投影长度变形计算公式
- 格式:docx
- 大小:71.31 KB
- 文档页数:2
高速公路导线测量中的投影变形问题一公司谭晓波摘要随着公路建设的不断扩大与发展,公路(特别是高速公路)从平原微丘区向山岭重丘区(乃至高原地区)延伸,测区高程面由数十米增加到数百米乃至数千米;由于高程面的不同所产生的长度变形对工程建设的影响是必须考虑的问题。
据有关计算表明,当大地高程面H=700m 时,其长度变形为11cm/km,远大于规范允许值,这对于重要工程的测量是一个不可忽略的数值。
现以工程实例来探讨山区高速公路在导线测量中的投影变形问题。
1、工程概况泉(州)三(明)高速公路QA16合同段起讫里程K105+970至K112+406.060,全线长6.43606公里,测区所属地理位置位于山区,平均高程为717m,这就使在导线测量过程中遇到了长度变形问题。
如表:2、长度投影变形及分析公路工程布设的测量控制网是为了施工的需要,因而要求平面控制点坐标反算的边的长度与实地量测的长度相符。
而目前我们遇到了长度变形的问题,即实际测量长度比设计长度大,按《公路勘测规范》对测量控制网的长度变形的规定,测区内投影长度变形值不得大于2.5 cm/km ,即投影变形应达到1/40 000的精度。
这就要求要对实测长度进行改正,也就是要先将控制网边长归化到参考椭球面上,然后再将椭球面上的长度投影到高斯平面上,使其影响可以忽略不计。
2.1、投影变形数学模型长度变形来源于以下两个方面:2.1.1 实地测量的边长长度换算到椭球面上产生的变形,即1s ∆;改正数误差方程式(此式较复杂这里省略)经最小二乘列出误差方程式,按级数展开后取其主项(其它项的影响甚微可以忽略不计):s R H s Am-=∆1(1) 式中 A R -长度所在方向的椭球曲率半径;m H -长度所在高程面对于椭球面的平均高程; s -实地测量的水平距离。
2.1.2 椭球面上的长度投影至高斯平面02222s Ry s m+=∆ (2)式中 R -测区中点的平均曲率半径; m y -距离的2端点横坐标平均值; 0s -为归算到椭球面上的长度。
40李祖锋,邢文,尚海兴,等.工程测量常用投影方法适用性分析及投影参数确定原则文章编号:1006—2610(2020)S2—0040—06工程测量常用投影方法适用性分析及投影参数确定原则李祖锋,邢文,尚海兴,吕宝雄,刘明波,黄东宁(中国电建集团西北勘测设计研究院有限公司,西安710065)摘要:阐述了工程常用的高斯投影、UTM投影、兰勃特投影基本原理和方法,分析了主要投影方法变形特征及其适用范围,提出了最优化投影参数确定思路,并针对高斯正形投影提出了最优化投影参数确定3项标准。
可服务于工程控制测量、地形成图、三维建模等地理信息产品生产过程中投影方法选择与投影参数确定。
关键词:工程测量;投影方法;投影变形特征;最优投影参数中图分类号:P23文献标志码:A DOI:10.3969/j.issn.1006-2610.2020.S2.009Applicability Analysis of Commonly Used Projection Methods in Engineering Surveyand Principle of Projection Parameters DeterminationLI Zufeng,XING Wen,SHANG Haixing,LYU Baoxiong,LIU Mingbo,HUANG Dongning(PowerChina Northwest Engineering Corporation Limited,Xi'an710065,China)Abstract:The article elaborates on the basic principles and methods of Gaussian,UTM,and Lambert projections commonly used in engineering practice,analyzes the deformation characteristics of the main projection methods and their scope of application,puts forward the idea of determining the optimal projection parameters,and proposes three criteria for determining the optimal projection parameters specific to the Gaussian conformal projection.It can be used for the selection of projection methods and the determination of projection parameters in the production process of geographic information products such as engineering control surveying,geomorphological mapping and three-dimensional modeling.Key words:engineering survey;projection method;projection deformation characteristics;optimal projection parameters0前言随着工程建设对测量精度不断提出更高要求,投影问题越来越成为制约高精度GNSS测量应用的重要因素。
常用地图投影转换公式1.约定本文中所列的转换公式都基于椭球体a -- 椭球体长半轴b -- 椭球体短半轴f -- 扁率e -- 第一偏心率e’ -- 第二偏心率N -- 卯酉圈曲率半径R -- 子午圈曲率半径B -- 纬度,L -- 经度,单位弧度(RAD)-- 纵直角坐标, -- 横直角坐标,单位米(M)2.椭球体参数我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 18314-2001”):需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。
3.墨卡托(Mercator)投影3.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。
常用地图投影转换公式作者:青岛海洋地质研究所戴勤奋 投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。
1.约定本文中所列的转换公式都基于椭球体a -- 椭球体长半轴b -- 椭球体短半轴f -- 扁率e -- 第一偏心率e’ -- 第二偏心率N -- 卯酉圈曲率半径R -- 子午圈曲率半径B -- 纬度,L -- 经度,单位弧度(RAD)-- 纵直角坐标,-- 横直角坐标,单位米(M)2.椭球体参数我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。
3.墨卡托(Mercator)投影3.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
各种投影转化的算法公式投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影” (1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。
1.约定本文中所列的转换公式都基于椭球体a -- 椭球体长半轴b -- 椭球体短半轴f -- 扁率e -- 第一偏心率e’ -- 第二偏心率N -- 卯酉圈曲率半径R -- 子午圈曲率半径B -- 纬度,L -- 经度,单位弧度(RAD)-- 纵直角坐标, -- 横直角坐标,单位米(M)2.椭球体参数我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T18314-2001”):需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。
3.墨卡托(Mercator)投影3.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。
在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。
投影长度变形值
投影长度变形值是指物体投影在平面上的长度与物体自身长度
之比。
在光学、几何学和工程学等领域中,投影长度变形值是一个重要的参数,它可以用于测量物体的形状和大小,也可以用于设计和优化各种光学设备、机械结构和电路板等。
在光学领域中,投影长度变形值通常用于描述透镜、光纤和光源等光学元件的成像性能。
当光线经过透镜或光纤等光学元件时,由于折射、反射等光学效应的影响,物体的投影长度会发生变形。
通过测量物体的投影长度变形值,可以确定光学元件的成像质量,为光学系统的设计和优化提供重要的参考依据。
在几何学领域中,投影长度变形值可以用于测量物体的形状和大小。
例如,在三维建模和计算机辅助设计中,可以通过测量物体在平面上的投影长度变形值来确定其真实的长度、宽度和高度等几何尺寸。
此外,在机械结构和电路板等领域中,投影长度变形值也可以用于测量和优化各种机械和电子设备的尺寸和结构。
总之,投影长度变形值在光学、几何学和工程学等领域中都具有重要的应用价值。
通过测量和分析物体的投影长度变形值,可以获得关于物体形状、大小和成像质量等方面的有用信息,为各种工程和科学应用提供支持和帮助。
- 1 -。
投影计算公式投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影” (1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。
“海洋地质制图常用地图投影系列小程序已升级,原下载者请注意下载更新版本。
1( 约定本文中所列的转换公式都基于椭球体a -- 椭球体长半轴b -- 椭球体短半轴f -- 扁率e -- 第一偏心率e’ -- 第二偏心率N -- 卯酉圈曲率半径R -- 子午圈曲率半径B -- 纬度,L -- 经度,单位弧度(RAD)-- 纵直角坐标, -- 横直角坐标,单位米(M)2( 椭球体参数我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 18314-2001”):椭球体长半轴 a(米) 短半轴b(米)Krassovsky (北京546378245 6356863.0188采用)IAG 75(西安80采用) 6378140 6356755.2882WGS 84 6378137 6356752.3142需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。
3( 墨卡托(Mercator)投影3.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512,1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。
墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。
投影向量的公式变形
投影向量是向量分析中的基础概念,它是指一个向量在另一个向量上的投影所得到的向量。
在实际应用中,为了方便计算和分析,我们需要对投影向量的公式进行变形。
假设向量a和向量b都在三维空间中,它们的投影向量为p,则p的长度可以用以下公式表示:
|p| = |a|cosθ
其中,θ为a和b之间的夹角。
将这个公式进行变形,可以得到: cosθ = p·b / (|p||b|)
其中,p·b表示向量p和向量b的点积。
将cosθ代入原公式,可得到:
|p| = |a|(p·b / (|p||b|))
进一步化简,可以得到:
|p| = (a·b) / |b|
以上就是投影向量的公式变形。
通过这些公式,我们可以更加方便地计算和分析投影向量的性质和特点。
- 1 -。
高斯投影长度变形公式
长度变形来源于以下两个方面
1、实地测量的边长长度换算到椭球面上产生的变形,即∆s1;
改正数误差方程式(此式较复杂这里省略)经最小二乘列出误差方程式,按级数展开后取其主项(其它项的影响甚微可忽略不计):
∆s1=−H m
R A
s(1)式中:R A—长度所在方向的椭球曲率半径;
H m—长度所在高程面对于椭球面的平均高程;
s—实地测量的水平距离。
2、椭球面上的长度投影至高斯平面
∆s2=+y m2
2R2
s0(2)式中:R—测区中点的平均曲率半径;
y m—距离的2端点横坐标平均值;
s0—为归算到椭球面上的长度。
在不影响推证严密性的前提下取, R A=R,s=s0,综合上两式可得,综合长度变形∆s为:
∆s=−H m
R
s+
y m2
2R2
s。