简单说成:同旁内角互补,两直线平行. ∵ ∠1+ ∠2=180°, ∴ a∥b.
证明一个命题的一般步骤: (1)弄清题设和结论;
a1 b2
c
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
【议一议】 据说,人类知识的75%是在操作中学到的.
小明用下面的方法作出平行线,你认为他的作法对吗?为 什么? 通过这个操作活动,得 到了什么结论?
每一个命题都有逆命题,只要将原命题的条件改成 结论,并将结论改成条件,便可得到原命题的逆命题.
但是原命题正确,它的逆命题未必正确.例如真命 题“对顶角相等”的逆命题为“相等的角是对顶角”, 此命题就是假命题.
【跟踪训练】
1.举例说明下列命题的逆命题是假命题. (1)如果一个整数的个位数字是5 ,那么这个整数能被 5整除. 逆命题:如果一个整数能被5整除,那么这个整数的个位 数字是5. 例如,10能被5整除,但它的个位数字是0. (2)如果两个角都是直角,那么这两个角相等. 逆命题:如果两个角相等,那么这两个角是直角. 例如,60°= 60°,但这两个角不是直角.
4.到一个角的两边距离相等的点,在这个角的平分线上.
条件:到一个角的两边距离相等的点. 结论:它在这个角的平分线上. 逆命题:角平分线上的点到角两边的距离相等. 5.线段的垂直平分线上的点到这条线段的两个端点的距离相等. 条件:线段垂直平分线上的点. 结论:它到这条线段的两个端点的距离相等. 逆命题:到一条线段的两个端点的距离相等的点在这条线段 的垂直平分线上.
a
∵∠1+∠2=180°, ∴ a∥b.
b
c
1
2
c