3. 的定义解释
是从Cmnn个 不Cnn同m元素中取出m个元素拼成一组,在从n个不同
元素中取出m个元素的同时,n个元素中剩余的n-m个元素就自
然C形mn 成了一组,所以 与 是相对应的,所以两数相等.
Cmn
Cnm n
【辨析】
1.组合与组合数的区别
组合与组合数是两个不同的概念,一个组合是由不同元素合成的一组数,组合
【辨析】
1.排列的概念 排列问题是针对不同元素的排列,若问题中允许元素重复,则不是排列问题. 2.排列与排列数的区别 排列与排列数是两个不同的概念,一个排列是按一定顺序排列的一列数,排列 数是所有不同排列的个数,是一个数.
三、组合 1.组合与组合数
概念
组合,组合数
一般地,从n个不同元素中取出m个元素合成一组, 叫做从n个不同元素中取出m个元素的一个组合, 所有不同组合的个数,叫做从n个不同元素中取 出m个元素的组合数.
各类方案之间是互斥的、 各步之间是关联的、相
并列的、独立的
互依存的
二、排列 1.排列与排列数
排列,排列数
排列 概念
一般地,从n个不同元素中取出m(m≤n)个元素, 按照一定的顺序排成一列,叫做从n个不同元素 中取出m个元素的一个排列 从n个不同元素中取出m(m≤n)个元素的所有不
排列数 同排列的个数,叫做从n个不同元素中取出m个
③④字a与C母knbaa的n,b次k是b数k一之种和“是符n号. ”,它可以是数、式及其他值.
⑤通项公式是对(a+b)n这个标准形式而言的,如(a-b)n的展 开式的通项公式是
Tk1 1 k Cnkankbk .
Ckn (n N*,k 0,1,2,,n)
(2)二项式定理的特征 ①二项展开式有n+1项,比二项式的次数大1. ②二项式系数与二项展开式系数是两个不同的概念. ③要注意逆用二项式定理来分析问题、解决问题.