单级直齿圆柱齿轮减速器
- 格式:doc
- 大小:715.09 KB
- 文档页数:19
课程设计说明书课题V带—单级齿轮减速器设计者班级学号指导教师沙市职业大学机械系设计课题:设计一用于带式运输上的单级直齿圆柱齿轮减速器。
运输机连续工作,单向运转载荷变化不大,空载启动。
减速器小批量生产,使用期限6年,二班制工作,卷筒(不包括其轴承)效率为97%,运输带允许速度误差为5%。
设计任务要求:1.减速器装配图纸一张(1号图纸);2.轴、齿轮零件图纸各一张(2号或3号图纸);3.设计说明书一份。
机械设计课程设计计算说明书一、传动方案拟定 (3)二、电动机的选择 (4)三、确定传动装置总传动比及分配各级的传动比 (6)四、传动装置的运动和动力设计 (7)五、普通V带的设计 (10)六、齿轮传动的设计 (15)七、传动轴的设计 (18)八、箱体的设计 (27)九、键连接的设计 (29)十、滚动轴承的设计 (31)十一、润滑和密封的设计 (32)十二、联轴器的设计 (33)十三、设计小结 (33)计算过程及计算说明一、传动方案拟定第I组:设计单级圆柱齿轮减速器和一级带传动1、工作条件:使用年限6年,工作为两班工作制,载荷平稳,环境清洁。
2、原始数据:滚筒圆周力F=2200N;带速V=1.7m/s;滚筒直径D=420mm;方案拟定:采用V带传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。
1.电动机2.V带传动3.圆柱齿轮减速器4.连轴器5.滚筒6.运输带综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器传动比,可见第2方案比较适合。
此选定电动机型号为Y132M2-6,其主要性能:额定功率:5.5kW,满载转速:960转/分。
电动机主要外形和安装尺寸:中心高HH外形尺寸L×(AC/2+AD)×HD底角安装尺寸A×B地脚螺栓孔直径K轴伸尺寸D×E装键部位尺寸F×GD132 520×345×315 216×178 12 28×80 10×41三、确定传动装置的总传动比和分配各级传动比:由选定的电动机满载转速n m和工作机主动轴转速n1、可得传动装置总传动比为:i a=n m/n=n m/n卷筒= 960/77.3= 12.421、 运动参数及动力参数的计算 (1)计算各轴的转数:Ⅰ轴:n Ⅰ=n m / i 0=960/2.8=342.86 (r/min )Ⅱ轴:n Ⅱ= n Ⅰ/ i 1=324.86/4.44=77.22 r/min卷筒轴:n Ⅲ= n Ⅱ (2)计算各轴的功率:Ⅰ轴: P Ⅰ=P d ×η01 =P d ×η1=4.5×0.96=4.32(KW )Ⅱ轴: P Ⅱ= P Ⅰ×η12= P Ⅰ×η2×η3=4.32×0.98×0.97=4.11(KW ) 卷筒轴: P Ⅲ= P Ⅱ·η23= P Ⅱ·η2·η4=4.11×0.98×0.99=4.07(KW )由指导书的表1得到: η1=0.96 η2=0.98 η3=0.97 η4=0.99综合以上数据,得表如下:带轮示意图如下:d0绘制轴的工艺图(见图纸)3738。
设计一用于带式运输机上的单级圆柱直齿轮减速器.单级圆柱直齿轮减速器是一种广泛应用于工业领域中的减速器。
减速器是将电机或其他发动机的转速降低并提高扭矩的重要设备。
常见于带式运输机等机械装置上,它能够满足对速度和扭矩的要求,实现机械装置的稳定性,并确保生产流程的正常进行。
在设计单级圆柱直齿轮减速器时,需要考虑到以下因素:传动比、功率、输出扭矩、周期性输出功率以及整体结构的稳定性等。
随着现代机械工业的不断发展,减速器的应用也愈发广泛。
本文将详细解析带式运输机上的单级圆柱直齿轮减速器的设计原理及组成部分。
一、设计原则1. 减速器传动比应符合机械装置的需求,主要分为慢速和快速两种传动比。
2. 减速器的工作稳定性较高,齿轮的质量、硬度和材质应符合使用要求。
3. 最大输出扭矩和持续周期性输出功率应符合机械装置的要求。
4. 组件易于制造和维修,便于检查,避免频繁更换。
5. 部件配合良好,不影响减速器的运行效率。
二、组成部分1. 齿轮总成齿轮总成包括齿轮轴、圆柱齿轮、支撑轴承和保护外壳。
圆柱齿轮是减速器的核心组件,它能够将机械运动输出到后续的机械装置中。
其齿轮的减速比和齿轮数是根据机械要求而定的,齿轮材料的硬度和强度通常与使用环境息息相关。
减速器轴承的类型和数量取决于齿轮的直径和负荷,它们必须满足操作规程。
减速器外壳的目的是为了保护齿轮完好无损,减少灰尘和水的侵入,同时还允许增加冷却系统。
2. 输入轴和输出轴输入轴将动力输出到圆柱齿轮上,输出轴将输出的动力返还给下一级机械装置。
它们分别由输入轴和输出轴、轴承、外围支持和传递部件组成。
每一个轴必须要受到足够的支撑,其加工精度和硬度对减速器的稳定性具有至关重要的影响。
3. 油路系统油路系统包括油泵、滤清器、油箱和冷却系统。
它们的主要作用是为减速器提供润滑油,降低机械运转时的摩擦损失,减少磨损和损坏。
4. 防护装置防护装置包括警示器、压力表、温度指示器和断路器。
它们的作用是监视减速器的状态,发现故障和异常情况及时处理。
江苏大学工程图学课程设计单级直齿圆柱齿轮减速器设计说明书专业机械设计制造及其自动化班级学号姓名指导教师答辩日期2013年6月28号目录第一章绪论一、减速器的简介 (3)二、减速器的种类 (3)第二章单级直齿圆柱齿轮减速器的工作原理与结构介绍一、减速器的工作原理 (5)二、减速器的结构介绍 (6)三、减速器的拆卸顺序 (9)第三章减速器各组成部分分析一、整体描述 (9)二、减速装置 (9)第四章壳体部分一、底座和箱盖 (11)二、销的定位形式、螺纹连接形式及特殊结构 (11)三、润滑方式 (11)第五章主要零件工作示意图一、箱盖 (12)二、箱体 (12)三、大端盖 (13)第六章减速器中的特殊装置一、油面指示器 (13)二、视孔装置 (14)三、螺栓连接装置 (14)四、清油装置 (14)五、齿轮啮合 (15)第七章小结及改进意见一、小结 (15)二、改进意见 (15)第一章绪论一、减速器的简介减速器是一种动力传递机构,利用齿轮的速度转换器,将电机的每分钟回转数(转速)减速到所需要的工作转速。
如果以一对齿轮传动为例,减速比=N1/N2=Z2/Z1,其中N1和N2分别表示两啮合齿轮的转速,Z1、Z2分别为两齿轮的齿数,这就是说,减速比等于两齿轮齿数的反比。
二、减速器的种类减速器的种类很多。
常用的齿轮及蜗杆减速器按其传动及结构特点,大致可分为三类:1.齿轮减速器(图1-2-1)主要有圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器三种。
(1)圆柱齿轮减速器:当传动比在8以下时,可采用单级圆柱齿轮减速器。
大于8时,最好选二级以上的减速器。
单级减速器的传动比如果过大,则其外廓尺寸将很大。
二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。
展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。
(2)圆锥齿轮减速器:它用于输入轴和输出轴位置布置成相交的场合。
《机械设计基础》课程设计说明书题目:带传动及单级圆柱齿轮减速器的设计学院:机械与电子学院专业:机械制造与自动化班级:机制19-1班学号:姓名:李俊指导教师:周海机械与电子学院2019年11月-12月目录一、课程设计任务要求 (3)二、电动机的选择 (4)三、传动比的计算设计 (5)四、各轴总传动比各级传动比 (6)五、V带传动设计 (8)六、齿轮传动设计 (11)七、轴的设计 (19)八、轴和键的校核 (30)九、键的设计 (32)十、减速器附件的设计 (34)十一、润滑与密封 (36)十二、设计小结 (37)十三、参考资料 (37)一、课程设计任务要求1. 用CAD设计一张减速器装配图(A0或A1)并打印出来。
2. 轴、齿轮零件图各一张,共两张零件图。
3.一份课程设计说明书(电子版)并印出来传动系统图如下:传动简图输送机传动装置中的一级直齿减速器。
运动简图工作条件冲击载荷,单向传动,室内工作。
三班制,使用5年,工作机速度误差±5%。
原始数据如下:二、电动机的选择三、传动比的计算设计四、各轴总传动比各级传动比计算结果汇总如下表,以供参考五、传动设计六、齿轮传动设计根据数据:传递功率P1=5.02KW电动机驱动,小齿轮转速n1=480r/min,大齿轮转速n2=166r/min,传递比i=2.90,单向运转,载荷变化不大,使用期限五年,三班制工作。
七、轴的设计主动抽1轴传动功率P2=4.77KW,转速n2=166r/min,工作单向转动轴采用深沟球轴承支撑。
八、轴和键的校核九、键的设计十、减速器附件的设计十一、润滑与密封十二、设计小结这次的课程设计,对于培养我们理论联系实际的设计思想;训练综合运用机械设计和有关先修课程的理论,结合生产实际反系和解决工程实际问题的能力;巩固、加深和扩展有关机械设计方面的知识等方面有重要的作用。
此次减速器,经过两个月的努力,终于将机械设计课程设计作业完成了。
设计计算及说明结果一设计任务书1.设计方案设计题目:带式输送机的传动装置设计方案图如下:表3 大齿轮结构尺寸名称结构尺寸及经验计算公式结果/mm 毂孔直径h d根据中间轴设计而定 h d =24d60轮毂直径1D 1D =1.6h d 96 轮毂宽度l L=(1.2~1.5) h d80 腹板最大直径2D 2D =a d -(10~14)m n 270 板孔分布圆直径0D 0D =0.5(1D +2D )183 板孔直径0d 0d =15~23mm25 腹板厚度CC=(0.2~0.3)b24大齿轮的结构草图如图1所示,闭式齿轮传动的尺寸列于表4。
图1大10%~15%。
C 值由[1]表5-5来确定:C=120。
1)闭式级高速轴37mm .21970482.5120nd 331min =⨯=≥PC 因为在最小直径处开有一个键槽为了安装联轴器,所以87mm .22)07.01(37.21d 1min =+⨯=,最后取1min d =30mm ;2)闭式级低速轴33.24mm 250.3235.319120nd 332min =⨯=≥PC因为在该轴上开有两个键槽,所以38.226mm )15.01(33.24d 2min =+⨯=最后取2min d =40mm ;3. 闭式级高速轴的结构设计闭式级高速轴的结构草图如图2所示图21).各轴段直径的确定D15:轴的最小直径,取1min d =30mm ;D14:密封处轴段直径,根据轴向定位以及密封圈的尺寸要求,取45mm ;D13:滚动轴承处轴段直径,取50mm ,由[1]表13-2初选滚动轴承6010;D12:齿轮处轴段,由于小齿轮直径较小,故采用齿轮轴结构; D11:滚动轴承处轴段直径,取50mm;2)各轴段长度的确定D15:由外接的联轴器确定,取50mm;D14:由箱体结构、轴承端盖尺寸、装配要求等确定,取75mm; D13:由滚动轴承、挡油盘等确定,取30mm;D12:齿轮处轴段,取110mm;D11:滚动轴承处轴段直径,取30mm闭式级高速轴的结构尺寸列于表6表6 闭式级高速轴的结构尺寸轴段D11 D12 D13 D14 D15直径/mm 50 80 50 45 30长度/mm 30 110 30 75 504. 闭式级低速轴的结构设计闭式级低速轴的结构草图如图3所示图31).各轴段直径的确定d=40mm;D26: 轴的最小直径,取2minD25: 密封处轴段直径,根据轴向定位以及密封圈的尺寸要求,取45mm;D24:滚动轴承处轴段直径,取50mm;D23:大齿轮处轴段,由大齿轮确定,取60mm;D22:过渡轴段,取70mm;D21:滚动轴承处轴段直径,取50mm;2)各轴段长度的确定D26:由外接齿轮等确定,取155mm ;D25: 由箱体结构、轴承端盖尺寸、装配要求等确定,取80mm ; D24:由滚动轴承、轴套等确定,取60mm ; D23:由大齿轮确定,取80mm ; D22:过渡轴段,取20mm ; D21:滚动轴承处轴段直径,取30mm 闭式级低速轴的结构尺寸列于表7表7 闭式级低速轴的结构尺寸轴段D21D22 D23 D24 D25 D26 直径/mm 50 70 60 50 45 40 长度/mm 30 208060801555. Ⅰ轴的校核1)对称循环弯曲许用应力选轴的材料为45钢,调质处理,由[4]表14-1查得对称循环弯曲许用应力][1- =55MPa ; 2)轴空间受力图齿轮啮合处作用有径向力、圆周力和轴向力,根据齿轮转向和齿轮旋向,可确定三者方向,画出轴空间受力图,如图4所示:图4取集中力作用于齿轮和轴承宽度的中点,齿轮啮合力即为作用于轴上的载荷,将其分解为垂直面受力和水平面受力,分别如图5和图6所示:图5图63)轴上载荷计算齿轮圆周力:N T T F 145305.12cos /5.231550652cos /zm 2d 2n 111t =⨯⨯===β 齿轮的径向力:NF F n t r5.54005.12cos 20tan 1453cos tan =⨯==βα 齿轮的轴向力:N F F 17.31005.tan121453tan t a =⨯== β 4)轴上支反力计算水平面内的支反力:N F F F HB HA 5.7262/t === 垂直面内的支反力:N d F l F l F a AB r ABVA 22.354)2/2/(11=⨯+⨯=N F F F VA r VB 28.186-== 5)轴弯矩计算及弯矩图绘制 计算截面C 处的弯矩:mm 508555.72670l ⋅=⨯=⨯=N F M HA AC Hmm 4.2479522.35470l 1⋅=⨯=⨯=N F M VA AC Vmm N F F M VA AC V ⋅=⨯-⨯=9.130392/d l 1a 2分别画出垂直面和水平面的弯矩图,分别如图7、图8所示:图7图8求合成弯矩并画出其弯矩图,如图9所示:mm 76.565772121⋅=+=N MM M V Hmm N M M M V H ⋅=+=2.525002222图96)画出扭矩图 如图10所示:图107)按弯扭合成校核轴的强度界面C 处的弯矩最大,以其为危险截面进行强度校核。
课程设计课程设计题目:单级直齿圆柱齿轮减速器姓名:何成海所学专业名称:机械设计与制造指导老师:张孝琼学号:日期:《机械设计》课程设计设计题目:单级圆柱式齿轮减速器设计内装:1. 设计计算说明书一份2. 减速器装配图一张3. 轴零件图一张4. 齿轮零件图一张学院:滁州学院班级:设计者:指导老师:完成日期:成绩: _________________滁州学院目录课程设计任务书 (1)1 、传动装置的总体设计 (3)1.1、传动方案的确定 (3)1.2、电动机选择 (3)1.3、传动比的计算及分配 (4)1.4、传动装置运动及动力参数计算 (4)2、传动件的设计计算 (5)2.1、皮带轮传动的设计计算 (5)2.2、直齿圆柱齿轮传动的设计计算 (7)3、齿轮上作用力的计算 (10)4、轴的设计计算 (10)4.1、高速轴的设计与计算 (10)4.2、低速轴的设计计算 (15)5、减速器箱体的结构尺寸 (20)6、图形 (22)7、总结 (25)课程设计(论文)任务书6、图形(1)装配图和零件图(2)输入轴结构示意图(3)输出轴上的齿轮7、总结通过为期将近一周的没日没夜的课程设计过程,反复的修改设计,终于完成了一级闭式圆柱齿轮减速器的设计过程,现在写总结心得还是很有感触的,支辛涛老师刚开始在课堂上和我们说我们要做课程设计的时候,觉得课程设计是怎么一回事都不知道,似乎离我好遥远,我不认识它,它更不认识我一样,似乎感觉这么庞大的工程我是不可能做得出来的,所以刚开始时候真的感觉非常困难的。
刚开始就是需要手稿的一份设计计算说明书部分,其中对电动机、齿轮、还有轴和轴承的设计不用说了,翻看了好多教材终于稍微明白了点事怎么设计出来的,设计计算说明部分真的是很重要的一个环节对工具书的使用和查阅:在设计过程中,我们用到了大量的经验公式以及大量取范围值的数据,需要我们翻阅大量的工具书来进行自己设计计算,这让我们这些一直在给定精确公式及数值下学习的我们顿时感到非常的艰辛,取值时往往犹豫不决,瞻前顾后,大大减慢了我们的设计速度。
单级圆柱齿轮减速器的优化设计单级圆柱齿轮减速器是一种常见的机械传动装置,广泛应用于各种工业领域。
然而,随着科技的不断进步和实际应用需求的提高,对减速器的性能和效率也提出了更高的要求。
因此,对单级圆柱齿轮减速器进行优化设计具有重要的现实意义。
在传统的单级圆柱齿轮减速器设计中,主要传动比、扭矩和效率等指标。
然而,随着工业领域的不断发展,对减速器的要求也越来越高,包括更小的体积、更轻的重量、更高的强度和更低的噪音等。
为了满足这些要求,必须对减速器进行优化设计。
单级圆柱齿轮减速器的基本原理是利用齿轮的啮合传递动力,实现减速的目的。
在优化设计中,我们可以从以下几个方面进行分析和改进:齿轮强度:提高齿轮的强度是优化设计的关键之一。
可以采用更优质的材质、精确的齿形设计和适当的热处理工艺来提高齿轮的强度和寿命。
传动效率:通过优化齿轮的几何尺寸、降低齿轮副的摩擦系数和提高齿轮的制造精度,可以降低功率损失,提高传动效率。
噪音控制:采用低噪音齿轮、优化齿轮副的动态特性、避免共振等方法,可以有效降低减速器的噪音。
根据上述原理分析,可以采用以下优化设计方案:采用高强度材料,如渗碳或淬火钢,以提高齿轮强度和寿命。
通过计算机辅助设计软件,精确设计齿轮几何形状和尺寸,以降低啮合冲击和振动。
采用润滑性能良好的材料和精确的加工工艺,以减小摩擦损失。
通过改变齿轮宽度、改变齿轮副的动态特性和优化减震装置等措施,以降低减速器噪音。
为了验证优化设计方案的有效性,可进行实验验证。
实验中,可以测量减速器的传动效率、扭矩、噪音等指标,并将其与原设计进行对比分析。
实验结果表明,优化后的减速器在各方面均有所改善,具体数据如下:传动效率提高:优化后的减速器传动效率较原设计提高了10%以上。
扭矩增加:在相同的输入功率下,优化后的减速器输出扭矩增加了20%以上。
噪音降低:优化后的减速器噪音降低了20分贝以上。
通过对单级圆柱齿轮减速器的优化设计,可以显著提高其传动效率、增加输出扭矩并降低噪音。
前言减速器的结构随其类型和要求不同而异。
单级圆柱齿轮减速器按其轴线在空间相对位置的不同分为:卧式减速器和立式减速器。
前者两轴线平面与水平面平行,如图1-2-1a所示。
后者两轴线平面与水平面垂直,如图1-2-1b所示。
一般使用较多的是卧式减速器,故以卧式减速器作为主要介绍对象。
单级圆柱齿轮减速器可以采用直齿、斜齿或人字齿圆柱齿轮。
图1-2-2和图1-2-3所示分别为单级直齿圆柱齿轮减速器的轴测投影图和结构图。
减速器一般由箱体、齿轮、轴、轴承和附件组成。
箱体由箱盖与箱座组成。
箱体是安置齿轮、轴及轴承等零件的机座,并存放润滑油起到润滑和密封箱体内零件的作用。
箱体常采用剖分式结构(剖分面通过轴的中心线),这样,轴及轴上的零件可预先在箱体外组装好再装入箱体,拆卸方便。
箱盖与箱座通过一组螺栓联接,并通过两个定位销钉确定其相对位置。
为保证座孔与轴承的配合要求,剖分面之间不允许放置垫片,但可以涂上一层密封胶或水玻璃,以防箱体内的润滑油渗出。
为了拆卸时易于将箱盖与箱座分开,可在箱盖的凸缘的两端各设置一个起盖螺钉(参见图1-2-3),拧入起盖螺钉,可顺利地顶开箱盖。
箱体内可存放润滑油,用来润滑齿轮;如同时润滑滚动轴承,在箱座的接合面上应开出油沟,利用齿轮飞溅起来的油顺着箱盖的侧壁流入油沟,再由油沟通过轴承盖的缺口流入轴承(参图1-2-3)。
减速器箱体上的轴承座孔与轴承盖用来支承和固定轴承,从而固定轴及轴上零件相对箱体的轴向位置。
轴承盖与箱体孔的端面间垫有调整垫片,以调整轴承的游动间隙,保证轴承正常工作。
为防止润滑油渗出,在轴的外伸端的轴承盖的孔壁中装有密封圈(参见图1-2-3)。
减速器箱体上根据不同的需要装置各种不同用途的附件。
为了观察箱体内的齿轮啮合情况和注入润滑油,在箱盖顶部设有观察孔,平时用盖板封住。
在观察孔盖板上常常安装透气塞(也可直接装在箱盖上),其作用是沟通减速器内外的气流,及时将箱体内因温度升高受热膨胀的气体排出,以防止高压气体破坏各接合面的密封,造成漏油。
单级直齿圆柱齿轮减速器课程设计答辩
单级直齿圆柱齿轮减速器是一种常见的传动装置。
本次课程设计主要目的是通过设计和分析单级直齿圆柱齿轮减速器的结构和工作原理,加深对齿轮传动的理解,并培养学生的实际设计能力和创新意识。
在课程设计中,我们首先对单级直齿圆柱齿轮减速器的基本原理进行了介绍,包括齿轮的定义、减速器的工作原理以及传动比的计算方法等。
然后,我们详细分析了减速器的设计要求,包括输入转速、输出转速、传动功率和传动比等。
同时,我们还对齿轮的材料、强度计算、润滑和冷却等问题进行了讨论。
接下来,我们利用实例进行了具体的设计计算。
首先,我们选择了合适的输入转速和输出转速,并利用传动比计算出了合适的齿轮模数和齿数。
然后,我们根据这些数据,进行了齿轮的强度计算,并确定了齿轮的材料。
同时,我们还进行了润滑和冷却计算,并选择了合适的润滑和冷却方式。
最后,我们对设计结果进行了评估和优化。
我们利用齿轮模数、齿数和材料进行了优化,并通过强度计算和润滑、冷却计算的结果进行了验证。
同时,我们对减速器的结构和工作原理进行了分析,并提出了改进的意见和建议。
整个课程设计过程中,我们不仅加深了对单级直齿圆柱齿轮减速器的理解,还培养了实际设计和分析的能力。
通过课程设计,我们不仅学到了理论知识,还锻炼了实际操作和解决问题的能力。
这对我们今后的工作和学习都有很大的帮助。
单级直齿圆柱齿轮减速器计算、齿轮传动的设计计算(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。
查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3确定有关参数如下:传动比i齿=3.89取小齿轮齿数Z1=20。
则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78由课本表6-12取φd=1.1(3)转矩T1T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm(4)载荷系数k : 取k=1.2(5)许用接触应力[σH][σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:σHlim1=610Mpa σHlim2=500Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×473.33×10×300×18=1.36x109N2=N/i=1.36x109 /3.89=3.4×108查[1]课本图6-38中曲线1,得ZN1=1 ZN2=1.05按一般可靠度要求选取安全系数SHmin=1.0[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa故得:d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3=49.04mm模数:m=d1/Z1=49.04/20=2.45mm取课本[1]P79标准模数第一数列上的值,m=2.5(6)校核齿根弯曲疲劳强度σ bb=2KT1YFS/bmd1确定有关参数和系数分度圆直径:d1=mZ1=2.5×20mm=50mmd2=mZ2=2.5×78mm=195mm齿宽:b=φdd1=1.1×50mm=55mm取b2=55mm b1=60mm(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95(8)许用弯曲应力[σbb]根据课本[1]P116:[σbb]= σbblim YN/SFmin由课本[1]图6-41得弯曲疲劳极限σbblim应为:σbblim1=490Mpa σbblim2 =410Mpa由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1计算得弯曲疲劳许用应力为[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa校核计算σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]故轮齿齿根弯曲疲劳强度足够(9)计算齿轮传动的中心矩aa=(d1+d2)/2= (50+195)/2=122.5mm(10)计算齿轮的圆周速度V计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s 因为V<6m/s,故取8级精度合适.六、轴的设计计算从动轴设计1、选择轴的材料确定许用应力选轴的材料为45号钢,调质处理。
一、设计题目:设计一用于带式运输机上的单级直齿圆柱齿轮减速器给定数据及要求已知条件:运输带工作拉力F=2200N;运输带工作速度V=1.8m/s(允许运输带速度误差为+5%);滚筒直径D=450mm;两班制,连续单向运转,载荷轻微冲击;工作年限5年;环境最高温度35℃;小批量生产。
二、应完成的工作1.减速器装配图1张(手工绘制)。
2.零件工作图2-3张(从动轴、齿轮)。
3.设计说明书1份(字数4000-6000字)。
院长:吴松平教研室负责人:李素云指导老师:李素云发题日期:2013年12月10日完成日期:2013年12月30日目录设计任务书 (2)一、确定传动方案 (4)二、选择电动机 (4)⑴.选择电动机 (4)⑵.计算传动装置的总传动比并分配各级传动比 (6)⑶.计算传动装置的运动参数和动力参数 (6)三、传动零件的设计计算 (7)⑴.普通V带传动 (7)⑵.圆柱齿轮设计 (9)四、低速轴的结构设计 (11)⑴.轴的结构设计 (11)⑵.确定各轴的尺寸 (12)⑶.确定联轴器的型号 (12)⑷.按扭转和弯曲组合进行强度核算 (13)五、高速轴的结构设计 (15)六、键的选择及强度校核 (15)七、选择轴承及计算轴承寿命 (15)八、选择轴承润滑与密封方式 (17)九、箱体及附件的设计 (18)⑴.箱体的选择 (18)⑵.选择轴承端盖 (18)⑶.确定检查孔与孔盖 (18)⑷.通气器 (18)⑸.油标装置 (18)⑹.螺塞 (19)⑺.定位销 (19)⑻.起吊装置 (19)十、设计小结 (19)十一、参考书目 (20)课程设计说明书设计项目设计与说明主要结果一、确定传动方案机械传动装置一般由原动机、传动装置、工作机和机架四部分组成。
单级圆柱齿轮减速器由带传动和齿轮传动组成,根据各种传动的特点,带传动安排在高速级,齿轮传动放在低速级。
传动装置的布置如下图所示二、选择电动机⑴选择电动机⑴.选择电动机类型和结构形式根据工作要求和条件,选用一般用途的Y系列三相异步电动机,结构类型为卧式封闭结构。
⑵.确定电动机的功率工作机所需的功率P W(kw)按下面公式计算wwwwvFPη1000=已知wF=2200N,wv=1.8m/s,带式输送机的功率wη=0.96,代入上面的式子得:KWKWvFPwwww125.496.010008.122001000=⨯⨯==η电动机所需要功率P0(kw)按下式子计算ηwPP=式子中,η为电动机到滚筒工作轴的传动装置总效率,根据传动P W=4.125kw⑵计算传动装置的总传动比并分配各级传动比特点,由《机械设计课程设计指导书》表2-4查得:V带传动η带=0.96,一对齿轮传动η齿轮=0.97,一对滚动轴承η轴承=0.99,十字滑块联轴器η联轴器=0.98,因此总效率894.099.099.097.096.022=⨯⨯⨯=⋅⋅⋅联轴器齿轮轴承带总=ηηηηηKWKWPP w612.48944.0125.4===η确定电动机额定功率Pm(KW),使Pm=(1~1.3)P0=4.612(1~1.3)=4.612~5.996,查《机械设计课程设计指导书》表2-1取Pm=5.5KW⑶.确定电动机转速工作机卷筒的转速Wn为min/r43.764508.1100060100060=⨯⨯=⨯=ππDvn WW根据《机械设计课程设计指导书》表2-3推荐的各类传动比的取值范围,取V带传动的传动比i带=2~4,一级齿轮减速器i齿轮=3~5,传动装置的总传动比i总=6~20,故电动机的转速范围为min/r66.1528~6.458min/r43.7620~6w=⨯==)(总ninm符合此转速要求的同步转速有750r/min、1000r/min、1500r/min三种,考虑综合因素,查《机械设计课程设计指导书》表2-1,选择同步转速1500r/min的Y系列电动机Y1325-4,其满载转速为mn=1440r/min。
电动机参数见下表:型号额定功率(KW)满载转速(r/min)额定转矩最大转矩Y1325-4 5.5 1440 2.2 2.2⑴.传动⑴装置的总传动比P0=4.612kwPm=5.5KWWn=76.43r/minY1325-4mn=1440r/min总i=18.84⑶计算传动装置的运动参数和动力参数84.1843.76/1440/w===nnim总⑵.分配各级传动比为了符合各种传动形式的工作特点和结构紧凑,必须使各级传动比都在各自的合理范围内,且使各自传动件尺寸协调合理匀称,传动装置总体尺寸紧凑,重量最小,齿轮浸油深度合理。
本传动装置由带传动和齿轮传动组成,因i总=i带i齿轮,为使减速器部分设计方便,取齿轮传动比i齿轮=4.7,则带传动的传动比为47.4/84.81/===齿轮总带iii⑴各轴转速Ⅰ轴:min/3604/4401/nn riM===带ⅠⅡ轴:min/6.767.4/360/nn ri===齿轮ⅠⅡ滚筒轴:min/6.76nn r==Ⅱ滚筒⑵各轴功率:Ⅰ轴:kw43.4ppp=⋅=⋅带ⅠⅠ=ηηⅡ轴:kw25.4.ppp=⋅=⋅轴承齿轮ⅠⅠⅡⅠⅡ=ηηη滚筒轴:kw12.4.ppp=⋅=⋅轴承联轴器ⅡⅡ滚筒Ⅱ滚筒=ηηη⑶各轴转矩:电动机轴:mmNnPTm.2.305861055.906=⨯=Ⅰ轴:mmNiTiTT.117451===带带ⅠⅠⅠηηⅡ轴:mmNiTiTT.5.530104===轴承齿轮齿轮ⅠⅠⅡⅠⅡⅠⅡηηη滚筒轴:mmNTiTT.4.514307===联轴器轴承ⅡⅡ滚筒Ⅱ滚筒Ⅱ滚筒ηηη根据以上计算列出本传动装置的运动参数和动力参数数据表,见下表:参数轴号齿轮i=4.7带i=4Ⅰn=min/360rⅡn=min/6.76r滚筒n=min/6.76rⅠp=4.43kwⅡp=4.25kw滚筒p=4.12kwT=mmN.2.30586ⅠT=mmN.117451ⅡT=mmN.5.530104滚筒T=mmN.4.514307电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/(r.min-1) 1440 360 76.6 76.6 功率p/kw 4.612 4.43 4.25 4.12 转矩T/N.mm 30586.2 117451 530104.5 514307.4 传动比i 4 4.7 1效率η0.96 0,96 0.98三、传动零件的设计计算⑴普通V带传动①计算功率②选择V带类型③确定V带的基准直径④验证带速本题目高速级采用普通V带传动,应根据已知的减速器参数确定带的型号、根数和长度,确定带传动的中心距,初拉力及张紧装置,确定大小带轮的直径、材料、结构尺寸等内容。
带传动的计算参数见下表:项目P0/KW m n/r.min-1i0Ⅰ参数 4.612 1440 4根据工作条件,查教材表9.26取K A=1.6KWKWPKPAc38.7612.46.1=⨯=⋅=由mn=1440r/min、=c P KW38.7,查教材图9.13,因处于A、B的中间区域,可同时选择A、B两种带型来计算,最后根据计算结果来分析选择查教材表9.9取A型带取mmdd1001=,取滑动率ε=0.015mmidddd394)015.01(1004)1(12=-⨯⨯=-=ε取mmdd3802=B型带取mmdd1401=,取滑动率ε=0.015mmidddd6.551)015.01(1404)1(12=-⨯⨯=-=ε取mmdd5402=A型带smsmndv d/536.7/100060144010014.310006011=⨯⨯⨯=⨯=π带速在5~25m/s范围内,合适。
B型带=cP KW38.7A、B型带A型带mmdd1001=mmdd3802=B型带mmdd1401=mmdd5402=A型带v sm/536.7=B型带⑤确定带的基准长度L d 和实际中心距⑥验算小带smsmndv d/55.10/100060144014014.310006011=⨯⨯⨯=⨯=πA型带因没有给定中心距的尺寸范围,按公式)(2)(7.02121ddddddadd+<<+计算中心距为mmamm960336<<,取mma600=B型带中心距范围为mmamm1360470<<,取mma900=A型带计算V带基准长度mmaddddaL dddd27.19864)()(2221221=-+++≈π查教材表9.4取标准值mmL2000=计算实际中心距离mmLLaa d87.6062=-+≈考虑安装、调整和补偿张紧力的需要,中心距应有一定的调节范围,调节范围为mmLaad87.576015.0min=-=mmLaad87.66603.0max=+=B型带mmaddddaL dddd04.29114)()(2221221=-+++≈π查教材表9.4取标准值mmL3150=计算实际中心距离mmLLaa d48.10192=-+≈考虑安装、调整和补偿张紧力的需要,中心距应有一定的调节范围,调节范围为mmLaad23.972015.0min=-=mmLaad73.106603.0max=+=v sm/55.10=A型带mma600=B型带mma900=A型带mmL2000=A型带a mm87.606=A型带=mina mm87.576=maxa mm87.666B型带mmL3150=B型带a mm48.1019=B型带=mina mm23.972=maxa mm73.1066轮包角⑦确定V带根数⑧计算初拉力⑨计算对轴的压力⑵圆柱齿轮设计A型带1201543.57180121≥=⨯--=addddα合适B型带1201583.57180121≥=⨯--=addddα合适A型带查教材表9.7,单根V带的额定功率P0=1.322,0P∆=0.045kw,查教材图9.12,αK=0.938,查教材表9.4LK=1.0359.5)(][=∆+=≥∴LacccKKPPPPPz因大于5,应取z=6根B型带与A型带相似,P0=2.817,0P∆=0.115kw,αK=0.942,LK=1.07代入公式计算得z=2.497,取z=3根计算结果见下表:D d1/mmD d2/mmV/m.s-1L d/mma/mm1αZ/根A 100 380 7.536 2000 607 154° 6B 140 540 10.55 3150 1019 158° 3比较两种计算结果,A型带根数较多,选B型带合理。
查普通V带单位长度质量表,B型带Q=0.17kg/mNQvKzvPFac61.194)15.2(5002=+-=NzFFR13.11462sin21==α齿轮相对于轴承为对称布置,单向运转、输送机的工作状况应为中等冲击已知齿轮传动的参数,见下表:项目P1/KW n1/r.min-1iⅠⅡ参数 4.427 360 4.7由于该减速器无特殊要求,为制造方便,选用价格便宜、货源充足的优质碳素钢,采用软齿面A型带=1α154B型带=1α158A型带z=6根B型带z=3根=F N61.194=RF N13.1146①选择齿轮材料及确定许用应力②按齿面接触强度设计计算③确定齿轮的参数及计算主要尺寸查教材图11.8、图11.9得材料热处理方法齿面硬度小齿轮42SiMn 调质250~280HRW大齿轮42SiMn 钢正火170~200HRW接触疲劳极限应力:小齿轮:MPaH7201lim=σ大齿轮:MPaH4602lim=σ弯曲疲劳极限应力:小齿轮:MPaF5301lim=σ大齿轮:MPaF3602lim=σ安全系数:S Hmin=1.1,S Fmin=1.1许用接触应力小齿轮:[]MPaH7201=σ大齿轮:[]MPaH4602=σ许用弯曲应力:小齿轮:[]MPaF5301=σ大齿轮:[]MPaF3602=σ查教材表11.10、表11.19得K=1.1;[][]MPaHH4602==σσ传动比7.4=ⅠⅡi;外啮合时设计公式中的“±”取“+”号;T1=117451N.mm,代入设计公式:[]mmiKTFdd69.74112)671(311=±≥ψσ⑴确定齿数对于软齿面闭式传动,取z1=30,z2=i z1=4.7⨯30=141;取z2=141;7.412=='zzi;%7.4)7.47.4()(=-='-=∆iiii;在%5±范围内,合适。