x 42+…+x 100=60b ,再求x .【例2】 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环)甲 10 8 9 9 9 乙1010799如果甲、乙两人只有1人入选,则入选的应是___________.剖析:判断谁入选,首先应考虑选手的成绩是否稳定.因此分别求其方差. 甲的平均数为x 1=51(10+8+9+9+9)=9, 乙的平均数为x 2=51(10+10+7+9+9)=9,甲的方差为s 甲=(10-9)2×51+(8-9)2×51=52, 乙的方差为s 乙=(10-9)2×51×2+(7-9)2×51=56.s 乙>s 甲,说明乙的波动性大,故甲入选. 答案:甲评述:方差的大小可看出成绩的稳定性,平均数的大小可看出成绩的高低.【例3】 某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:分 组 平均成绩标准差 第一组 90 6 第二组804剖析:代入方差公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2]即可求得.解:设全班的平均成绩为x ,全班成绩的方差为s 2, 则s 12=181[(x 12+x 22+…+x 182)-18×902]=36,s 22=221[(x 192+x 202+…+x 402)-22×802]=16.∴x =401(90×18+80×22)=2169=84.5,s 2=401[(x 12+x 22+…+x 182)+(x 192+x 202+…+x 402)-40·x 2]=401[18×(36+8100)+22×(16+6400)-40×41692]=401(146448+141152-10×1692) =401×1990=49.75.∴s =2199≈7.05.评述:平均成绩应为总成绩除以总人数,而总成绩可由每组成绩之和求得. 【例4】 已知c 为常数,s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2],s c 2=n1[(x 1-c )2+(x 2-c )2+…+(x n -c )2].证明:s 2≤s c 2,当且仅当c =x 时,取“=”.剖析:证明s c 2≥s 2,可证明s c 2-s 2≥0.因此应用方差公式进行变形即可. 证明:∵s 2=n1[(x 1-x )2+…+(x n -x )2]=n1[(x 12+x 22+…+x n 2)-n x 2],s c 2=n1[(x 1-c )2+(x 2-c )2+…+(x n -c )2]=n1[(x 12+x 22+…+x n 2)-2c (x 1+x 2+…+x n )+nc 2],∴s c 2-s 2=x 2-nc 2(x 1+x 2+…+x n )+c 2=x 2-2c ·x +c 2=(x -c )2≥0. ∴s c 2≥s 2,当且仅当x =c 时取“=”. 评述:作差是比较大小的常用手段.●闯关训练 夯实基础1.一组数据的方差为s 2,将这组数据中的每一个数都乘以2,所得到的一组新数据的方差是A.21s 2 B.2s 2 C.4s 2 D.s 2解析:由方差公式易求得新数据的方差为4s 2. 答案:C2.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25解析:易得x 没有改变,x =70, 而s 2=481[(x 12+x 22+…+502+1002+…+x 482)-48x 2]=75, s ′2=481[(x 12+x 22+…+802+702+…+x 482)-48x 2]=481[(75×48+48x 2-12500+11300)-48x 2]=75-481200=75-25=50.答案:B3.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):解析:x 甲=51(9.8+9.9+10.1+10+10.2)=10,x乙=51(9.4+10.3+10.8+9.7+9.8)=10,s 甲2=51[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]=0.02,s 乙2=51[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]=0.244. 所以,甲比乙稳定. 答案:甲4.为了科学地比较考试的成绩,有些选拔性考试常常会将考试分数转化为标准分,转化关系式为Z =sx x -(其中x 是某位学生的考试分数,x 是该次考试的平均分,s 是该次考试的标准差,Z 称为这位学生的标准分).转化成标准分后可能出现小数和负值,因此,又常常再将Z 分数作线性变换转化成其他分数.例如某次学生选拔考试采用的是T 分数,线性变换公式是T =40Z +60.已知在这次考试中某位考生的考试分数是85分,这次考试的平均分是70分,标准差是25,则该考生的T 分数为___________.解析:由已知Z =257085-=53,∴T =40×53+60=24+60=84.故考生成绩的T 分数为84.答案:84试分析两厂上缴利税的情况.解:甲、乙两厂上缴利税的季平均值分别为x 甲=41(70+50+80+40)=60, x乙=41(55+65+55+65)=60;甲、乙两厂上缴利税的方差为 s 甲2=41[(70-60)2+(50-60)2+(80-60)2+(40-60)2]=250, s 乙2=41[(55-60)2+(65-60)2+(55-60)2+(65-60)2]=25.经上述结果分析,两厂上缴利税的季平均值相同,但甲厂比乙厂波动大,导致它们生产出现的差异大,乙厂不同季节的缴税量比较接近平均值,生产稳定,而甲厂不稳定.培养能力 6.某校从甲、乙两名优秀选手中选拔1名参加全市中学生百米比赛,该校预先对这两名选手测试了8次,成绩如下表:解:x 甲=12.4=x 乙,s 甲2=0.12,s 乙2≈0.10,∴甲、乙两人的平均成绩相等,但乙的成绩较稳定,应派乙选手参加比赛.7.某农场为了从三种不同的西红柿品种中选取高产稳定的西红柿品种,分别在五块试验田上试种,每块试验田均为0.5公顷,产量情况如下:解:x 1=51(21.5+20.4+…+19.9)=21,x2=51(21.3+18.9+…+19.8)=21, x3=51(17.8+23.3+…+20.9)=20.5,s 1=0.756, s 2=1.104, s 3=1.901.由x 1=x 2>x 3,而s 1<s 2<s 3,说明第1种西红柿品种既高产又稳定.8.甲、乙两台机床在相同的条件下同时生产一种零件,现在从中各抽测10个,它们的尺寸分别为(单位:mm ):甲:10.2 10.1 10.9 8.9 9.9 10.3 9.7 10 9.9 10.1乙:10.3 10.4 9.6 9.9 10.1 10 9.8 9.7 10.2 10分别计算上面两个样本的平均数与方差,如果图纸上的设计尺寸为10 mm ,从计算结果看,用哪台机床加工这种零件较合适?解:x 甲=101(10.2+10.1+…+10.1)=10,x乙=101(10.3+10.4+…+10)=10,s 甲2=101[(10.2-10)2+(10.1-10)2+…+(10.1-10)2]=0.03, s 乙2=101[(10.3-10)2+(10.4-10)2+…+(10-10)2]=0.06.由上述结果分析,甲台机床加工这种零件稳定,较合适.探究创新9.有一个容量为100的样本,数据的分组及各组的频数如下: [12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8. (1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计数据小于30.5的概率. 解:(1)样本的频率分布表如下:(3)数据大于等于30.5的频率是0.08,∴小于30.5的频率是0.92.∴数据小于30.5的概率约为0.92.探究:解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.注意直方图与条形图的区别.●思悟小结1.用样本估计总体,除在整体上用样本的频率分布估计总体分布外,还可以用平均值和方差对总体进行估计,即用样本平均数x 去估计总体平均数μ;用样本方差s 2去估计总体的方差σ2,进一步对总体的分布作出判断.2.进行几次实验,得到样本数据x 1,x 2,…,x n ,设c 是任意常数,k 为任意的正数,作变换y i =k1(x i -c )(i =1,2,…,n ),则有:①x =k y +c ;②s x 2=k 2s y 2.●教师下载中心 教学点睛1.期望反映数据取值的平均水平,期望越大,平均水平越高.2.方差反映数据的波动大小,方差越小,表示数据越稳定.拓展题例【例1】 如果数据a 1,a 2,…,a 6的方差是6,那么另一组数据a 1-3,a 2-3,…,a 6-3的方差是多少?解:设a 1,a 2,…,a 6的平均数为a ,则(a 1-3),(a 2-3),…,(a 6-3)的平均数为a -3,∴方差为s 2=61{[(a 1-3)-(a -3)]2+…+[(a 6-3)-(a -3)]2}=6.【例2】 已知样本方差由s 2=101∑=101i (x i -5)2求得,求∑∑=101i x i .解:依s 2=n1[(x 1-x )2+…+(x n -x )2]=n1[x 12+x 22+…+x n 2-n x 2]知,∴101∑=101i x i =5.∴∑=101i x i =50.。
概率论与数理统计:六大基本分布及其期望和方差绪论:概率论中有六大常用的基本分布,大致可分成两类:离散型(0-1分布、二项分布、泊松分布),连续型(均匀分布、指数分布、正态分布)。
补充:在进入正文之前先讲一下期望和均值的一些区别:期望和均值都具有平均的概念,但期望是指的随机变量总体的平均值,而均值则是指的从总体中抽样的样本的平均值,即前者是理想的均值,而后者则是实际观测出来的数据的均值。
例如:对于一个六面的骰子,其期望E = (1+2+3+4+5+6)/ 6 = 3.5。
然后掷5次骰子,每次掷的点数分别为1,3,5,5,1,则平均值为(1+3+5+5+1)/ 5 = 3。
可以发现两者并不相等。
方差(variance):方差是各个数据与平均数之差的平方的平均数,方差度量了随机变量与期望(也可说均值)之间的偏离程度。
标准差为方差的开根号。
协方差(Covariance):用于衡量两个变量之间的误差,而方差是协方差的特殊情况,即当两个变量相同的情况。
其公式如下:,表示含义为:E(∑(“X与其均值之差” * “Y与其均值之差”))当协方差为正时:表示两变量正相关(即同时变大变下)。
当协方差为负时:表示两变量负相关(即你变大,我变小,反之亦然)。
当协方差为0时:两变量相互独立。
相关系数:其公式如下,表示的含义为用X和Y的协方差除以X 和Y的标准差。
所以相关系数也可以看成协方差,一种剔除两个变量量纲影响,标准化后的特殊协方差。
正文:1、0-1分布已知随机变量X,其中P{X=1} = p,P{X=0} = 1-p,其中 0 < p< 1,则成X服从参数为p的0-1分布。
其中期望为E(X) = p 方差D(X) = p(1-p);2、二项分布n次独立的伯努利实验(伯努利实验是指每次实验有两种结果,每种结果概率恒定,比如抛硬币)。
其中期望E(X) = np 方差D(X) = np(1-p);3、泊松分布表示单位时间内某稀有事件发生k次的概率,其公式为其中方差和期望均为,详细了解请☞戳4、均匀分布若连续型随机变量X具有概率密度,则称X在(a,b)上服从均匀分布其中期望E(X) = (a+b)/ 2 ,方差D(X) = (b-a)^2 / 12。
§12.2总体分布的估计、总体期望和方差的估计
(时间:45分钟满分:100分)
一、选择题(每小题7分,共35分)
1.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm的株数大约是()
A.3 000 B.6 000
C.7 000 D.8 000
2.(2010·山东)在某项体育比赛中,七位裁判为一选手打出的分数如下:
90899095939493
去掉一个最高分和一个最低分后,所剩数据的期望值和方差分别为()
A.92,2 B.92,2.8 C.93,2 D.93,2.8
3.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是()
A.32 B.27 C.24 D.33
4.(2010·陕西)如图,样本A和B分别取自两个不同的总体,它们的样本期望值分别为x A 和x B,样本标准差分别为s A和s B,则()
A.x A>x B,s A>s B
B.x A<x B,s A>s B
C.x A>x B,s A<s B
D.x A<x B,s A<s B
5.某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147.由此估计这车苹果单个重量的期望值是() A.150.2克B.149.8克
C.149.4克D.147.8克
二、填空题(每小题6分,共24分)
6.某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图如图所示,现规定不低于70分为合格,则合格人数是________.
7.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等
比数列{a n},已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为________.
8.(2010·福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=_ _______.
9.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):
.
三、解答题(共41分)
10.(13分)某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是多少?
11.(14分)某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,
1 500)).
(1)求居民收入在[3 000,3 500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中
按分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?
12.(14分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第
一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率,并补全这个频率分布直方图; (2)求这两个班参赛的学生人数是多少?
(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由) 答案
1.C 2.B 3.D 4.B 5.B 6.600 7.160 8.60 9.甲
10.解 产品净重小于100克的频率为(0.050+0.100)×2=0.300,已知样本中产品净重小于 100克的个数是36,设样本容量为n ,则36
n =0.300,所以n =120,净重大于或等于98
克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90. 11.解 (1)月收入在[3 000,3 500)的频率为
0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5, ∴样本数据的中位数为
2 000+0.5-(0.1+0.2)
0.000 5
=2 000+400=2 400(元).
(3)居民月收入在[2 500,3 000)的频数为0.25×10 000=2 500(人),再从10 000人中用分 层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×
2 500
10 000
=25(人). 12.解 (1)∵各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是
0.30,0.15,0.10,0.05.
∴第二小组的频率为:
1.00-(0.30+0.15+0.10+0.05)=0.40.
∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.40
10=0.04,则补全的频率分布
直方图如图所示.
(2)设九年级两个班参赛的学生人数为x 人. ∵第二小组的频数为40人,频率为0.40, ∴40
x
=0.40,解得x =100. 所以这两个班参赛的学生人数为100人. (3)因为0.3×100=30,0.4×100=40,
0.15×100=15,0.10×100=10,0.05×100=5,即第一、 第二、第三、第四、第五小组的频数分别为30,40,15, 10,5,所以九年级两个班参赛学生的成绩的中位数应落 在第二小组内.。