最新-2018学年第一学期高二期末统一考试数学(文科)试题人教版新课标 精品
- 格式:doc
- 大小:245.65 KB
- 文档页数:8
)x 中山市高二级2010—2011学年度第一学期期末统一考试数学试卷(文科)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共50分)注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.不等式250x x -≥的解集是A .[0,5]B .[5,)+∞C .(,0]-∞D .(,0][5,)-∞+∞2.已知一个数列的前四项为22221357,,,24816--,则它的一个通项公式为 A .221(1)(2)nn n -- B .1221(1)(2)n n n --- C .221(1)2n n n -- D .1221(1)2n nn --- 3.椭圆2212516x y +=的离心率为A .35B .45C .34D .16254. 圆222()()x a y b r -+-=经过原点的一个充要条件是A .0ab =B .0a =且0b =C .222a b r +=D .0r =5.函数f (x )的导函数'()f x 的图象如 右图所示,则下列说法正确的是 A .函数()f x 在(2,3)-内单调递增 B .函数()f x 在(4,0)-内单调递减C .函数()f x 在3x =处取极大值D .函数()f x 在4x =处取极小值 6.长为3.5m 的木棒斜靠在石堤旁,木棒的一端在离堤脚1.4m 的地面上,另一端在沿堤上2.8m 的地方,堤对地面的倾斜角为α,则坡度值tan α等于 AB .516 CD .1157.等差数列{}n a 的前n 项和12...n n S a a a =+++,若1031S =,20122S =,则30S = A .153 B .182C .242D .2738.正三角形的一个顶点位于原点,另外两个顶点在抛物线24y x =上,则这个正三角形的边长为 A.B.C .8D .169.已知0,0a b >>,且1a b +=,则11a b+的最小值是 A .2B.C .4D . 810.已知p :函数2()1f x x mx =++有两个零点, q :x R ∀∈,244(2)10x m x +-+>.若若p q ⌝∧为真,则实数m 的取值范围为 A .(2,3) B .(,1](2,)-∞+∞ C .(,2)[3,)-∞-+∞ D .(,2)(1,2]-∞-第II 卷(非选择题共100分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 11.等差数列8,5,2,…的第20项是 .12.经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 .13.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .14.物体沿直线运动过程中,位移s 与时间t 的关系式是2()3s t t t =+. 我们计算在2t =的附近区间[2,2]t +∆内的平均速度(2)(2)s t s v t+∆-==∆ ,当t ∆趋近于0时,平均速度v 趋近于确定的值,即瞬时速度,由此可得到2t =时的瞬时速度大小为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15.(13分)已知函数21()(2)3f x x x =+.(1)求()f x 的导数'()f x ;(2)求()f x 在闭区间[]1,1-上的最大值与最小值.16.(13分)已知双曲线C 的方程为221515x y -=. (1)求其渐近线方程;(2)求与双曲线C 焦点相同,且过点(0,3)的椭圆的标准方程.17.(13分)已知某精密仪器生产总成本C (单位:万元)与月产量x (单位:台)的函数关系为1004C x =+,月最高产量为150台,出厂单价p (单位:万元)与月产量x 的函数关系为21125801800p x x =+-. (1)求月利润L 与产量x 的函数关系式()L x ; (2)求月产量x 为何值时,月利润()L x 最大?18.(13分)等比数列{}n a 的公比为q ,第8项是第2项与第5项的等差中项. (1)求公比q ;(2)若{}n a 的前n 项和为n S ,判断396,,S S S 是否成等差数列,并说明理由.19. (14分)第四届中国国际航空航天博览会于2010年11月在珠海举行,一次飞行表演中,一架直升飞机在海拔800m 的高度飞行,从空中A 处测出前下方海岛两侧海岸P 、Q 处的俯角分别是45°和30°(如右图所示). (1)试计算这个海岛的宽度PQ .(2)若两观测者甲、乙分别在海岛两侧海岸P 、Q 处同时测得飞机的仰角为45°和30°,他们估计P 、Q 两处距离大约为600m ,由此试估算出观测者甲(在P 处)到飞机的直线距离.20.(14分)过直角坐标平面xOy 中的抛物线()220y px p =>的焦点F 作一条倾斜角为4π的直线与抛物线相交于A 、B 两点.(1)求直线AB 的方程;(2)试用p 表示A 、B 之间的距离; (3)当2p =时,求AOB ∠的余弦值. 参考公式:()()()2222224A A BB A B A B A B x y xy x x x x p x x p ⎡⎤++=+++⎣⎦.中山市高二级2010—2011学年度第一学期期末统一考试数学试卷(文科)答案一、选择题:DDACB ADBCC二、填空题:11. -49; 12. 22188x y -=; 13. -3; 14. 133,13t +∆.三、解答题:15. 解:(1)23211()(2)233f x x x x x =+=+. ……(1分)求导得2()4f x x x '=+. ……(4分)(2)令2()4(4)0f x x x x x '=+=+=,解得:4x =-或0x =. ……(6分) 列表如下:……(10分)所以,()f x 在闭区间[]1,1-上的最大值是73,最小值是0. ……(13分)16. 解:(1)双曲线方程化为22115x y -=, ……(1分)由此得1,a b == ……(3分)所以渐近线方程为y x =,即y x =. ……(5分)(2)双曲线中,4c =,焦点为(4,0),(4,0)-. ……(7分)椭圆中,210a =, ……(9分) 则5a =,22222549b a c =-=-=. ……(11分)所以,所求椭圆的标准方程为221259x y +=. ……(13分)17.解:(1)2321111()(25)(1004)21100801800180080L x px C x x x x x x x =-=+--+=-++-,其中0150x <≤. ……(5分)(2)221111'()21(1512600)(120)(105)60040600600L x x x x x x x =-++=---=--+.…(8分) 令'()0L x =,解得120x = (105x =-舍). ……(9分)当(0,120)x ∈时,'()0L x >;当(120,150]x ∈时,'()0L x <. ……(11分) 因此,当120x =时,()L x 取最大值.所以,月产量为120台时,月利润()L x 最大. ……(13分)18. 解:(1)由题可知,8252a a a =+, ……(1分)即741112a q a q a q =+, ……(3分)由于10a q ≠,化简得6321q q =+,即63210q q --=, ……(4分)解得31q =或312q =-. 所以1q =或q =. ……(6分)(2)当1q =时,3191613,9,6S a S a S a ===.易知396,,S S S 不能构成等差数列. ……(8分)当q =即312q =-时,31113(1)13(1)11221a q a a S q q q -==+=--- , 931119(1)19[1()]11281a q a aS q q q-==--=--- ,621116(1)13[1()]11241a q a a S q q q-==--=--- . ……(11分)易知3692S S S +=,所以396,,S S S 能构成等差数列. ……(13分)19. 解:(1)在Rt ACP ∆中,tan PCCAP AC=∠, 则800tan 45800PC =⨯︒=. ……(3分)在Rt ACQ ∆中,tan QCCAQ AC =∠,则800tan60QC =⨯︒= ……(5分)所以,800PQ QC PC =-=(m ). ……(7分)(2)在APQ ∆中,600PQ =,30AQP ∠=︒,453015PAQ ∠=︒-︒=︒. ……(8分) 根据正弦定理,得600sin30sin15PA =︒︒, ……(10分)则600sin30600sin30sin(4530)sin 45cos30cos45sin30PA ︒︒====︒-︒︒︒-︒︒.……(14分)20. 解:(1)焦点(,0)2p F ,过抛物线焦点且倾斜角为4π的直线方程是2py x =-. …(3分)(2)由222y p xp y x ⎧=⎪⎨=-⎪⎩22304p x px ⇒-+=23,4A B A B p x x p x x ⇒+==4A B AB x x p p ⇒=++=. ……(8分)(3)由241y xy x ⎧=⎨=-⎩2610x x ⇒-+=6,1A B A B x x x x ⇒+==.222222222cos 2AO BO ABx y x y x x y y AOB AO BO+-+++----∠==()22A B A B p p x x x x -++===. ……(13分) ∴AOB ∠的大小是与p 无关的定值. ……(14分)1题:教材《必修⑤》 P76 预备题 改编,考查一元二次不等式求解.2题:教材《必修⑤》 P67 2(2)改编,考查写数列通项公式. 3题:教材《选修1-1》 P40 例4 改编,考查椭圆几何性质. 4题:教材《选修1-1》 P12 第4题改编,考查充要条件.5题:教材《选修1-1》 P98 第4题改编,考查利用导数研究函数性质. 6题:教材《必修⑤》 P16 习题改编,考查利用余弦定理解三角形 7题:教材《必修⑤》 P44 例2改编,考查等差数列性质及前n 项和 8题:教材《选修1-1》 P64 B 组第2题改编,考查抛物线方程及性质 11题:教材《必修⑤》 P38 例1(1)改编,考查等差数列通项公式 12题:教材《选修1-1》 P54 A 组第6题改编,考查双曲线方程与性质 13题:教材《必修⑤》 P91 第1(1)题改编,考查线性规划问题14题:教材《选修1-1》 P74 导数概念的预备题 改编,考查导数概念16题:教材《选修1-1》 P48 第2题 改编,考查双曲线、椭圆的标准方程与几何性质. 17题:教材《选修1-1》 P104 第6题 改编,考查导数的应用.18题:教材《必修⑤》 P61 第6题 改编,考查等差数列、等比数列的通项与前n 项和. 19题:教材《必修⑤》 P19 第4题 改编,考查解三角形.。
2018-2019学年上学期高二期末考试数学(文)试题一,选择题(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.)1,已知全集{}2U 1x x =>,集合{}2430x x x A =-+<,则=A C U ( )A .()1,3B .()[),13,-∞+∞C .()[),13,-∞-+∞D .()(),13,-∞-+∞ 2,某校为了研究“学生地”和“对待某一活动地态度”是否相关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生与支持活动相关系”地犯错误地概率不超过A .0.1% B .1% C .99% D .99.9%附:)(02k K P ≥0.1000.0500.0250.0100.001k 02.7063.8415.0246.63510.8283,已知抛物线地焦点()F ,0a (0a <),则抛物线地标准方程是( )A .22y ax = B .24y ax = C .22y ax =- D .24y ax =-4,命题:p x ∃∈N ,32x x <。
命题:q ()()0,11,a ∀∈+∞ ,函数()()log 1a f x x =-地图象过点()2,0,则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真5,执行右边地程序框图,则输出地A 是( )A .2912 B .7029 C .2970 D .169706,在直角梯形CD AB 中,//CD AB ,C 90∠AB = ,2C 2CD AB =B =,则cos D C ∠A =( )A C D7,已知2sin 21cos 2αα=+,则tan 2α=( )A .43-B .43C .43-或0D .43或08,32212x x ⎛⎫+- ⎪⎝⎭展开式中地常数项为( )A .8- B .12- C .20- D .209.已知函数()f x 地定义域为2(43,32)a a --,且(23)y f x =-是偶函数.又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足款件地k 地个数为( )A .3 B .2 C .4 D .110,F 是双曲线C :22221x y a b-=(0a >,0b >)地右焦点,过点F 向C 地一款渐近线引垂线,垂足为A ,交另一款渐近线于点B .若2F F A =B,则C 地离心率是( )A B .2 C 11,直线y a =分别与曲线()21y x =+,ln y x x =+交于A ,B ,则AB 地最小值为( )A .3B .2C .3212,某几何体地三视图如图所示,则该几何体地表面积为( )A .4B .21+C .12+D 12二,填空题(本大题共4小题,每小题5分,共20分.)13,已知()1,3a =- ,()1,b t = ,若()2a b a -⊥,则b = .14,已知212(1)4k dx ≤+≤⎰,则实数k 地取值范围是_____.15,在半径为2地球面上有不同地四点A ,B ,C ,D ,若C D 2AB =A =A =,则平面CDB 被球所截得图形地面积为 .16,已知x ,R y ∈,满足22246x xy y ++=,则224z x y =+地取值范围为 .三,解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17,(本小题满分12分)设数列{}n a 地前n 项和为n S ,满足()11n n q S qa -+=,且()10q q -≠.()I 求{}n a 地通项公式。
2017-2018学年高二(上)期末数学试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.101(9)化为十进制数为()A.9 B.11 C.82 D.101【解答】解:由题意,101(9)=1×92+0×91+1×90=82,故选:C.2.随机事件A发生的概率的范围是()A.P(A)>0 B.P(A)<1 C.0<P(A)<1 D.0≤P(A)≤1【解答】解:∵随机事件是指在一定条件下可能发生,也有可能不发生的事件∴随机事件A发生的概率的范围0<P(A)<1当A是必然事件时,p(A)=1,当A是不可能事件时,P(A)=0故选C.3.如果一组数x1,x2,…,xn的平均数是,方差是s2,则另一组数的平均数和方差分别是()A.B.C.D.【解答】解:∵x1,x2,…,xn的平均数是,方差是s2,∴的平均数为,的方差为3s2故选C4.“﹣3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义判断.【解答】解:若方程+=1表示椭圆,则,所以,即﹣3<m<5且m≠1.所以“﹣3<m<5”是“方程+=1表示椭圆”的必要不充分条件.故选B.5.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B6.执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤B.s≤C.s≤D.s≤【解答】解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=++=(此时k=6),因此可填:S≤.故选:C.7.若直线l经过A(2,1),B(1,﹣m2)(m∈R)两点,则直线l的倾斜角α的取值范围是()A.0≤α≤B.<α<πC.≤α<D.<α≤【解答】解:根据题意,直线l经过A(2,1),B(1,﹣m2),则直线l的斜率k==1+m2,又由m∈R,则k=1+m2≥1,则有tanα=k≥1,又由0≤α<π,则≤α<;故选:C.8.从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是()A.B.C.D.【解答】解:从1,2,3,4,5中任取两个不同的数字,构成一个两位数有=5×4=20,这个数字大于40的有=8,∴这个数字大于40的概率是=,故选:A9.已知点P(x,y)在直线2x+y+5=0上,那么x2+y2的最小值为()A.B.2C.5 D.2【解答】解:x2+y2的最小值可看成直线2x+y+5=0上的点与原点连线长度的平方最小值,即为原点到该直线的距离平方d2,由点到直线的距离公式易得d==.∴x2+y2的最小值为5,故选:C10.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B11.一条光线沿直线2x﹣y+2=0入射到直线x+y﹣5=0后反射,则反射光线所在的直线方程为()A.2x+y﹣6=0 B.x+2y﹣9=0 C.x﹣y+3=0 D.x﹣2y+7=0【解答】解:由得,故入射光线与反射轴的交点为A(1,4),在入射光线上再取一点B(0,2),则点B关于反射轴x+y﹣5=0的对称点C(3,5)在反射光线上.根据A、C两点的坐标,用两点式求得反射光线的方程为,即x﹣2y+7=0.故选D.12.已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.2【解答】解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.双曲线8kx2﹣ky2=8的一个焦点为(0,3),则k的值为﹣1.【解答】解:根据题意可知双曲线8kx2﹣ky2=8在y轴上,即,∵焦点坐标为(0,3),c2=9,∴,∴k=﹣1,故答案为:﹣1.14.椭圆+y2=1的弦被点(,)平分,则这条弦所在的直线方程是2x+4y﹣3=0.【解答】解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则,两式相减再变形得,又弦中点为(,),故k=﹣,故这条弦所在的直线方程y﹣=﹣(x﹣),整理得2x+4y﹣3=0.故答案为:2x+4y﹣3=0.15.已知命题p:|x﹣1|+|x+1|≥3a恒成立,命题q:y=(2a﹣1)x为减函数,若p且q为真命题,则a的取值范围是(.【解答】解:∵p且q为真命题,∴命题p与命题q均为真命题.当命题p为真命题时:∵|x﹣1|+|x+1|≥3a恒成立,∴只须|x﹣1|+|x+1|的最小值≥3a即可,而有绝对值的几何意义得|x﹣1|+|x+1|≥2,即|x﹣1|+|x+1|的最小值为2,∴应有:3a≤2,解得:a≤,①.当命题q为真命题时:∵y=(2a﹣1)x为减函数,∴应有:0<2a﹣1<1,解得:,②.综上①②得,a的取值范围为:即:(].故答案为:(].16.已知椭圆+=1,当椭圆上存在不同的两点关于直线y=4x+m对称时,则实数m的范围为:﹣<m<.【解答】解:∵+=1,故3x2+4y2﹣12=0,设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),则3x12+4y12﹣12=0,①3x22+4y22﹣12=0,②①﹣②得:3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即3•2x0•(x1﹣x2)+4•2y0•(y1﹣y2)=0,∴=﹣•=﹣.∴y0=3x0,代入直线方程y=4x+m得x0=﹣m,y0=﹣3m;因为(x0,y0)在椭圆内部,∴3m2+4•(﹣3m)2<12,即3m2+36m2<12,解得﹣<m<.故答案为:﹣<m<三、解答题(本大题共6小题,70分)17.为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?(3)通过该统计图,可以估计该地学生跳绳次数的众数是115,中位数是121.3.【解答】解:(1)∵从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.∴样本容量是=150,∴第二小组的频率是=0.08.(2)∵次数在110以上为达标,∴在这组数据中达标的个体数一共有17+15+9+3,∴全体学生的达标率估计是=0.88 …6分(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,即=115,…7分处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3 …8分18.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]19.已知直线l:y=kx+1,圆C:(x﹣1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.【解答】解:(1)由,消去y得到(k2+1)x2﹣(2﹣4k)x﹣7=0,∵△=(2﹣4k)2+28k2+28>0,∴不论k为何实数,直线l和圆C总有两个交点;(2)设直线与圆相交于A(x1,y1),B(x2,y2),则直线l被圆C截得的弦长|AB|=|x1﹣x2|=2=2,令t=,则有tk2﹣4k+(t﹣3)=0,当t=0时,k=﹣;当t≠0时,由k∈R,得到△=16﹣4t(t﹣3)≥0,解得:﹣1≤t≤4,且t≠0,则t=的最大值为4,此时|AB|最小值为2,则直线l被圆C截得的最短弦长为2.20.已知回归直线方程是:=bx+a,其中=,a=﹣b.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:X 122 131 126 111 125 136 118 113 115 112Y 87 94 92 87 90 96 83 84 79 84(1)试求这次高一数学成绩和物理成绩间的线性回归方程(系数精确到0.001)(2)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?【解答】解:(1)由题意,==120.9,==87.6,=146825,=102812,∴===0.538,a=﹣b≈22.521∴=0.538x﹣22.521,(2)由(1)=0.538x﹣22.521,当y=93时,93=0.538x﹣22.521,x≈131.21.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【解答】解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.22.已知H(﹣3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足.(1)当点P在y轴上移动时,求点M的轨迹C;(2)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,若在x轴上存在一点E(x0,0),使得△ABE是等边三角形,求x0的值.【解答】解(1)设点M的坐标为(x,y),由.得,由,得,所以y2=4x由点Q在x轴的正半轴上,得x>0,所以,动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(2)设直线l:y=k(x+1),其中k≠0代入y2=4x,得k2x2+2(k2﹣2)x+k2=0①设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实数根,由韦达定理得所以,线段AB的中点坐标为,线段AB的垂直平分线方程为,令,所以,点E的坐标为.因为△ABE为正三角形,所以,点E到直线AB的距离等于|AB|,而|AB|=.所以,解得,所以.。
黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。
3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。
2018年高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.635.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z 的最小值为()A.﹣3 B.﹣6 C.3 D.68.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.1210.(5分)已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.1511.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,;则C的实轴长为.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.20.(12分)设椭圆C:=1(a>b>0)的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3x1﹣4y1的取值范围.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.2.(5分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A.3<m<4 B.C.D.【分析】进而根据焦点在y轴推断出4﹣m>0,m﹣3>0并且m﹣3>4﹣m,求得m的范围.【解答】解:由题意可得:方程表示焦点在y轴上的椭圆,所以4﹣m>0,m﹣3>0并且m﹣3>4﹣m,解得:.故选D.【点评】本题主要考查了椭圆的标准方程,解题时注意看焦点在x轴还是在y轴.3.(5分)“x>1”是“log(x+2)<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行判断即可.【解答】解:由log(x+2)<0得x+2>1,即x>﹣1,则“x>1”是“log(x+2)<0”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.比较基础.4.(5分)设S n是等差数列{a n}的前n项和,已知a3=5,a5=9,则S7等于()A.13 B.35 C.49 D.63【分析】由题意可得a3+a5=14,进而可得a1+a7=a3+a5=14,而S7=,代入即可得答案.【解答】解:由题意可得a3+a5=14,由等差数列的性质可得a1+a7=a3+a5=14,故S7====49,故选C【点评】本题考查等差数列的性质和求和公式,属基础题.5.(5分)有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“直角三角形有两个角是锐角”的逆命题;其中真命题为()A.①②B.②③C.①③D.③④【分析】利用四种命题关系写出四个命题,然后判断真假即可.【解答】解:①“若x+y=0,则x,y互为相反数”的逆命题:“若x,y互为相反数,则x+y=0”逆命题正确;②“全等三角形的面积相等”的否命题:“不全等三角形的面积不相等”,三角形的命题公式可知只有三角形的底边与高的乘积相等命题相等,所以否命题不正确;③“若q≤1,则x2+2x+q=0有实根”的逆否命题:“x2+2x+q=0没有实根,则q>1”,因为x2+2x+q=0没有实根,所以4﹣4q<0可得q>1,所以逆否命题正确;④“直角三角形有两个角是锐角”的逆命题:两个角是锐角的三角形是直角三角形,显然不正确.正确命题有①③.故选:C.【点评】本题考查四种命题的关系,命题的真假的判断,基本知识的考查.6.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为12,则z的最小值为()A.﹣3 B.﹣6 C.3 D.6【分析】先画出可行域,得到角点坐标.再利用z的最大值为12,通过平移直线z=x+y得到最大值点A,求出k值,即可得到答案.【解答】解:可行域如图:由得:A(k,k),目标函数z=x+y在x=k,y=k时取最大值,即直线z=x+y在y轴上的截距z最大,此时,12=k+k,故k=6.∴得B(﹣12,6),目标函数z=x+y在x=﹣12,y=6时取最小值,此时,z的最小值为z=﹣12+6=﹣6,故选B.【点评】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.8.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,cos2=,则△ABC的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【分析】在△ABC中,利用二倍角的余弦与正弦定理可将已知cos2=,转化为cosA=,整理即可判断△ABC的形状.【解答】解:在△ABC中,∵cos2=,∴==+∴1+cosA=+1,即cosA=,∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,∴sinAcosC=0,sinA≠0,∴cosC=0,∴C为直角.故选:B.【点评】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用,属于中档题.9.(5分)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12【分析】由题意可知直线过圆心,可得3m+n=2,从而+=(+),展开后利用基本不等式可求答案.【解答】解:∵直线截得圆的弦长为直径,∴直线mx+ny+2=0过圆心(﹣3,﹣1),即﹣3m﹣n+2=0,∴3m+n=2,∴+=(+)=3+≥3+=6,当且仅当时取等号,由截得,∴+的最小值为6,故选A.【点评】该题考查直线与圆的位置关系、基本不等式的应用,变形+=(+)是解决本题的关键所在.10.(5分)已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.15【分析】由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.【解答】解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.【点评】本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.11.(5分)若△ABC顶点B,C的坐标分别为(﹣4,0),(4,0),AC,AB边上的中线长之和为30,则△ABC的重心G的轨迹方程为()A.=1(y≠0) B.=1(x≠0)C.=1(x≠0) D.=1(y≠0)【分析】根据三角形重心的性质可得G到B、C两点的距离之和等于20,因此G 的轨迹为以B、C为焦点的椭圆.利用题中数据加以计算可得相应的椭圆方程,注意到点G不能落在x轴上得到答案.【解答】解:设AC、AB边上的中线分别为CD、BE∵BG=BE,CG=CD∴BG+CG=(BE+CD)=20(定值)因此,G的轨迹为以B、C为焦点的椭圆,2a=20,c=4∴a=10,b==,可得椭圆的方程为∵当G点在x轴上时,A、B、C三点共线,不能构成△ABC∴G的纵坐标不能是0,可得△ABC的重心G的轨迹方程为=1(y≠0)故选:D【点评】本题给出三角形两条中线长度之和等于定值,求重心G的轨迹方程.着重考查了三角形重心的性质、椭圆的定义与标准方程和轨迹方程的求法等知识,属于中档题.12.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴﹣2,∵M在圆上,∴(x0﹣5)2+y02=r2,∴r2=y02+4<12+4=16,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,;则C的实轴长为4.【分析】设出双曲线方程,求出抛物线的准线方程,利用,即可求得结论.【解答】解:设等轴双曲线C的方程为x2﹣y2=λ.(1)∵抛物线y2=16x,2p=16,p=8,∴=4.∴抛物线的准线方程为x=﹣4.设等轴双曲线与抛物线的准线x=﹣4的两个交点A(﹣4,y),B(﹣4,﹣y)(y >0),则|AB|=|y﹣(﹣y)|=2y=4,∴y=2.将x=﹣4,y=2代入(1),得(﹣4)2﹣(2)2=λ,∴λ=4∴等轴双曲线C的方程为x2﹣y2=4,即∴C的实轴长为4.故答案为:4【点评】本题考查抛物线,双曲线的几何性质,考查学生的计算能力,属于基础题.14.(5分)△ABC中,A、B、C对应边分别为a、b、c.若a=x,b=2,B=45°,且此三角形有两解,则x的取值范围为.【分析】利用余弦定理,构建方程,根据解此三角形有两解,可得方程有两个不等的正根,从而可求x的取值范围【解答】解:由余弦定理可得:4=c2+x2﹣2cx×cos45°∴c2﹣xc+x2﹣4=0∵解此三角形有两解,∴方程有两个不等的正根∴△=2x2﹣4(x2﹣4)>0,且x2﹣4>0,x>0∴x2﹣8<0,且x2﹣4>0,x>0∴2<x<2故答案为:.【点评】本题重点考查余弦定理的运用,考查解三角形解的个数,解题的关键是利用余弦定理,构建方程,将解此三角形有两解,转化为方程有两个不等的正根.15.(5分)过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.【分析】利用点差法,结合M是线段AB的中点,斜率为﹣,即可求出椭圆C 的离心率.【解答】解:设A(x1,y1),B(x2,y2),则①,②,∵M是线段AB的中点,∴=1,=1,∵直线AB的方程是y=﹣(x﹣1)+1,∴y1﹣y2=﹣(x1﹣x2),∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B两点,M是线段AB的中点,∴①②两式相减可得,即,∴a=b,∴=b,∴e==.故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.16.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a 的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.【点评】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,18.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,﹣).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求•.【分析】(1)设双曲线方程为x2﹣y2=λ,λ≠0,由双曲线过点(4,﹣),能求出双曲线方程.(2)由点M(3,m)在此双曲线上,得m=.由此能求出•的值.【解答】解:(1)∵双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,∴设双曲线方程为x2﹣y2=λ,λ≠0,∵双曲线过点(4,﹣),∴16﹣10=λ,即λ=6,∴双曲线方程为=1.(2)∵点M(3,m)在此双曲线上,∴=1,解得m=.∴M(3,),或M(3,﹣),∵F 1(﹣2,0),,∴当M(3,)时,=(﹣2﹣3,﹣),=(,﹣),•=﹣12﹣6=0;当M(3,﹣)时,=(﹣2﹣3,),=(,),•=﹣12﹣6+6+9+3=0.故•=0.【点评】本题考查双曲线方程的求法,考查向量的数量积的求法,解题时要认真审题,注意双曲线性质的合理运用.19.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.20.(12分)设椭圆C:=1(a>b>0)的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3x1﹣4y1的取值范围.【分析】(1)依题意知,2a=4,e=由此可求出椭圆C的方程.(2)点P(x 0,y0)关于直线y=2x的对称点为,由题设条件能推出3x1﹣4y1=﹣5x0.再由点P(x0,y0)在椭圆C:上,能够铁推出3x1﹣4y1的取值范围.【解答】解:(1)依题意知,2a=4,∴a=2.∵,∴.∴所求椭圆C的方程为.(2)∵点P(x 0,y0)关于直线y=2x的对称点为,∴解得:,.∴3x1﹣4y1=﹣5x0.∵点P(x0,y0)在椭圆C:上,∴﹣2≤x0≤2,则﹣10≤﹣5x0≤10.∴3x1﹣4y1的取值范围为[﹣10,10].【点评】本题考查椭圆的基本性质及其应用,解题时要注意公式的灵活运用.21.(12分)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.第21页(共21页)。
成都树德中学高2021级高二上期期末检测数学(文科)试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是A.①用随机抽样法,②用系统抽样法 B.①用系统抽样法,②用分层抽样法C.①用分层抽样法,②用随机抽样法 D.①用分层抽样法,②用系统抽样法2.下面命题正确的是A .“若0ab ≠,则0a ≠”的否命题为真命题;B .命题“若1x <,则21x <”的否定是“存在1≥x ,则21x ≥”;C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件;D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件.3.直线3y kx =+被圆()()22234x y -+-=截得的弦长为2,则直线的倾斜角为A.3π B.3π-或3πC.3π或23π D.6π或56π4.执行下面的程序框图,如果输入的3N =,那么输出的S =A.1B.32C.53D.525.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则双曲线C 的渐近线方程为A.y =B.3y x =±C.12y x =±D.2y x=±6.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球B.恰好有一个白球与都是红球C.至少有一个白球与都是白球D.至少有一个白球与至少一个红球7.已知点()M ,x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则1y z x =+的取值范围是A .[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦ B .12,2⎡⎤-⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎡⎤-⎢⎥⎣⎦8.变量x 与y 的数据如表所示,其中缺少了一个数值,已知y 关于x 的线性回归方程为 1.2 3.8y x =-,则缺少的数值为A .24B .25C .25.5D .26取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为A .0.852B .0.8192C .0.8D .0.7511.已知O 为坐标原点,双曲线)0(14:222>=-b b y x C 的右焦点为F ,以OF 为直径的圆与C 的两条渐近线分别交于与原点不重合的点,,B A 若||332||||AB OB OA =+,则ABF ∆的周长为A.6B.36C.324+D.344+12.已知12F F 、分别是椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,椭圆C 过(2,0)A -和(0,1)B 两点,点P在线段AB 上,则12PF PF ⋅的取值范围为()A .11,5⎡⎫-+∞⎪⎢⎣⎭B .371,5⎡⎤⎢⎥⎣⎦C .[2,1]-D .11,15⎡⎤-⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线28y x =的焦点到其准线的距离为________.14.已知“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是假命题,则实数m 的取值范围为.15.在区间[0,1]上随机取两个数x、y ,则满足13x y -≥的概率为___________.16.已知直线y kx =与椭圆C :222212x yb b+=交于,A B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有__________.①椭圆C 的离心率为2;②12AE k k =;③12AE BE k k ⋅=-;④以AE 为直径的圆过点B .x2223242526y2324▲2628三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知圆C 上有两个点()()2,3,4,9A B ,且AB 为直径.(1)求圆C的方程;(2)已知()0,5P ,求过点P 且与圆C 相切的直线方程.18.(本小题满分12分)某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值;(2)求这50名问卷评分数据的中位数;(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.19.(本小题满分12分)已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为y =.(1)求C 的标准方程;(2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB .20.(本题满分12分)某书店销售刚刚上市的高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:单价/元1819202122销量/册6156504845由数据知,销量y 与单价x 之间呈线性相关关系.(1)求y 关于x 的回归直线方程;附:=J1 (−p(−p(−p2,=−.(2)预计以后的销售中,销量与单价服从(1)中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?22.(本小题满分12分)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.公众号高中僧试题下载高2021级期末考试数学(文)试题参考答案一、1-5CDCCA6-10BCABD11-12BD二、13、11614、2m≤15、9216、②③④18、(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a+⨯+++⨯=,解得a=0.006;(2)由频率分布的直方图可得设中位数为m,故可得()()0.004 0.006 0.023210700.0280.5m++⨯+-⨯=,解得m=76,所以这50名问卷评分数据的中位数为76.(3)由频率分布直方图可知评分在[40,60)内的人数为0.004 50100.00610505⨯⨯+⨯⨯=(人),评分在[50,60)内的人数为0.00650103⨯⨯=(人),设分数在[40,50)内的2人为12,a a,分数在[50,60)内的3人为123,,b b b,则在这5人中抽取2人的情况有:()12,a a,()11,a b,()12,a b,()13,a b,()21,a b,()22,a b,()23,a b,()12,b b,()13,b b,()23,b b,共有10种情况,其中分数在在[50,60)内的2人有()12,b b,()13,b b,()23,b b,有3种情况,所以概率为P=310.…………………………………12分19、(1)因为焦点在x轴上,设双曲线C的标准方程为22221(0,0)x y a ba b-=>>,由题意得24c=,所以2c=,①又双曲线C的一条渐近线为y x=,所以3ba=,②又222+=a b c,③联立上述式子解得a=1b=,故所求方程为2213x y-=;(2)设11(,)A x y,22(,)B x y,联立2211213y xx y⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x+-=,由2134((6)1504∆=-⨯⨯-=>,所以1212x x+=-,1224x x=-,即AB===20、(1)由表格数据得=18+19+20+21+225=20,=61+56+50+48+455=52.则J15 (i−)(y i−)=﹣40,J15 (i−)2=10,则=−4010=−4,=−=52﹣(﹣4)×20=132,则y关于的回归直线方程为=−4x+132;(2)获得的利润z=(x﹣10)(﹣4x+132)=﹣4x2+172x﹣1320,对应抛物线开口向下,则当x=−1722×(−4)=21.5时,z取得最大值,即为了获得最大利润,该单元测试卷的单价应定为21.5元.22、(1)由题意得12p=,即2p=,所以抛物线的准线方程为1x=-.(2)设(,),(,),(),A AB B c cA x yB x yC x y,重心(,)G GG x y.令2,0Ay t t=≠,则2Ax t=.由于直线AB过F,故直线AB方程为2112tx yt-=+,代入24y x=,得222(1)40ty yt---=,故24Bty=-,即2Byt=-,所以212(,Bt t-.又由于11(),(3)3G A B c G A B cx x x x y y y y=++=++及重心G在x轴上,故220ct yt-+=,得422211222((),2()),(3t tC t t Gt t t-+--.所以直线AC方程为222()y t t x t-=-,得2(1,0)Q t-.由于Q在焦点F的右侧,故22t>.从而424222124422242221|1||2|||223221222211||||1||||2||23Act t tFG yS t t ttt tS t tQG y t tt t-+-⋅⋅--====--+--⋅--⋅-.令22m t=-,则0m>,1221223434S mS m m mm=-=-++++3212≥-=+.当m=12SS取得最小值12+,此时(2,0)G.。
2018—2018学年度第一学期高二数学期末考试题一、选择题:(下列各题均有一个正确答案。
每小题4分,共40分)1. 已知数列{a n }满足a 1=2,a n+1-a n +1=0,(n ∈N),则此数列的通项a n 等于 ( ) A .n 2+1; B .n+1 ; C .1-n ; D .3-n2. 等比数列{n a }的首项为1,公比为q(q ≠1),前n 项和为S m ,则数列{na 1}的前n 项和是( ) A .m S 1; B .m n S q ⋅-11; C .S m ; D .1-n m qS 3.已知P:1<x<2, Q:x(x -3)<0, 则P 是Q 的( )A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件4. 已知P :2+2=5,Q:3>2,则下列判断错误的是( )A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真5. 下列命题:① ∀x ∈R,x 2+2>0, ② ∀x ∈N,x 4≥1, ③ ∃x ∈Z,x 3<1, ④ ∃x ∈Q,x 2=3,其中是真命题的个数是( )A . 1个;B .2个 ;C .3个 ;D .4个 6.不等式组 ⎩⎨⎧<+-≥+-02063y x y x 表示的平面区域是( )7. 抛物线y=ax 2的焦点坐标是( )A.(4a ,0) ; B.(0,4a ) ; C.(0,a 41); D.(0,-a 41)8. 若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A.2<k<5 ; B.k>5 ; C.k<2或k>5; D.以上答案均不对 9. 根据导数的定义,()f x '等于( )A.100()()limx f x f x x ∆→-∆ ; B.01010()()lim x x f x f x x x →-- ;C.1110()()limx f x x f x x →+∆-∆ ; D.110()()lim x f x x f x x∆→+∆-∆10. 函数f(x)=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A.a<3 ;B.a>3 ;C.a ≤3;D.a ≥3二、填空题:(每小题5分,共20分)11.数列{a n }的前n 项和为S n =n 2+3,则a 1018+a 1018+……+a 2018+a 2018=____________.12.命题“若x<3,则x<5”及它的逆命题、否命题、逆否命题中,真命题的个数是______. 13.已知方程x 2+1=(1-k)x 没有实数根,则k 的取值范围是_________. 14.函数f(x)=x 2-2x-3的单调递增区间是_____________.15.曲线f(x)=x 3-2x 2-4x+3 在点M (2,-5)处的切线方程是_____________.三、解答题:(下面各题必须写出详细的...解答。
(人教版)六年级数学下册期末质量检测试卷班级____________姓名____________分数____________一、填空题。
(24分)1.一个九位数最高位上是最小的质数,千万位上是最小的合数,千位上是最小的奇数,其它各位上的数字都是零,这个数写作( ),改写成用“万”作单位的数是( ),省略“亿”后面的尾数是( )。
2.在括号里填上适当的计量单位。
(1)一个鸡蛋约重( )。
(2)一瓶矿泉水的容量是550( )。
3.3时20分=( )时, 5千克=( )吨。
4.731的分数单位是( ),再加( )个这样的单位就是最小的质数。
5.气象局为了表示一天中气温变化情况,采用( )统计图最合适。
6.a 和b 都是自然数,而且a ÷b =5,那么a 和b 的最大公约数是( )。
7.小丽去年6月28日到银行存了一个定期储蓄1000元,年利率是1.98%利息税是20%,今年到期小丽可得本金和税后利息( )元。
8.小华身高1.6米,在照片上她的身高是5厘米,这张照片的比例尺是( )。
9.某小学六年一班,有一天出席49人,事假1人,这天的出席率是( )。
10.把0.803,65,0.∙∙ 83,0.8∙∙ 30和2522按从大到小的顺序排列起来是( )。
11.六年一班男生人数占全班人数的95,那么女生人数是男生人数的( )。
12.把棱长6厘米的正体木块,削成一个最大的圆锥,这个圆锥体的体积是( )。
13.4.6÷11用循环小数表示商是( ),这个循环小数的小数点后面第138位上的数字是( )。
14.如果33、27和21分别除以同一个数,余数都是3,那么这个除数最大是( )。
15.有一个长方体,正好切成大小相同的4个正方体,每个正方体的表面积是24平方厘米,原来长方体的表面积可能是( )平方厘米,也可能是( )平方厘米。
二、判断题(对的打“√”,错的打“╳”)(5分)1.通过放大镜看一个20o 的角,这个仍是20o 。
2018-2018学年第一学期高二期末统一考试数学(文科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。
考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上,用2B 铅笔把考号及试卷类型填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷 选择题 (共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的)1. 等差数列}{n a 中,3a = 2 ,则该数列的前5项的和为 ( )A .32B .20C .16D .102. 抛物线y = -2x 2的准线方程是 ( )A .x=-21 B.x=21 .C .y=81 D .y=-813. 下列命题中,其“非”是真命题的是 ( ) A .∀x ∈R ,x ²-22x + 2 ≥ 0 ; B .∃x ∈R ,3x -5 = 0 ;C .一切分数都是有理数 ;D .对于任意的实数a,b,方程ax=b 都有唯一解 .4. 已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+ 5.方程3)1(2)3(222+-=-++y x y x 表示的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线6. 已知f(x) = x 2 + 2x f 1 (1) , 则f 1(0)= ( ) A .0 B .-4 C .-2 D .27.设x ,y 是正实数,且满足x + 4y = 40,则lgx+lgy 的最大值是 ( )A .2B .4C .10D .408. 已知数列{a n },那么“对任意的n ∈N *,点 P n (n,a n )都在直线y=2x+1上”是“{a n }为等差数列” 的( )A.必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件9.已知x , y 满足约束条件⎪⎩⎪⎨⎧≥--≥-≥02200y x y x y , 则11+-=x y W 的取值范围为是 ( )A.〔 —1,31〕 B.〔-21,31〕 C. 〔 -21,+∞ ) D. 〔-21,1)10.设F 1,F 2是x 2 +3y 2 = 3椭圆的焦点,点P 是椭圆上的点,若∠F 1PF 2=900,则这样的点P 有( )A .0个B .2个C .3个D .4个第Ⅱ卷 非选择题 (共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.函数y =xx -+12的定义域为 ________________ 12.过点P(-1,2 ) 且与曲线y=3x 2—4x+ 2在点M(1,1)处的切线平行的直线方程是13已知m,n,m+n 成等差数列,m,n,mn 成等比数列,则椭圆122=+ny m x 的离心率为_______________ 14.在△ABC 中∠A=600,b=1,S △ABC =3,则Aacos = 三、解答题:(本大题共 6 小题,共 80分。
解答应写出文字说明、证明过程或演算步骤。
)15.(本小题满分12分)求经过点P (―3,27)和Q (―62,―7)且焦点在坐标轴上的双曲线的标准方程。
16. (本小题满分12分)已知p :x < -2,或x > 10;q : m -1≤x≤21m +;若¬p 是q 的充分而不必要条件,求实数m 的取值范围。
17.(本小题满分14分)某银行准备新设一种定期存款业务,经测算:存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为4.8%,又银行吸收的存款能全部放贷出去。
(1)若存款利率为x ,x ∈(0,0.188),试写出存款量g (x )及银行应支付给储户的利息h (x )与存款利率x 之间的关系式;(2)存款利率为多少时,银行可获得最大收益?18.(本小题满分14分)函数f (x )= 4x 3+ax 2+bx+5的图在x=1处的切线方程为y=-12x ;(1)求函数f (x )的解析式;(2)求函数f (x )在 [—3,1]上的最值。
19.(本小题满分14分)设椭圆12222=+by a x (a >b >0)的左焦点为F 1(-2,0),左准线 L 1 与x 轴交于点N (-3,0),过点N 且倾斜角为300的直线L 交椭圆于A 、B 两点。
(1)求直线L 和椭圆的方程;(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上。
20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b 中,11b =,点1(,)n n P b b +在直线02=+-y x 上. ⑴求1a 和2a 的值;⑵求数列{}{},n n a b 的通项n a 和n b ;⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .2018-2018学年第一学期高二期末统一考试数学(文科)答案一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11. 〔-2,1〕 12. y = 2x +4 13.22.14.三、解答题:(本大题共 6 小题,共 80分。
解答应写出文字说明、证明过程或演算步骤。
) 15.(本小题满分12分)解:依题意,设双曲线方程为Ax 2-By 2=1(AB >0)---------3分 ∵双曲线过点P (―3,27)和Q (―62,―7)∴ ⎩⎨⎧=-=-149721289B A B A ------------7分解得:A=-751 B=-251----------10分故双曲线方程为1752522=-x y --------12分(若设为标准方程, 则需讨论焦点所在的轴)16.(本小题满分12分)。
解:∵ p :x < -2,或x > 10;q : m -1≤x≤21m +∴¬p: -2≤ x ≤ 10 --------------------------3分∵¬p ⇒q∴3101212≥⎩⎨⎧≥+-≤-m m m 解得 ---------------8分又∵q 推不出¬p ∴m ≠3∴m 的取值范围为(3,+∞) ---------------------12分17.(本小题满分14分) 解:(1)由题意知,存款量g (x )= kx 2 ---------------------------------------2分 银行应支付的利息h (x )= xg (x )= kx 3 ------------------4分 (2)设银行可获得的利益为y ,则y = 0.188kx 2-kx 3 -------------------6分 y 1 =0.186kx -3kx 2令y 1= 0 即0.186kx -3kx 2=0 解得:x =0.182 或 x =0(舍去)---------9分 当x ∈(0,0.182)时,y 1>0 当x ∈(0.182,0.188)时,y 1<0∴当x =0.182时,y 取得最大值 -----------------------------------------13分 故当存款利率为3.2%时,银行可获得最大利益。
-------------------------14分18. (本小题满分14分) 解:(1)f 1(x )= 12x 2+2ax +b -----------------------------------2 分 ∵y =f (x )在x =1处的切线方程为 y =-12x∴⎩⎨⎧-==-=12)1()1(121f f k 即⎩⎨⎧-=+++-=++125412212b a b a解得:a =-3 b =-18 -------------------------------6分∴f (x )=4x 3―3x 2―18x +5 ------------------------------------------------7分(2)∵f 1(x )= 12x 2-6x -18=6(x +1)(2x -3) 令f 1(x )=0 解得:x =-1或x =23--------------------------------------9分 ∴ 当x <-1或x >23时,f 1(x )>0当-1< x <23时, f 1(x )<0 ----------------------------------------11分 ∵ x ∈[-3,1]∴ 在[-3,1]上无极小值,有极大值f (-1)=16又∵f (-3)=-76 f (1)=12 ----------------------------------------13分 ∴f (x )在[-3,1]上的最小值为-76,最大值为16。
-------------------------------14分19.(本小题满分14分)解:(1)由题意知,c =2及32=ca 得 a =6 -----------------------------2分 ∴22622=-=b∴椭圆方程为12622=+y x -----------------------4分 直线L 的方程为:y -0=tan300(x +3)即y =33(x +3)------------6分 (2)由方程组⎪⎩⎪⎨⎧+==+)3(336322x y y x 得 03622=++x x -----------------8分 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=-3 x 1x 2=23∵)2)(2()3)(3(31222121221111++++=+⋅+=⋅x x x x x y x y k k BF A F][14)(239)(321212121-=++++++=x x x x x x x x ----------------12分∴011190=∠⊥B AF B F A F 则∴点F (-2,0)在以线段AB 为直径的圆上 -----------------14分(注:此问有多种解法)20.(本小题满分14分)解:(1)∵n a 是n S 与2的等差中项∴22-=n n a S --------------------------------------------1分 ∴2221111=-==a a S a 解得42222221=-==+a a S a a 解得 -------------------------3分(2)1122,22,n n n n S a S a --=-=-*12,)n n n S S a n n N -≥∈又-=,( 122,0,n n n n a a a a -∴=-≠.{}*12,(2,),nn n a n n N a a -∴=≥∈即数列是等比数列。