2020届河北衡水金卷新高考原创考前信息试卷(三)文科数学
- 格式:doc
- 大小:1.48 MB
- 文档页数:14
2020届河北衡中同卷新高考原创考前信息试卷(十五)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}02=-=x x x A ,则集合A 的真子集的个数为( ) A.1 B.2 C.3 D.4 2.如图,复数21,z z 在复平面上分别对应点A,B,则21z z ⋅=( ) A.0 B.2+i C.-2-i D.-1+2i3.若向量a =(x-4,2)与向量b =(1,-1)平行,则|a |=( )A.22.B.2C.2D.84.若函数f(x)=122+-x x a的图像关于y 轴对称, 则常数a=( )A.-1B.1C. 1或-1D.05.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,判断下列结论: (1)月接待游客量逐月增加; (2)年接待游客量逐年增加;(3)各年的月接待游客量高峰期大致在7,8月;(4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.其中正确结论的个数为( )A.1B.2C.3D.46.若抛物线)0(22>=p px y 的焦点是双曲线1322=-py p x 的一个焦点,则p=( ) A.2 B.4 C.8 D.16 7.函数x x x y 2)(3⋅-=的图象大致是( )8.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”。
2020年普通高等学校招生全国统一考试文科数学(III 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(集合)已知集合{}1235711=,,,,,A ,{}315|=<<B x x ,则A ∩B 中元素的个数为 A .2B .3C .4D .5【解析】∵{5,7,11}=A B ,∴A ∩B 中元素的个数为3. 【答案】B2.(复数)若)(11+=-z i i ,则z = A .1–iB .1+iC .–iD .i【解析】∵)(11+=-z i i ,∴1212--===-+i iz i i ,∴=z i . 【答案】D3.(概率统计)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .10【解析】原数据的方差20.01=s ,由方差的性质可知,新数据的方差为21001000.011=⨯=s .【答案】C4.(函数)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()1--=+t I K t e ,其中K 为最大确诊病例数.当*()0.95=I t K时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【解析】**0.23(53)()0.951--==+t K I t K e,化简得*0.23(53)19-=te ,两边取对数得,*0.23(53)In19-=t ,解得*In1935353660.230.23=+=+≈t . 【答案】C5.(三角函数)已知πsin sin 13θθ++=(),则πsin =6θ+() A .12B .33C .23D .22【解析】∵π13sin sin cos 322θθθ+=+(), ∴π3331sin sin sin 3cos 1322θθθθθθ⎫++==+=+=⎪⎪⎭(), 31πcos sin 26θθθ+=+(), π316θ+=(),故π3sin 63θ+==().【答案】B6.(解析几何)在平面内,A ,B 是两个定点,C 是动点,若1⋅=AC BC ,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线【解析】以AB 所在直线为x 轴,中垂线为y 轴,建立平面直角坐标系,设(,0)-A a ,(,0)B a ,(,)C x y ,则(,)=+AC x a y ,(,)=-BC x a y ,2221⋅=-+=AC BC x a y ,即2221+=+x y a ,故点C 的轨迹为圆.【答案】A7.(解析几何)设O 为坐标原点,直线x =2与抛物线C :()220=>y px p 交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)【解析】解法一:如图A7所示,由题意可知,(2,2)D p ,(2,2)-E p ,(2,2)=OD p ,(2,2)=-OE p ,⊥OD ⊥OE ,⊥⊥OD OE , 即22220⨯-=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2. 解法二:4=DE p 44==+OD OE p⊥OD ⊥OE ,⊥222+=OD OE DE ,即2(44)16+=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2.图A7【答案】B8.(解析几何)点(0)1-,到直线()1=+y k x 距离的最大值为 A .1B .2C .3D .2【解析】解法一:点(0)1-,到直线()1=+y k x 的距离211+=+k d k ,则有222222(1)122=12111+++==+≤+++k k k kd k k k ,故2≤d . 解法二:已知点()01-,A ,直线()1=+yk x 过定点()10-,B ,由几何性质可知,当直线()1=+y k x 垂直直线AB 时,点()01-,A 到直线()1=+y k x 距离最大,最大值为线段AB 的长度,即max 2=d 【答案】B9.(立体几何)如图为某几何体的三视图,则该几何体的表面积是A .642+B .442+C .623+D .423+【解析】由三视图可知,该几何体为一个四面体,如图A8所示. 其表面积(2332226234=⨯+⨯=+S图A9【答案】C10.(函数)设3log 2a =,5log 3b =,23c =,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b【解析】∵233332log 3=log 93==c ,33log 2log 8==a a <c .∵233552log 5log 253===c 355log 3log 27==b c <b .故a <c <b.【答案】A11.(三角函数)在ABC ∆中,2cos 3C =,4=AC ,3=BC ,则tan B = A 5B .25C .45D .85【解析】解法一:由余弦定理得,2222cos 9=+-⋅⋅=AB AC BC AC BC C ,即3=AB ,∴22299161cos 22339+-+-===⋅⨯⨯AB BC AC B AB BC , ∵(0,π)∈B ,∴245sin 1cos =-=B B ,sin tan 45cos ==BB B. 解法二:3=AB ,所以△ABC 是以B 为顶角的等腰三角形.过B 作BD ⊥AC ,易得tan 25=B 22tan2tan 451tan 2==-BB B . 【答案】C12.(三角函数)已知函数1()sin sin f x x x=+,则 A .f (x )的最小值为2B .f (x )的图像关于y 轴对称C .f (x )的图像关于直线π=x 对称D .f (x )的图像关于直线π2=x 对称 【解析】A :1sin 1(sin 0)-≤≤≠x x ,当1sin 0-≤<x ,()0<f x ,故A 错误.B :1()sin ()sin -=--=-f x x f x x,f (x )为奇函数,故B 错误. C :1(2π)sin ()()sin -=--=-≠f x x f x f x x,故C 错误.D :11(π)sin(π)sin ()sin(π)sin -=-+=+=-f x x x f x x x,故D 正确.【答案】D二、填空题:本题共4小题,每小题5分,共20分。
2020届河北衡中同卷新高考原创考前信息试卷(十九)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}|10A x Z x =∈+≥,(){}|lg 3B x y x ==-,则A B =I ( ) A. {}0,1,2B. {}|13x x -≤<C. {}0,1,3,1,2-D.{}1,2,1,0-【答案】D 【解析】 【分析】根据交集运算结果求解即可 【详解】{}{}|101,0,1,2,3,A x Z x A =∈+≥⇔=-L ,(){}{}|lg 3|3B x y x B x x ==-⇔=<,则A B =I {}1,2,1,0-故选:D【点睛】本题考查集合的交集运算,属于基础题 2.复数12ii-(i 为虚数单位)在复平面上对应的点的坐标为( ) A. ()2,1--B. ()1,2-C. ()2,1-D.()1,2--【答案】A 【解析】 【分析】根据复数运算的除法法则求解即可 【详解】()()()12122i i i i i i i ---==---,在复平面内对应的点为()2,1-- 故选:A【点睛】本题考查复数的除法运算,复数与复平面的对应关系,属于基础题 3.函数()3234f x x x =+-的零点个数为( )A. 0B. 1C. 2D. 3【答案】C 【解析】 【分析】先求导,令()'0f x =,再根据极值点的正负进一步判断零点个数即可【详解】由()()32234'36f x x x f x x x =+-⇒=+,令()'0f x =得0x =或2x =-,当()(),2,0,x ∈-∞-+∞时,()f x 单调递增,当()2,0x ∈-时,函数单调递减,()()20,04f f -==-,画出函数图像,如图所示:故函数图像有两个零点 故选:C【点睛】本题考查导数研究函数零点个数,属于基础题4.若实数x ,y 满足()222013y x x y y ⎧≥-⎪+≥⎨⎪-≤≤⎩,则241z x y =++的最小值为( )A. -2B. -3C. -5D. 0【答案】A 【解析】 【分析】根据题意,画出可行域,再根据目标函数与可行域的位置关系求解即可【详解】如图所示,画出目标可行域,241z x y =++可转化为1124z y x -=-+,当交于点A 时,有最小值,求得1,12A ⎛⎫- ⎪⎝⎭,代入241z x y =++得min 2z =-故选:A【点睛】本题考查根据二元一次方程组求目标函数的最小值,属于基础题5.在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( )A. 89 54.5B. 89 53.5C. 87 53.5D. 89 54【答案】B 【解析】 【分析】根据中位数和方差定义求解即可 【详解】由题可知,中位数为:8791892+=,先求平均数: 787984868787919494989899999012x ++++++++++++==()()()()()()222222222222211211643314889953.512S ⎡⎤=-+-+-+-+-+-++++++=⎣⎦ 故中位数为:89,方差为53.5 故选:B【点睛】本题考查茎叶图的识别,中位数与方差的求法,属于基础题6.已知()1,01ln ,0x x e f x x x x⎧≤⎪⎪=⎨⎪>⎪⎩(e 为自然对数的底数),若1a f f e ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则函数()af x x=是( )A. 定义域为R 的奇函数B. 在()0,∞+上递减的奇函数C. 定义域为R 的偶函数D. 在()0,∞+上递增的偶函数【答案】B 【解析】 【分析】根据题意,结合分段函数,先求出a ,再求出()af x x =的具体表达式,进一步分析即可【详解】11ln f e e e e ⎛⎫=⨯=- ⎪⎝⎭,则()()111a f f f e e e e ⎛⎫⎛⎫==-=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 则()11axxf x x -===,画出反比例函数的图像,显然B 项符合故选:B【点睛】本题考查分段函数的求值,函数图像奇偶性增减性的判别,属于基础题 7.已知点()2,3A 到抛物线()20y px p =>的准线的距离为5,则抛物线的焦点坐标为( ) A. ()2,0B. 10,2⎛⎫ ⎪⎝⎭C. ()0,2D.10,32⎛⎫ ⎪⎝⎭【答案】C 【解析】 【分析】结合抛物线第一定义和图像即可求解【详解】2y px =可变形为2y x p =,则焦点坐标为10,4p ⎛⎫ ⎪⎝⎭,由抛物线第一定义,点()2,3A 到抛物线()20y pxp =>准线的距离为5,即5AH =,即1354p +=,解得124p=,则抛物线焦点坐标为()02,故选:C【点睛】本题考查抛物线的基本性质,熟悉抛物线基本表达式特征,明确焦点位置,是解题关键,属于基础题8.已知正三棱锥P ABC-的底面边长为3,侧棱长为23,且三棱锥的四个顶点都在同一球面上,则该球的表面积为()A. 20πB. 16πC. 12πD.123π【答案】B【解析】【分析】根据题意,画出大致图像,确定球心在'PO的连线上,再结合几何关系和勾股定理进行求解即可【详解】如图,由几何关系可知,3'33BO=='PO B转化成平面三角形,如图:23PB ='3PO =,OP OB R ==,则'3OO R =-,由勾股定理可得222''O B OO OB +=,即()22233R R +-=,解得2R =,球体的表面积为:2416S R ππ==故选:B【点睛】本题考查锥体外接球表面积的求法,解题关键在于找出球心,属于中档题9.若x 为实数,则“222x ≤≤22223x x +≤≤”成立的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】解不等式22223x x +≤≤可得{|12}x x <<,是2{|22}x x ≤≤的真子集,故22x ≤≤22223x x +≤≤”成立的必要不充分条件. 故选B.10.函数()223sin cos 12sin x x x x f =+-的单调递增区间为( )A. (),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B. ()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z C. ()2,236k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D. ()22,263k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】A【解析】 【分析】先将函数化简,再结合正弦函数增区间的通式求解即可【详解】()2cos 12sin 2cos 2sin 26f x x x x x x x π⎛⎫=+-=+=+⎪⎝⎭,再令 22,2,622x k k k Z πππππ⎡⎤+∈-++∈⎢⎥⎣⎦,解得,,36x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦ 故选:A【点睛】本题考查正弦型三角函数单调区间的求法,属于基础题11.已知双曲线C :()222210,0x y a b a b -=>>的左焦点为1F ,过1F 且垂直于x 轴的直线被双曲线C 截得的弦长为234e a (e 为双曲线的离心率),则双曲线的渐近线方程为( )A. 3y x =±B. 5y x =±C. 35y x =±D.y x = 【答案】D 【解析】 【分析】可设左焦点的坐标为(),0c -,直线与曲线的两交点坐标为()(),,,A B A c y B c y --,代入双曲线方程可解得纵坐标,通过题设的通径可得参数,,a b c 基本关系,再结合222c a b =+即可求解【详解】设1F (),0c -,直线与曲线的两交点坐标为()(),,,A B A c y B c y --()0,0A B y y ><,将()(),,,A B A c y B c y --代入22221x y a b-=,解得22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,则22324b e a a =,解得2283b c =,又因为222c a b =+,联立得:2235b a =,即双曲线的渐近线方程为:y x =故选:D【点睛】本题考查双曲线通径的使用,双曲线的基本性质,无论是椭圆还是双曲线,通径公式都为22b a,属于中档题12.陕西关中的秦腔表演朴实,粗犷,细腻,深刻,再有电子布景的独有特效,深得观众喜爱.戏曲相关部门特意进行了“喜爱看秦腔”调查,发现年龄段与爱看秦腔的人数比存在较好的线性相关关系,年龄在[]40,44,[]45,49,[]50,54,[]55,59的爱看人数比分别是0.10,0.18,0.20,0.30.现用各年龄段的中间值代表年龄段,如42代表[]40,44.由此求得爱看人数比y 关于年龄段x 的线性回归方程为0.4188y kx =-.那么,年龄在[]60,64的爱看人数比为( ) A. 0.42 B. 0.39C. 0.37D. 0.35【答案】D 【解析】 【分析】根据题意,可列出y 关于x 的表格,求出,x y ,代入0.4188y kx =-,求出k ,即可求解 【详解】由题,对数据进行处理,得出如下表格:求得49.5x =,0.195y =,因样本中心(),x y 过线性回归方程,将(),x y 代入0.4188y kx =-,得0.0124k =,即0.01240.4188y x =-,年龄在[]60,64对应的x 为62,将62x =代入0.01240.4188y x =-得:0.0124620.41880.35y =⨯-=,对应的爱看人数比为:0.35故选:D【点睛】本题考查线性回归方程的应用,样本中心(),x y 过线性回归方程是一个重要特征,属于中档题二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卷中相应的横线上)13.已知平面向量(),2a m =r ,()2,b m =r,且()//a b a -r r r ,则m =______.【答案】2± 【解析】 【分析】由题,根据()//a b a -r r r,即向量平行的坐标运算即可求出参数m【详解】()2,2a b m m -=--r r ,(),2a m =r ,因为()//a b a -r r r ,所以222m mm --=,解得2m =±故答案为:2m =±【点睛】本题考查向量平行的坐标运算,属于基础题14.在3与156之间插入50个数,使这52个数成等差数列,则插入的50个数的和等于______. 【答案】3975 【解析】 【分析】根据等差数列下标性质进行求解即可【详解】由题,可设1523,156a a ==,则15225135026273156a a a a a a a a +=+=+=+=+L , 故()23512531563975a a a ++=⨯+=L 故答案为:3975【点睛】本题考查等差数列下标性质的应用,属于基础题15.从1,2,3,5,6,7中任意取三个数,则这三个数的和为偶数的概率为______. 【答案】0.6 【解析】 【分析】根据题意,采用列举法,表示出所有的情况,再选出符合题意的个数,结合古典概型公式求解即可【详解】由题可知,所有可能的情况为:()()()()()()()1,2,3,1,2,5,1,2,6,1,2,7,1,3,5,1,3,6,1,3,7, ()()()()()()()()()()()1,5,6,1,5,7,1,6,7,2,3,5,2,3,6,2,3,7,2,5,6,2,5,7,2,6,7,3,5,6,3,5,7, ()()3,6,7,5,6,7,共计20个其中符合题意的有:()()()()()()()1,2,3,1,2,5,1,2,7,1,3,6,1,5,6,1,6,7,2,3,5,()()()()()2,3,7,2,5,7,3,5,6,3,6,7,5,6,7,共计12个故这三个数的和为偶数的概率为:120.620P == 故答案为:0.6【点睛】本题考查古典概型的计算,正确表示各个数的形式是解题关键,属于基础题 16.金石文化,是中国悠久文化之一.“金”是指“铜”,“石”是指“石头”,“金石文化”是指在铜器或石头上刻有文字的器件.在一千多年前,有一种凸多面体工艺品,是金石文化的代表作,此工艺品的三视图是三个全等的正八边形(如图),若一个三视图(即一个正八边形)的面积是()()2882dm +,则该工艺品共有______个面,表面积是______.【答案】 (1). 26 (2). ()()27283dm +【解析】 【分析】先由三视图还原出立体图,再结合立体图特点求解表面积即可【详解】由立体图可确定该几何体由26个面构成,其中有18个正方形面和8个正三角形面构成,先研究正视图,若设中间的正方形的边长为a ,则2BC =(正视图BC 长度会被压缩),该正八边形面积为()(22212242228822S a aa ⎫=-⨯⨯=+=+⎪⎪⎝⎭,解得2a = 18个正方形面积为:218272⨯=,8232883⨯= 故表面积为:(()27283dm +故答案为:26;(()27283dm +【点睛】本题考查由三视图还原立体图,多面体表面积的求法,还原立体图形、正确理解三视图与立体图线段关系是解题关键,属于难题三、解答题(本大题共7小题,共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题.第22、23题为选考题,考生根据要求作答)17.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且()(2223a b c bc --=,2sin sin cos 2CA B =,BC 边上的中线AM 7. (1)求角A 、C 的大小; (2)求ABC ∆的面积. 【答案】(1)6A π=,23C π=(2)3ABC S ∆ 【解析】 【分析】(1)将()(2223a b c bc --=展开,结合余弦定理即可求得A ,再由2sin sin cos2CA B =可得sin 1cos B C =+,结合三角形内角和公式可求得C ; (2)结合(1)可判断ABC V 为等腰三角形,ACM ∆结合余弦定理即可求得,a b ,再结合正弦面积公式即可求解【详解】(1)由()()2223a b c bc --=-,得2223b c a bc +-=.∴2223cos 2b c a A bc +-==. ∵0A π<<,∴6A π=,由2sin sin cos 2CA B =,得sin 1cos B C =+, ∴5sin 1cos 6C C π⎛⎫-=+⎪⎝⎭,由此得sin 16C π⎛⎫-= ⎪⎝⎭.又0C π<<,∴62C ππ-=,即23C π=. (2)由(1)知,6A B π==,则a b =,在ACM ∆中,由余弦定理,得2222cos120722a a AM b b ⎛⎫=+-⋅⋅︒= ⎪⎝⎭,解得2a b ==. 故113sin 223222ABC S ab C ∆==⨯⨯⨯=. 【点睛】本题考查正弦定理、余弦定理解三角形,属于中档题18.已知四棱锥P ABCD -中,底面四边形ABCD 为平行四边形,M 为CD 的中点,N 为PD 上一点,且12DN NP =(如图).(1)证明://PB 平面AMN ;(2)当平面PAB ⊥平面ABCD ,55566PA PB AD AB ====,120BAD ∠=︒时,求三棱锥P ABN -的体积.【答案】(1)证明见解析 (2)3【解析】 【分析】(1)要证//PB 平面AMN ,即证//PB 平面AMN 的一条线段,可连接BD ,交AM 于点E ,通过相似三角形证明//NE PB 即可;(2)采用等体积法进行转化,13P ABN N AB ABP P S V V d --∆=⋅=,平面PAB ⊥平面ABCD ,可通过几何关系先求出点D 到平面PAB 的距离,再结合12DN NP =求得点N 到平面PAB 的距离,结合体积公式即可求解;【详解】(1)证明:取AB 的中点H ,连接CH ,BD ,BD AM E ⋂=,连接NE .∵四边形ABCD 为平行四边形,M ,H 分别为CD ,AB 的中点, ∴根据平行线分线段成比例定理得13DE DB =, 又12DN NP =,得13DN DP =, ∴//NE PB ,又NE 在平面AMN 内,PB 不在平面AMN 内, ∴//PB 平面AMN .(2)由题意,得5PA PB ==,6AD AB BC ===, 120BAD ∠=︒.连接CH ,PH (H 为AB 的中点), 则PH AB ⊥,CH AB ⊥,且22534PH =-=,226333CH =-=∵平面PAB ⊥平面ABCD ,PAB ABCD AB =I ,CH 在平面ABCD 内,CH AB ⊥. ∴CH ⊥平面PAB ,∵//DC AB ,得D 点到平面PAB 的距离就是CH = 又12DN NP =,∴N 到平面PAB 的距离为23d CH ==∴13P ABN N AB ABP PS V V d --∆=⋅=116432=⨯⨯⨯⨯=. 【点睛】本题考查线面平行的证明,锥体体积的求法,属于中档题 19.已知数列{}n a 的前n 项和为n S ,设()()22nn n a S f n =-+-.(1)若11a =,23a =,且数列(){}f n 为等差数列,求数列(){}f n 的通项公式; (2)若()0f n =对任意n ∈+N 都成立,求当n 为偶数时n S 的表达式. 【答案】(1)()()31225f n n n =-+-⨯=- (2)()122122nn n S +=-=-(n 为偶数)【解析】 【分析】(1)根据题意求出公差d ,即可求出通项公式;(2)由()()220n n n a S n N +-+-=∈,当2n ≥时,()111220n n n a S ----+-=,两式作差可得()()1133222n nn n a a --+=--=-,再令()2n m m N +=∈,则2212322m m m a a -+=⋅,结合前n 项和公式即可求解;【详解】(1)∵()()22nn n a S f n =-+-,11a =,23a =, ∴()1122121123a S f --=-⨯-=-=,()()()()2212223213241a a f a -++-=-++=-=,设等差数列为(){}f n 的公差为d ,则()132d =---=. ∴数列(){}f n 的通项公式为()()31225f n n n =-+-⨯=-.(2)()0f n =对任意n N ∈,都成立,即()()220nn n a S n N +-+-=∈ ①当2n ≥时,()111220n n n a S ----+-=②①-②得()()1133222n nn n a a --+=--=-.令()2n m m N +=∈,则2212322mm m a a -+=⋅, ∴()2221211322mm k mk k k k S a a -===+=∑∑()()224123221214mm -=⋅=--,故()122122nn n S +=-=-(n偶数).【点睛】本题考查等差数列的基本求法,由n a 与n S 求数列前n 项和,对运算能力有较高要求,属于中档题20.已知函数()()2sin f x mx x m R =+∈在区间,33ππ⎡⎤-⎢⎥⎣⎦上单调递减. (1)求m 的最大值;(2)若函数()f x 的图像在原点处的切线也与函数()ln 1g x x x =+的图像相切,求m 的值.【答案】(1)-1 (2)1m = 【解析】 【分析】(1)通过求导,再将函数在,33ππ⎡⎤-⎢⎥⎣⎦上单调递减作等价转化,可得sin 2m x ≤-在,33ππ⎡⎤-⎢⎥⎣⎦上恒成立,求得()min sin 2x -,即可求解; (2)可先求出()f x 过原点的切线方程,再设函数()ln 1g x x x =+的图像在()000,ln 1x x x +处的切线为l ,根据点斜式得出()()()0000ln 1ln 1y x x x x x -+=+-,又0ln 1m x =+,结合()0,0点经过l ,即可求解【详解】解:(1)∵()()2sin f x mx x m R =+∈,∴()2sin c 'os sin 2m x x x m x f +=+=, ∵函数()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦上为减函数. ∴()'0f x ≤即sin 20m x +≤,sin 2m x ≤-在,33ππ⎡⎤-⎢⎥⎣⎦上恒成立,当,33x ππ⎡⎤∈-⎢⎥⎣⎦时,222,33x ππ⎡⎤∈-⎢⎥⎣⎦,则当22x π=即4x π=时,sin 2x -取最小值-1.∴1m ≤-, ∴m 的最大值为-1.(2)()f x 的定义域为R ,()g x 的定义域为()0,+∞. 由()'sin 2f x m x =+,得()'0sin0f m m =+=. ∴函数()f x 的图像在原点处的切线方程为y mx =, 由()ln 1g x x x =+,得()'ln 1g x x =+,设函数()ln 1g x x x =+的图像在()000,ln 1x x x +处的切线为l ,则l :()()()0000ln 1ln 1y x x x x x -+=+- ①.且l 过原点,0ln 1m x =+, 将0x =,0y =代入①,解得01x =. ∴ln111m =+=.【点睛】本题考查用导数和函数增减性求解参数问题,具体切线方程中参数的求法,学会等价转化,分离参数是解决参数类问题常用方法,属于中档题21.已知A ,B ,C 顺次是椭圆E :()222210x y a b a b +=>>的右顶点、上顶点和下顶点,椭圆E 的离心率2e =,且12AB AC ⋅=u u u r u u u r .(1)求椭圆E 的方程; (2)若斜率12k =的直线l 过点60,5⎛⎫⎪⎝⎭,直线l 与椭圆E 交于P ,Q 两点,试判断:以PQ 为直径的圆是否经过点A ,并证明你的结论.【答案】(1)221164x y += (2)经过,证明见解析【解析】 【分析】(1)根据题意,列出相应表达式,再结合222a b c =+,即可求解;(2)可联立直线和椭圆的标准方程,结合韦达定理表示出两根和与积的关系,再由向量证明0AP AQ ⋅=u u u r u u u r即可;【详解】(1)解:由題意得(),0A a ,()0,B b ,()0,C b -,e =∴12AB AC ⋅=u u u r u u u r 即()()22,,12a b a b a b -⋅--=-=,设椭圆的半焦距为()0c c >,得方程组22222122a b ca ab c⎧-=⎪⎪=⎨⎪=+⎪⎩,解得42a b c ⎧=⎪=⎨⎪=⎩,∴椭圆E 的方程为221164x y +=.(2)方法一:以PQ 为直径的圆经过点A .理由如下:∵椭圆E :221164x y +=,()4,0A .直线l 的斜率12k =,且过点60,5⎛⎫ ⎪⎝⎭.∴直线l :1625y x =+, 由2216251164y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y ,并整理得2121280525x x +-=, 212128410525⎛⎫⎛⎫∆=-⨯⨯-> ⎪ ⎪⎝⎭⎝⎭,直线l 与椭圆E 有两个交点.设()11,P x y ,()22,Q x y ,则12125x x +=-,1212825x x =-. ∵()()11224,4,x y AP A x y Q -⋅-⋅=u u u r u u u r()121212416x x x x y y =-+++()12121216164162525x x x x x x ⎛⎫⎛⎫=-+++++ ⎪⎪⎝⎭⎝⎭()12125234364525x x x x =-++ 512823124364255525⎛⎫=⨯--⨯+ ⎪⎝⎭1602764360252525=--+=.∴以PQ 为直径的圆经过点A . 方法二:同方法一,得12125x x +=-,121285x x =-. ∴PQ ===设PQ 的中点为()00,C x y ,则120625x x x +==-,00163255y x =-=-.∴12CA PQ ===.∴以PQ 为直径的圆经过点A .【点睛】本题考查椭圆标准方程的求法,韦达定理、向量法在解析几何中的应用,属于中档题22.在直角坐标系xOy 中,直线l 经过点()P -,其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线S 的参数方程为1x k y k ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),曲线C 的极坐标方程为4sin ρθ=.(1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围.【答案】(1)普通方程为()224004,02x y x x y +-=<≤≤≤,极坐标方程为4cos 0,02πρθρθ⎛⎫=>≤≤⎪⎝⎭(2)0,3π⎡⎤⎢⎥⎣⎦【解析】 【分析】 (1)由1x k =得1k x=,代入y =S 的普通方程,再结合222x y ρ+=,cos x ρθ=即可求解的曲线S 的极坐标方程;(2)设直线方程为(y k x =+,由直线l 与曲线C 有公共点可得圆心到直线距离d r ≤,可解得k ,进而求得α的取值范围【详解】(1)显然,参数14k ≥,由1x k =得()104k x x =<≤,代入y k=()224004,02x y x x y +-=<≤≤≤, 将222xy ρ+=,cos x ρθ=代入2240x y x +-=,得24cos 0ρρθ-=,即4cos 0,02πρθρθ⎛⎫=>≤≤⎪⎝⎭. ∴曲线S 的普通方程为()224004,02x y x x y +-=<≤≤≤,极坐标方程为4cos 0,02πρθρθ⎛⎫=>≤≤⎪⎝⎭. (2)曲线C 的直角坐标方程为()2224x y +-=,曲线C 是以()02,为圆心,半径为2的圆.当2πα=时,直线l :x =-C 没有公共点,当2πα≠时,设直线l 的方程为(()tan y k x k α=+=.圆心()02,到直线l 的距离为d ==由2d =≤,得0k ≤≤∴03πα≤≤,即α的取值范围为0,3π⎡⎤⎢⎥⎣⎦. 【点睛】本题考查曲线的普通方程和极坐标方程的求法,直线与圆的位置关系,属于中档题 23.已知函数()25f x x x x =---. (1)求不等式()238f x x ≥-的解集;(2)若存在[]00,6x ∈,使()042f x a ≥--成立,求a 的取值范围.【答案】(1){}|6x x ≤ (2)(][),13,-∞+∞U【解析】【分析】(1)采用取绝对值方法可求得()f x 的分段函数,分三组方程求解即可; (2)存在[]00,6x ∈,使()042f x a ≥--成立,即求出()0f x 在区间[]00,6x ∈的最大值,使得()0max 42f x a ≥--即可求解a 的取值范围【详解】解:(1)∵()22262,22542,2562,5x x x f x x x x x x x x x x ⎧-+<⎪=---=--≤≤⎨⎪-+->⎩,∴不等式()238f x x ≥-等价于下列不等式组, ①2226238x x x x <⎧⎨-+≥-⎩或②22254238x x x x ≤≤⎧⎨--≥-⎩或③2256238x x x x >⎧⎨-+-≥-⎩, 由①得2203x x <⎧⎪⎨≤⎪⎩,得2x <,由②得259x x ≤≤⎧⎨≤⎩,得25x ≤≤; 由③得536x x >⎧⎨-≤≤⎩,得56x <≤. ∴不等式()238f x x ≥-的解集为{}|6x x ≤. (2)区间[]0,6上,当02x ≤<时,()()max 02f x f ==;当25x ≤≤时,()()max 53f x f ==;当56x <≤时,()()53f x f <=.∴在区间[]0,6上,()max 3f x =.由存在[]00,6x ∈使()042f x a ≥--成立,得342a ≥--,得1a ≤或3a ≥. ∴a 的取值范围为(][),13,-∞+∞U .【点睛】本题考查绝对值不等式的解法,存在性问题的等价转化,属于中档题。
2020届全国百所名校新高考原创考前信息试卷(三)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(每题5分,共60分)1.已知全集U =R ,集合{|09,}A x x x R =<<∈和{|44,}B x x x Z =-<<∈关系的韦恩图如图所示,则阴影部分所示集合中的元素共有( )A. 3个B. 4个C. 5个D. 无穷多个【答案】B 【解析】试题分析:因{}|09,R A x x x =<<∈,故或,图中阴影部分表示的集合为,故该集合中有个元素.应选B.考点:补集交集的概念及运算.2.已知全集U R =,集合{}|11A x x =-<,25|11x B x x -⎧⎫=≥⎨⎬-⎩⎭,则()U A B ⋂=ð( ) A. {}12x x << B. {}12x x <≤ C. {}12x x ≤< D. {}14x x ≤<【答案】C 【解析】 【分析】分别解绝对值不等式与分式不等式求得集合A,B,再求得U B ð,及U A B ⋂ð。
2020届河北省衡水金卷新高考原创冲刺模拟试卷(十)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={1,2,3},B ={2,3,4},则A ∪B =() A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}2.函数f (x )=2x-1+1x -2的定义域为( ) A .[0,2) B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)3.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )4.为了得到函数y =2sin ⎝⎛⎭⎪⎫2x -π3的图象,可以将函数y =2sin 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度5.设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 6.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0且x ≠1时,f (x )等于( ) A.1x -1 B.1x C.11-xD.1x-17.最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 8.函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A .[-2,2] B .[-1,1] C .[0,4]D .[1,3]9.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>010.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1D .e11.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )12.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或4二、填空题:本题共4小题,每小题5分,共20分。
2020届河北衡水密卷新高考原创考前信息试卷(十一)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{3x A x =>,{}212110B x x x =∈-+<N ,则A B =I ( )A .{}2,3,4B .{}2,3,4,5C .{}5,6,7,8,9,10D .{}6,7,8,9,102.已知实数,a b 满足()()i 2i 35i a b ++=-(其中i 为虚数单位),则复数i z b a =-的共轭复数为 ( ) A .131i 55-+ B .131i 55-- C .131i 55+ D .131i 55- 3.已知命题0:0,2p x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x -<,则命题p 的真假以及命题p 的否定分别为( )A .真,:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x ->B .真,:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x -≥C .假,:p ⌝00,2x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x ->D .假,:p ⌝00,2x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x -≥4.已知向量()2,m =-a ,()1,n =b ,若()-//a b b ,且2=b ,则实数m 的值为 ( ) A .2B .4C .2-或2D .4-或45.运行如下程序框图,若输出的k 的值为6,则判断框中可以填 ( )A .30S <B .62S <C .62S ≤D .128S <6.()tan751cos240sin30sin 60sin1201tan75︒-︒︒--︒︒+=+︒ ( )A .132+B .132 C .132-D .132-7.已知函数()321ln333xf x x x x x-=++++,则下列说法正确的是 ( ) A .函数()f x 的图象关于1x =-对称 B .函数()f x 的图象关于1y =-对称 C .函数()f x 的图象关于()1,0-中心对称 D .函数()f x 的图象关于()1,1--中心对称8.将函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的图象向右平移4π个单位后,得到的函数图象关于2x π=对称,则当ω取到最小值时,函数()f x 的单调增区间为( )A .()33,2010410k k k ππππ⎡⎤-∈⎢⎥⎣⎦++Z B .()3113,4102010k k k ππππ⎡⎤∈⎢⎥⎣⎦++Z C .()33,20545k k k ππππ⎡⎤-∈⎢⎥⎣⎦++ZD .()3113,45205k k k ππππ⎡⎤∈⎢⎥⎣⎦++Z 9.已知实数,x y 满足343125510x y x yx +⎧⎪⎪⎪+⎨⎪-⎪⎪⎩≥≤≥,若3z mx y =--,且0z ≥恒成立,则实数m 的取值不可能为 ( ) A .7B .8C .9D .1010.已知某几何体的三视图如下所示,若网格纸上小正方形的边长为1,则该几何体的最短棱长为 ( )A .1B 2C 3D .211.已知椭圆222:19x y C b +=的离心率为223,且,M N 是椭圆C 上相异的两点,若点()2,0P 满足PM PN ⊥,则PM MN ⋅uuu r uuu r的取值范围为 ( ) A .125,2⎡⎤--⎢⎥⎣⎦B .15,2⎡⎤--⎢⎥⎣⎦C .[]25,1--D .[]5,1--12.已知关于x 的不等式212ln x x mx +≤在[)1,+∞上恒成立,则m 的最小值为 ( ) A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:基于上述规律,可以推测,当23n =时,从左往右第22个数为 .14.已知双曲线()2222:10,0x y C a b a b -=>>的右焦点到渐近线的距离为3.现有如下条件:①双曲线C 的离心率为54; ②双曲线C 与椭圆22:13611x y C '+=共焦点; ③双曲线右支上的一点P 到12,F F 的距离之差是虚轴长的43倍. 请从上述3个条件中任选一个,得到双曲线C 的方程为 . (注:以上三个条件得到的双曲线C 的方程一致)15.已知四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,且AB CD //,12AB CD =,PA PB AD ==,43PA AD CD +==,若平面PAB ⊥平面ABCD ,则四棱锥P ABCD-外接球的表面积为 .第15题图 第16题图16.如图所示,四边形MNQP 被线段NP 切割成两个三角形分别为MNP △和QNP △,若MN MP ⊥224MPN π⎛⎫∠+= ⎪⎝⎭22QN QP ==,则四边形MNQP 面积的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项数列{}n a 的前n 项和为n S ,若数列13log n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为1-的等差数列,且22a +是13,a a 的等差中项.(1)证明数列{}n a 是等比数列,并求数列{}n a 的通项公式;(2)若n T 是数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,若n T M <恒成立,求实数M 的取值范围.18.(12分)某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与. (1)求甲参加围棋比赛的概率;(2)求甲、乙两人参与的两种比赛都不同的概率.19.(12分)已知四棱锥E ABCD -中,底面ABCD 是直角梯形,90ABC ∠=︒,且AD BC //,222BC AD AB ===,F 为,AC BD 的交点,点E 在平面ABCD 内的投影为点F .(1)AF ED ⊥;(2)若AF EF =,求三棱锥D ABE -的体积.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,上、下顶点分别为,A B ,若12AF =,点1)-关于直线y x =的对称点在椭圆C 上. (1)求椭圆C 的方程与离心率;(2)过点()0,2做直线l 与椭圆M 相交于两个不同的点,M N ; 若OM ON λ⋅<uuu r uuu r恒成立,求实数λ的取值范围.21.(12分)已知函数()2ln 2p f x x x =-. (1)当0p >时,求函数()f x 的极值点;(2)若1p >时,证明:()()33e 121p p x f x p ---<-.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(10分)选修4—4坐标系与参数方程在平面直角坐标系xOy 中曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos 04πρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程以及直线l 的直角坐标方程;(2)将曲线C 向左平移2个单位,再将曲线C 上的所有点的横坐标缩短为原来的12,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值.23.(10分)选修4—5不等式选讲 已知函数()f x x m =-. (1)当2m =时,求不等式()23f x x >-的解集;(2)若不等式()1122f x x ++≥恒成立,求实数m 的取值范围.文科数学答案与解析1.【答案】C 【解析】依题意,集合{9293332xx A x x x x ⎧⎫⎧⎫⎪⎪=>=>=>⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,{}{}{}2121101112,3,4,5,6,7,8,9,10B x x x x x =∈-+<∈<<N =N =,故{}5,6,7,8,9,10A B =I ,故选C.2.【答案】A 【解析】依题意,()()()()35i 2i 35i 113i i 2i 2i 2i 5a b ----+===++-,故113,55a b ==-,故131i i 55z b a =-=--,故复数z 的共轭复数为131i 55z =-+,故选A.3.【答案】B 【解析】不妨取04x π=,此时0023sin 02x x π-=<,故命题p 为真;特称命题的否定为全称命题,故:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x -≥,故选B.4.【答案】C 【解析】依题意,向量()()3,-=--a b m n ;因为()-//a b b ,故3m n n -=-,故20m n +=;又b ,即1n =-或1,故2m =或-2,故选C.5.【答案】B 【解析】运行该程序,第一次,2,2S k ==;第二次,6,3S k ==;第三次,14,4S k ==;第四次,30,5S k ==;第五次;62,6S k ==;第六次,126,7S k ==;观察可知,判断框中可以填“62S <”,故选B.6.【答案】A 【解析】依题意,()cos240sin30sin 60sin120︒︒--︒︒sin30cos120cos30sin120=︒︒+︒︒1sin1502=︒=;00tan 751tan 75tan 45tan 301tan 751tan 75tan 45-︒-︒==︒=++︒︒;故原式的值为12,故选A. 7.【答案】D 【解析】依题意,()()()()321ln1121x f x x x -+=++-++,将函数()f x 的图象向右平移一个单位,再向上平移一个单位后,得到函数32ln 2xy x x-=++的图象,这是一个奇函数,图象关于()0,0中心对称,故函数()321ln333xf x x x x x-=++++的对称中心为()1,1--,故选D. 8.【答案】C 【解析】依题意,将函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭的图象向右平移4π个单位后,得到sin 43y x ωππω⎛⎫=-- ⎪⎝⎭的图象,此时()2432k k ωπωππππ--=+∈Z , 解得()546k k ωπππ=+∈Z ,故()1043k k ω=+∈Z ,故ω的最小值为103故()10sin 33f x x π⎛⎫=- ⎪⎝⎭;令()10222332k x k k πππππ--∈++Z ≤≤,解得()10522636k x k k ππππ-∈++Z ≤≤,即()3320545k x k k ππππ-∈++Z ≤≤,故选C.9.【答案】A 【解析】依题意,作出不等式组所表示的平面区域如下图阴影部分所示,可以求出()()221,1,1,,5,25AB C ⎛⎫ ⎪⎝⎭;要使0z ≥恒成立,需且仅需130223055230m m m --⎧⎪⎪--⎨⎪⎪--⎩≥≥≥解得375m ≥; 故m 的取值不可能为7,故选A.10.【答案】B 【解析】作出该几何体的直观图如下图所示,观察可知,该几何体的最短棱长为AC 或BD ,均为2,故选B.第9题答案图 第10题答案图11.【答案】A 【解析】依题意,()22PM MN PM PN PM PM PN PM PM ⋅=⋅-=⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ;因为22219b e -,故21b =;设(),M x y ,则()2,PM x y =--uuu r,故()2222222282444414599x x PM x y x x y x x x =-+=-++=-++-=-+uuu r ,[]3,3x ∈-,可知,当3x =-时,2PM uuu r 有最大值25,当94x =时,2PM uuu r 有小值12;故PM MN ⋅u u u r u u u r 的取值范围为125,2⎡⎤--⎢⎥⎣⎦,故选A.12.【答案】A 【解析】依题意,222ln 112ln x x x mx m x x+⇔+≤≥,令()22ln 1x g x x x =+,故()()32ln 1'x x x g x x --=;令()ln 1h x x x x =--,则()'ln h x x =-,故当[)1,x ∈+∞时,()'ln 0h x x =-≤;故()22ln 1x g x x x=+在[)1,+∞上单调递减,故()()max 11m g x g ⎡⎤==⎣⎦≥,故m 的最小值为1,故选A. 13.【答案】253【解析】当23n =时,共有24个数,从左往右第22个数即为这一行的倒数第3个数,观察可知,其规律为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,253,故所求数字为253.14.【答案】221169x y -=【解析】依题意,双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=223bc a b =+,即3b =;①双曲线C 的离心率为54,故54c a =;又3b =,且222a b c +=,故4,5a c ==,故双曲线C 的方程为221169x y -=; ②椭圆22':13611x y C +=的焦点坐标为()()5,0,5,0-,故5c =;又222a b c +=,故4a =,故双曲线C 的方程为221169x y -=;③依题意,设双曲线C 的左、右焦点分别为12,F F ,故12423PF PF b -=⋅,故4a =,故双曲线C 的方程为221169x y -=. 15.【答案】52π【解析】因为四边形ABCD 为等腰梯形, AB CD //,故AD BC =;因为PA PB =,12AB CD =, PA PB AD ==,43PA AD CD +==,=23PA PB AB AD BC ====,故3ADC π∠=;取CD 的中点E ,则E 是等腰梯形ABCD 外接圆圆心;F 是PAB △外心,作OE ⊥平面ABCD ,OF ⊥平面PAB ,则O 是四棱锥P ABCD -的外接球的球心,且3,2OF GE PF ===;设四棱锥P ABCD -的外接球半径R ,则22213R PF OF =+=,所以四棱锥P ABCD -外接球的表面积是52π.16.【答案】524+【解析】因为2sin 24MPN π⎛⎫∠+= ⎪⎝⎭,故42MPN ππ∠+=, 故4MPN π∠=,故MNP △是等腰直角三角形;在QNP △中,2,1QN QP ==,由余弦定理,254cos NP Q =-;2211os 42c 45MNP S MN NP Q =-==△; 又1sin 2sin QNP S NQ P Q Q Q =⋅⋅=△,55cos sin 2sin()444MNQP S Q Q Q π=-+=+-; 易知当4Q 3π=时,四边形MNQP 的面积有最大值,最大值为524+. 17.【解析】(1)依题意,11133log log 1n n a a +-=-,故113log 1n na a +=-,故13n n a a +=; 故数列{}n a 是公比为3的等比数列,因为()21322a a a +=+,故()1112329a a a +=+,解得11a =;故数列{}n a 的通项公式为13n n a -=;(6分)(2)依题意,1113n n a -=,故数列1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以1为首项,13为公比的等比数列, 故1231111n n T a a a a =++++L 111113133=1113323213n n n -⎛⎫- ⎪⎛⎫⎝⎭+++==-< ⎪⎝⎭-L , 故32M ≥,即实数M 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.(12分) 18.【解析】(1)依题意,甲同学必选“中国象棋”,不选“国际象棋”,故甲参加围棋比赛的概率为12;(4分) (2)记“中国象棋”、“围棋”、“五子棋”、“国际象棋”分别为1,2,3,4,则所有的可能为(1,2,1,2),(1,2,1,3),(1,2,1,4),(1,2,2,3),(1,2,2,4),(1,2,3,4),(1,3,1,2),(1,3,1,3),(1,3,1,4),(1,3,2,3),(1,3,2,4),(1,3,3,4),其中满足条件的有(1,2,3,4),(1,3,2,4)两种,故所求概率21126P ==.(12分) 19.【解析】(1)依题意,AFD CBF △△∽,12AF DF AD CF BF BC ===, 又Q 1,AB BC =,∴AD AC 2分) 在Rt BDA △中,BD ,∴13AF AC =3分) 在ABF △中,222221AF BF AB +=+==,∴90AFB ∠=︒,即AC BD ⊥; Q EF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC EF ⊥;(6分)又Q BD EF F =I ,BD ⊂平面BDE ,EF ⊂平面BDE ,∴AC ⊥平面BDE ,因为ED ⊂平面BDE ,故AC ED ⊥,即AF ED ⊥;(8分)(2)依题意,1111332D ABE E ABD ABD S EF V V --⋅=⨯===△(12分) 20.【解析】(1)依题意,点1)-关于直线y x =的对称点为(-, 因为12AF =,故2a =,故椭圆222:14x y C b+=;将(-代入椭圆222:14x y C b +=中,解得1b =; 所以椭圆C 的方程为2214x y +=故离心率c e a =;(4分) (2)当直线l 的斜率不存在时,(0,1),(0,1)M N -,所以1OM ON ⋅=-u u u u r u u u r . 当直线l 的斜率存在时,设直线l 的方程为11222,(,),(,)y kx M x y N x y =+, 联立22214y kx x y =+⎧⎪⎨+=⎪⎩,消去y 整理得22(14)16120k x kx +++=, 由0∆>,可得243k >,且1212221612,1414k x x x x k k +=-=++, 所以1212OM ON x x y y ⋅=+uuu u r uuu r 21212217(1)2()4114k x x k x x k =++++=-++, 所以1314OM ON -<⋅<uuu u r uuu r , 故134λ≥,综上实数λ的取值范围为13,4⎡⎫+∞⎪⎢⎣⎭.(12分) 21.【解析】(1)依题意,()2ln 2p f x x x =-,故())21111'px f x px x x x +--=-==;可知,当x ⎛∈ ⎝⎭时,()'0f x <;x ⎫∈+∞⎪⎪⎝⎭时,()'0f x >; 故函数()f x的极小值点为x =,无极大值点;(4分) (2)Q 1p >,令()()()()211ln 2p g x p x f x p x x x =--=--+,故()()()11'px x g x x +-=-, 可得函数()g x 的单调递增区间为(0,1),单调递减区间为(1,)+∞,∴()g x 在1x =时取得极大值,并且也是最大值,即()max 112g x p =-. 又210p ->,∴()21(21)1ln (21)(1)22p p p x x x p p ⎡⎤---+--⎢⎥⎣⎦≤. 设31(21)(1)2()ep p p h p ---=,则233(297)(1)(27)()2e 2e p p p p p p h p ---+--'=-=-, 所以()h p 的单调递增区间为7(1,)2,单调递减区间为7(+)2∞,,所以123674()()2e h p h ⨯=≤,Q 3,∴933=,∴()3h p <,又3e 0p ->Q , ∴()23(21)1ln 3e 2p p p p x x x -⎡⎤---+<⎢⎥⎣⎦,即()()33e 121p p x f x p ---<-.(12分) 22.【解析】(1)曲线:()22:24C x y -+=;直线::0l x y -+=;(4分)(2)依题意,曲线221:14y C x +=;又曲线1C 的参数方程为cos (2sin x y θθθ=⎧⎨=⎩为参数), 设曲线1C 上任一点()cos ,2sin P θθ,则P l d →(其中1tan 2ϕ=-),所以点P 到直线l (10分) 23.【解析】 (1)显然3x >;故()()()()22322343f x f x x x x x x >⇒>-⇒->-⇒<-, 故不等式()23f x x >-的解集为()3,4;(5分)(2)依题意,当2m -≥,()31,21111,22231,22x m x mf x x x m x m x m x ⎧+-⎪⎪⎪++=-++-⎨⎪⎪-+--⎪⎩≥≤≤≤, 故()min111222m f x x ⎡⎤++=+⎢⎥⎣⎦≥,解得2m ≥; 当2m -≤时,()31,221111,22231,2x m x f x x x m m x x m x m ⎧+->-⎪⎪⎪++=--<-⎨⎪⎪-+-⎪⎩≤≤, 故()min111222m f x x ⎡⎤++=--⎢⎥⎣⎦≥,解得6m -≤; 综上所述,实数m 的值为(,6][2,)-∞-+∞U .(10分)。
2020届河北省衡水金卷新高考原创冲刺模拟试卷(一)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、单选题(每小题5分)1.集合{}2|(1)0A x x x =-=的子集个数是( ) A.1B.2C.4D.82.函数()13f x x =- ) A .[)2,+∞ B .()3,+∞ C .[)()2,33,+∞ D .()()2,33,+∞3.已知0.72()3a =,14log 9b =,125()2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C = A.π12B.π6C.π4D.π35.若函数()()f x x πω=-5sin 2x πω⎛⎫++⎪⎝⎭,且()2f α=,()0f β=,αβ- 的最小值是2π,则()f x 的单调递增区间是( ) A.22,233k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ B.52,266k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ C.5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D.,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈6.已知数列{}n a 的前n 项和为n S ,若121n n S S -=+(2n ≥,且*n ∈N )且23S =,则55S a =( ) A.6332B.3116C.12364D.1271287.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,向量(,cos )a B =α,(cos ,)A b =-β,若αβ⊥,则ABC △一定是( ) A.锐角三角形 B.等腰三角形C.直角三角形D.等腰三角形或直角三角形8.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( )A.1)-B.(-C.(1)-D.(1,-9.《九章算术》是我国古代第一部数学专著,它有如下问题:“今有圆堡我()cong ,周四丈八尺,高一丈一尺.问积几何?”意思是“今有圆柱体形的土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少?”(注:1丈=10尺,取3π=)( ) A .704立方尺B .2112立方尺C .2115立方尺D .2118立方尺10.已知:(cos 2,sin )a αα=,(1,2sin 1)b α=-,(,)2παπ∈,若25a b ⋅=则tan()4πα+的值为( ) A .23B .13C .27D .1711.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A.[7,26]-B.[1,20]-C.[4,15]D.[1,15]12.若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞二、填空题(每小题5分,共20分)13.在△ABC 中,D 是BC 的中点,AD =8,BC =20,则AB AC ⋅的值为 .14.已知等差数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若24,a a 是方程2650x x -+=的两个根,则6S 的值为_________ 15.已知正数,x y 满足1,x y +=则4121x y +++的最小值为__________. 16.在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是____.①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得DM //平面11B CD ;③1A DM ∆④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S =.三、解答题(共70分)17.(10分)已知集合{|2101}A x m x m =-<<-,{|26}B x x =<<. (1)若4m =,求AB ;(2)若A B ⊆,求m 的取值范围.18.(12分)已知函数()sin()0,||2f x A x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象的一部分如图所示.(1)求()f x 的解析式; (2)当5(,)36x ππ∈时,求函数()f x 的值域.19.(12分)已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求角A 的大小; (2)若4a b c =+=,求ABC ∆的面积.20.(12分)已知数列{}n a 为递增的等差数列,其中35a =,且125,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)设()()1111n n n b a a +=++记数列{}n b 的前n 项和为n T ,求使得n mT 5<成立的m 的最小正整数.21.(12分)如图1,在梯形ABCD 中,AB CD ∥,3AB =,6CD =,过A ,B 分别作CD 的垂线,垂足分别为E ,F ,已知1DE =,3AE =,将梯形ABCD 沿AE ,BF 同侧折起,使得平面ADE ⊥平面ABFE ,平面ADE ∥平面BCF ,得到图2.(1)证明:BE ∥平面ACD ; (2)求三棱锥C AED 的体积.22.(12分)已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R).(1)当a =2时,求函数f (x )的单调区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.高三数学(文科)(完卷时间:120分钟;满分:150分) 考号:________高三数学(文科)参考答案1.C 2.C 3.C 4.B 5.A 6.B 7.D 8.B 9.B 10. D 11.B 12.D13.-36 14.24 15.3 16.①②④17.(1)由题意,代入m 4=,求得结合{}{}A x 2x 3,B x 2x 6=-<<=<<, 所以{}A B x 2x 3⋂=<<. (2)因为A B ⊆①当A ,2m 10m 1∅=-≥-即,解得m 9≥,此时满足题意. ②A ,2m 10m 1,m 9∅≠-<-<当即且,则210216m m -≥⎧⎨-≤⎩则有6m 7≤≤,综上:6m 7≤≤或m 9≥. 18.(1)由图可知2A =,359()412312T T ππππ=--=⇒=, 又22T πω==可得()2sin(2)f x x ϕ=+,代入最高点5,212π⎛⎫ ⎪⎝⎭,可知52()1223k k k Z πππϕπϕπ⨯+=+⇒=-+∈,又23ππϕϕ<⇒=-,故()sin()f x x π=-223.(2)由5(,)36x ππ∈可得42333x πππ<-<,故正弦函数(sin(2)2sin(2)233x x ππ⎛⎤⎤-∈⇒-∈ ⎥⎦ ⎝⎦. 19.(1)∵cos B cos C -sin B sin C =, ∴cos(B +C )=.∵A +B +C =π,∴cos(π-A )=.∴cos A =-. 又∵0<A <π,∴A =.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A . 则(2)2=(b +c )2-2bc -2bc ·cos.∴12=16-2bc -2bc ·(-).∴bc =4. ∴S △ABC =bc ·sin A =×4×=.20.(1)在等差数列中,设公差为d ≠0, 由题意,得,解得.∴a n =a 1+(n ﹣1)d =1+2(n ﹣1)=2n ﹣1; (2)由(1)知,a n =2n ﹣1. 则=,∴T n ==.∵T n +1﹣T n ==>0,∴{T n }单调递增,而,∴要使成立,则,得m ,又m ∈Z ,则使得成立的m 的最小正整数为2. 21.(1)设AF BE O =,取AC 中点M ,连接OM ,∵四边形ABFE 为正方形,∴O 为AF 中点, ∵M 为AC 中点,∴12OM CF 且12OM CF =, 因为平面ADE ⊥平面ABFE ,平面ADE平面ABFE AE =,DE AE ⊥, DE Ì平面ADE ,所以DE ⊥平面ABFE ,又∵平面ADE ∥平面BCF ,∴平面BCF ⊥平面ABFE ,同理,CF ⊥平面ABFE , 又∵1DE =,2FC =,∴11,22DECF DE CF =, ∴OM DE ,且OM DE =,∴四边形DEOM 为平行四边形,∴DM OE , ∵DM ⊂平面ADC ,BE ⊄平面ADC ,∴BE ∥平面ADC . (2)因为CF DE ,DE Ì平面ADE ,CF ⊄平面ADE ,所以CF ∥ADE ∴点C 到平面ADE 的距离等于点F 到平面ADE 的距离. ∴三棱锥的体积公式,可得113313322C AED F AED V V --==⨯⨯⨯⨯=. 22.(1)a=2时,f (x )=(﹣x 2+2x )•e x 的导数为f′(x )=e x (2﹣x 2),由f′(x )>0<x由f′(x )<0,解得x x .即有函数f (x )的单调减区间为(﹣∞,,+∞),.(2)函数f (x )=(﹣x 2+ax )•e x 的导数为f′(x )=e x [a ﹣x 2+(a ﹣2)x],由函数f (x )在(﹣1,1)上单调递增,则有f′(x )≥0在(﹣1,1)上恒成立,即为a ﹣x 2+(a ﹣2)x≥0,即有x 2﹣(a ﹣2)x ﹣a≤0,则有1+(a ﹣2)﹣a≤0且1﹣(a ﹣2)﹣a≤0,解得a≥32.3 2,+∞).则有a的取值范围为[。
- 1 - 2020届河北省衡水金卷新高考原创精准模拟考试(十四) 文科数学试卷 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。全卷满分150分。考试用时120分钟。
★祝考试顺利★ 注意事项: 1、考试范围:高考范围。 2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。 3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。 4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。 6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。 7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合{|6}AxNx,{|22}BxRx,则AB= ( ) A.0,5,6 B.{5,6} C.{4,6} D.{|46}xx 2.若复数12izi,则z的虚部为 ( ) A.15i B.15 C.15i D. 15 3.以点(54)A,为圆心,且与x轴相切的圆的标准方程为 ( ) A.22(5)(4)16xy B.22(5)(4)16xy C.22(5)(4)25xy D.22(5)(4)25xy - 2 -
2020届河北省衡水金卷新高考原创冲刺模拟试卷(九)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,共60分.1.若集合2{|6},{|11180}M x N x N x x x =∈<=-+<,则MN 等于( )A .{}3,4,5B .{|26}x x <<C .{|35}x x ≤≤D .{2,3,4,5} 2. 在复平面内,若复数(2i)z -对应的点在第二象限,则z 可以为( ) A .2B .1-C .iD .2+i3.已知m ,n 是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是( ) A .若α⊥m ,n m ⊥,则α//n B .若α////m n m ,,则α//n C . 若n =⋂βα,α//m ,β//m ,则n m // D .若γα⊥,γβ⊥,则βα//4. 南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”. 其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面面积分别为12,S S ,则“12,V V 相等”是“12,S S 总相等”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.一个三棱锥的三视图是三个直角三角形,如图所示,则三棱锥的外接球的表面积为( )A .π28B .π7C .π14D .π276.将函数sin y x =的图象向左平移2π个单位,得到函数()y f x =的图象,则下列说法正确的是( )A. ()y f x =是奇函数B. ()y f x =的周期为πC. ()y f x =的图象关于直线2x π=对称 D. ()y f x =的图象关于02π⎛⎫- ⎪⎝⎭,对称7.已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则z = -2x+y 的最大值是( )A.-1B.-2C.-5D.18. 已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A.16 B. 139.若0,0,21m n m n >>+=,则11m m n++的最小值为( ) A .4B .5C .7D .610.在等比数列{}n a 中,153,a a 是方程2680x x -+=的根,则1179a a a 的值为( ) A .4 B..± D .4± 11.曲线2ln y x x=-在1x =处的切线的倾斜角为α,则cos(2)2πα+的值为( )A.45B.45-C.35D.35-12.函数)(x f y =是定义在实数集R 上的奇函数,且当)0,(-∞∈x 时,)()(x f x f x -<'成立,若)41(log )41(log ),3(lg )3(lg ),3(322f c f b f a ===,则c b a ,,大小关系( )A .B .C .D .二.填空题: 本大题共4小题,每小题5分,共20分13.已知向量()1,3a =-,()6,b m =,若a b ⊥,则2a b -=________ 14. 已知高与底面半径相等的圆锥的体积为83π,其侧面积与球O 的表面积相等,则球O 的表面积为 .15. 甲、乙、丙三人参加会宁一中招聘老师面试,最终只有一人能够被会宁一中录用,得到面试结果后,甲说: “丙被录用了”;乙说:“甲被录用了”;丙说:“我没被录用”。
2020届河北衡水密卷新高考原创考前信息试卷(十八)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(1)3z i i -=+(i 为虚数单位),则z 的虚部为( ) A .3B .3iC .3-D .3i -2 . 已知全集{}2,1,0,1,2U =--,集合{}2|20,M x x x x N =--<∈,则U C M =( )A .{}2,1,2-B .{}2,1,2--C .{}2-D .{}2 3.直线A .充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.,现发现有22%的学生体重超标,根据直方图估计体重大于等于多少千克为超标体重( ).A . 61 B. 62 C. 63 D. 645. 已知向量()1,2a =r ,(),3b m =r ,若()2a a b ⊥-r r r ,则ar与b r夹角的余弦值为( )A .1010B .31010C .55D .2556.给出一个如图所示的程序框图,若要使输入的x 的值与输出的y 的值相等,则x 的可能值的个数为( )A .1B .2C .3D .47、已知抛物线21:2(0)C x py y =>焦点为1F ,圆的圆心为2F ,点01(,)2P x 在1C 上,且134PF =,则直线12F F 的斜率为( )A .12-B .14-C .13-D .15-8.如图,点C 在以AB 为直径的圆上,且满足CA CB =,圆内的弧线是以C 为圆心,CA 为半径的圆的一部分.记ABC ∆三边所围成的区域(灰色部分)为M ,右侧月牙形区域(黑色部分)为N.在整个图形中随机取一点,记此点取自M ,N 的概率分别为1P ,2P ,则( ) A .12P P = B .12P P > C .1241P P π+=+ D .2111P P π-=+ 9. 曲线214y x =+-与直线()24y k x =-+有两个不同交点,实数k 的取值范围是( ) A .34k ≥B .35412k -≤<- C .512k > D .53124k <≤10. 在等腰直角三角形ABC 中,∠C=90°,,点P 为三角形ABC 所在平面上一动点,且满足,则的取值范围是( )A. [22,0]-B. [0,22]C. [-2,2]D.[22,22]-11.已知12,F F 是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段PF 2与圆222x y b +=相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为( )A .31-B .12C .53D .2212.已知函数()ln (0,1)x xf x a e x a a a =+->≠,对任意12,[0,1]x x ∈,不等式21()()2f x f x a --≤恒成立,则a 的取值范围为( )A .21,2e ⎡⎤⎢⎥⎣⎦B .[,)e e +∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .2[,]e e e第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分。
2020届河北省衡水密卷新高考原创冲刺模拟试卷(二十) 文科数学 ★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知i 为虚数单位,若复数2)1(1i z -+=,则=||z ( )A. 1B. 2C. 2D. 52.已知集合A={21|≤≤-x x },B={2,1,0},则=B A I ( )A. 21|≤≤-x xB. {2,1,0}C. {2,1-}D. {1,0}3. 角α的终边过点P (-1,2),则sin α=( ) A .5 B .5- C .25 D .25- 4.在等差数列{a n }中,210680,4a a a a +=+=-,则其公差为 A.2 B.1 C.-1 D.-25. 已知向量b a b k a +=-=),2,2(),2,(为非零向量,若)(b a a +⊥,则实数k 的值为A.0B.2C.-2D.16.函数21)(x ex x f -=的图象大致是7.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin(2)3y x π=-,x R ∈ B .sin()26x y π=+,x R ∈ C .sin(2)32y x π=+,x R ∈ D .sin(2)3y x π=+, x R ∈ 8. 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r ( )A .3144AB AC -u u u r u u u r B .1344AB AC -u u u r u u u r C .3144AB AC +u u u r u u u rD .1344AB AC +u u u r u u u r 9.如图,点A 为单位圆上—点,3π=∠xOA ,点A 沿单位圆逆时针方向旋转角α 到点B )22,22(-,则=αsin A.462+- B. 462- C. 462+ D. 462+- 10. 函数ln ,0,()1,0,x x f x x x >⎧=⎨+<⎩ 则1)(->x f 的解集为( ) A .(2,)-+∞ B .(2,0)- C .1(2,0)(,)e -⋃+∞ D .1(,)e+∞ 11.定义在R 上的偶函数f (x )满足:f (x +2)=f (x ),且在[-1,0]上单调递减,设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c ,的大小关系是( )A .a >b >cB .c >a >bC .b >c >aD .a >c >b12.已知向量),,1(),1,(2t x b x x a -=+=若函数()b a x f ρρ⋅=在区间(-1,1)上是增函数,则t 的取值范围是( )A .t ≥5B .t ≤5C .t ≥-5D .t ≤-5二、填空题:本大题共4小题.每小题5分,共20分。
2021届河北衡水金卷新高考模拟试卷(三)数学(文科)试卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}220A x x x =--≤,{}0B x x =>,则A B =( )A. [1-,2]B. (1,2]C. (0,2]D. (2,+∞)【答案】C 【解析】 【分析】由题意可得{}12A x x =-≤≤,再由集合交集的概念即可得解.【详解】由题意{}()(){}{}22021012A x x x x x x x x =--≤=-+≤=-≤≤,所以{}{}{}(]120020,2A B x x x x x x ⋂=-≤≤⋂>=<≤=. 故选:C.【点睛】本题考查了一元二次不等式的求解及集合的运算,属于基础题. 2.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A. i - B. iC. 1D. 1-【答案】D 【解析】 【分析】根据复数z 满足()11z i i +=-,利用复数的除法求得z ,再根据复数的概念求解. 【详解】因为复数z 满足()11z i i +=-,所以()()()211111i i z i i i i --===-++-, 所以z 的虚部为1-. 故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题. 3.已知10.330.3log 22,2a b c -===,,则a b c 、、的大小关系是( )A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】A 【解析】 【分析】由题意结合对数函数、指数函数的性质可得01a b c <<<<,即可得解. 【详解】由题意0.30.3log 2log 10a =<=,1030221b ,0.30221c =>=,所以01a b c <<<<. 故选:A.【点睛】本题考查了对数式、指数式的大小比较,考查了对数函数、指数函数单调性的应用,属于基础题. 4.已知某企业2020年4月之前的过去5个月产品广告投入与利润额依次统计如下:由此所得回归方程为ˆ12yx a =+,若2020年4月广告投入9万元,可估计所获利润约为( ) A. 100万元 B. 101 万元C. 102万元D. 103万元.【答案】C 【解析】 【分析】由题意计算出x 、y ,进而可得12a y x =-,代入9x =即可得解. 【详解】由题意()18.27.887.98.185x =++++=,()19289898793905y =++++=, 所以12901286a y x =-=-⨯=-,所以ˆ126y x =-, 当9x =时,ˆ1296102y=⨯-=. 故选:C.【点睛】本题考查了线性回归方程的应用,考查了运算求解能力,属于基础题. 5.设等差数列{}n a 的前n 项和为n S ,且3644a a a +=+,则9S =( ) A. 18 B. 24C. 48D. 36【答案】D 【解析】 【分析】由题意结合等差数列的性质可得54a =,再由等差数列前n 项公式结合等差数列的性质可得1995992a a S a +=⨯=,即可得解. 【详解】数列{}n a 是等差数列,∴365444a a a a a +=+=+,∴54a =,∴199599362a a S a +=⨯==. 故选:D.【点睛】本题考查了等差数列的性质及其前n 项和公式的应用,属于基础题.6.人们通常以分贝(符号是dB )为单位来表示声音强度的等级,30~40分贝是较理想的安静环境,超过50分贝就会影响睡眠和休息,70分贝以上会干扰谈话,长期生活在90分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜破裂出血,双耳完全失去听力,为了保护听力,应控制噪声不超过90分贝,一般地,如果强度为x 的声音对应的等级为()f x dB ,则有12()10lg110x f x -=⨯⨯,则90dB 的声音与50dB 的声音强度之比为( ) A. 10 B. 100 C. 1000 D. 10000【答案】D 【解析】 【分析】设90dB 的声音与50dB 的声音对应的强度分别为1x 、2x ,由题意1219010lg 110x -=⨯⨯,1225010lg 110x -=⨯⨯,计算即可得解.【详解】设90dB 的声音与50dB 的声音对应的强度分别为1x 、2x , 由题意1219010lg110x -=⨯⨯,1225010lg110x -=⨯⨯,所以3110x -=,7210x -=,所以3417210101000010x x --===. 故选:D.【点睛】本题考查了对数运算的应用,考查了对于新概念的理解,属于基础题. 7.函数tan 2y x =图象的对称中心坐标为( ) A. (2,0),k k Z π∈ B. (,0),k k Z π∈C. (,0),2k k Z π∈ D. (,0),4k k Z π∈ 【答案】D 【解析】 【分析】由题意结合正切函数的图象与性质可得2,2k x k Z π=∈,即可得解. 【详解】令2,2k x k Z π=∈,则,4k x k Z π=∈, 所以函数tan 2y x =图象对称中心坐标为,0,4k k Z π⎛⎫∈ ⎪⎝⎭. 故选:D.【点睛】本题考查了正切函数图象与性质应用,属于基础题.8.中国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,现有同学设计如图所示的程序框图,则框图中的“菱形”处应填入( )A.221a -∈Z B.215a Z -∈ C.27a -∈Z D.23a -∈Z 【答案】A 【解析】由题意可知,该程序框图的功能是使得实数a ,使得3除余2,被5除余3,被七除余2的数值, 其中53a n =⨯+表示除5除余3的数,再使得3除余2,被7除余2的数,所以是除21余2的数,所以判断框应填入221a -∈Z ,故选A . 9.已知函数228,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值不可能是( ) A. 1 B. 2C. 3D. 4【答案】A 【解析】 【分析】由题意结合基本不等式可得当1x >时,()4f x a ≥+;由二次函数的性质可得1a >,进而可得924a a -≤+,即可得解.【详解】由题意当1x >时,()444f x x a x a a x x=++≥⋅=+, 当且仅当2x =时,等号成立;当1x ≤时,()228f x x ax =-+,图象为二次函数图象的一部分,对称轴为x a =,当1a <时,()f a 为函数()f x 在(],1-∞上的最小值,不合题意;当1a ≥时,()1f 为函数()f x 在(],1-∞上的最小值,()192f a =-, 由题意可得924a a -≤+,解得53a ≥; 综上,实数a 的取值范围为53a ≥. 故选:A.【点睛】本题考查了分段函数最值相关问题的求解及基本不等式的应用,考查了运算求解能力,属于基础题.10.已知三棱锥A BCD -中,侧面ABC ⊥底面BCD ,ABC 是边长为3的正三角形,BCD 是直角三角形,且90BCD ∠=︒,2CD =,则此三棱锥外接球的体积等于( ) A. 43π B.323πC. 12πD.643π【答案】B 【解析】 【分析】取BD 的中点1O ,BC 中点G ,连接1GO 、AG ,过点1O 作直线垂直平面BCD ,可知三棱锥外接球的球心在该直线上,设为O ,过点O 作OH AG ⊥于H ,连接AO 、BO ,设1OO m =,由勾股定理可得22134OD m =+、223312OA m ⎛⎫=+- ⎪ ⎪⎝⎭,利用22OD OA =即可得3m =,进而可得外接球半径2R =,即可得解.【详解】取BD 的中点1O ,BC 中点G ,连接1GO 、AG ,由题意可得1O 为BCD 的外心,AG ⊥平面BCD ,过点1O 作直线垂直平面BCD ,可知三棱锥外接球的球心在该直线上,设为O , 过点O 作OH AG ⊥于H ,连接AO 、OD ,可知四边形1OHGO 为矩形,ABC 是边长为3,2CD =,∴AG =,BD =11O G =,设1OO m =,则2HA m =-,∴222211134OD DO OO m =+=+,22221OA OH HA m ⎫=+=+-⎪⎪⎝⎭,由22OD OA =可得221314m m ⎫+=+⎪⎪⎝⎭,解得2m =,∴三棱锥A BCD -外接球的半径2R ==, ∴此三棱锥外接球的体积343233V R ππ==. 故选:B.【点睛】本题考查了三棱锥几何特征的应用及外接球的求解,考查了面面垂直性质的应用和空间思维能力,属于中档题.11.已知过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A B ,两点,线段AB 的延长线交抛物线的准线l 于点C ,若2BC =,1FB =,则AB =( ) A. 3 B. 4C. 6D. 6【答案】B 【解析】 【分析】分别过点B 、A 作准线l 的垂线,垂足分别为G 、H ,由抛物线的性质可得1BG FB ==,设AF AH x ==,由平面几何的知识即可得解.【详解】分别过点B 、A 作准线l 的垂线,垂足分别为G 、H ,由题意1BG FB ==,2BC =,设AF AH x ==,由三角形相似可得BG BC AH AC =即1212x x=++,解得3x =, 则4AB AF BF =+=. 故选:B.【点睛】本题考查了抛物线性质的应用,考查了运算求解能力,属于基础题.12.已知2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,则t 的取值范围是( )A. 1(]46e ⎧⎫-∞⋃⎨⎬⎩⎭, B. 1(,]6-∞C. 1[0]46e ⎧⎫⋃⎨⎬⎩⎭,D. 1(,]4-∞【答案】D 【解析】 【分析】由题意结合导数转化条件得()22x t e x =+在()0,∞+上无解,令()()()022xe g x x x =≥+,求导后确定函数()g x 的值域即可得解.【详解】由题意,函数()f x 的定义域为()0,∞+, 对函数()f x 求导得()()()2221212()2(1)21x x x e x e f x t x x x t x x ⎡⎤-+⎣⎦'--=-+-=,2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,∴()220xe x t +=-在()0,∞+上无解,即()22xt e x =+在()0,∞+上无解,令()()()022xe g x x x =≥+,则()()()()()222222102222x x x e x e e x g x x x +-+'==>++, ∴函数()g x 在[)0,+∞单调递增,当()0,x ∈+∞时,()()104g x g >=, ∴14a ≤. 故选:D.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于基础题.第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.己知x ,y 满足约束条件1020x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,则2x y -的最小值是______.【答案】2- 【解析】 【分析】由题意作出可行域,转化目标函数为2y x z =-,数形结合即可得解. 【详解】由题意画出可行域,如图阴影所示:令2z x y =-,目标函数可转化为2y x z =-,上下平移直线2y x z =-,数形结合可得,当直线2y x z =-过点A 时,z 取最小值,由010y x y =⎧⎨-+=⎩可得()1,0A -,此时min 2z =-. 故答案为:2-.【点睛】本题考查了简单线性规划的应用,属于基础题. 14.已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m 或如果l ⊥α,l ⊥m ,则m ∥α. 【解析】 分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m . 正确; (2)如果l ⊥α,l ⊥m ,则m ∥α.正确;(3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面位置关系、命题、逻辑推理能力及空间想象能力. 15.已知数列{}n a 的前n 项和为n S ,若11a =,121n n S a +=+则n S =______.【答案】()11312n -+ 【解析】 【分析】由题意利用数列n a 与n S 的关系可转化条件为131n n S S +=-,进而可得111322n n S S +⎛⎫-=- ⎪⎝⎭,利用等比数列的通项公式即可得解. 【详解】121n n S a +=+,11a =,∴111S a ==,11211n n n n S a S S ++=+=-+,∴131n n S S +=-即113133222n n n S S S +⎛⎫-=-=- ⎪⎝⎭, 又11122S -=,∴数列12n S ⎧⎫-⎨⎬⎩⎭是首项为12,公比为3的等比数列,∴111322n n S --=⋅,∴()11111331222n n n S --=⋅+=+. 故答案为:()11312n -+. 【点睛】本题考查了数列n a 与n S 关系的应用,考查了通过构造新数列求数列的通项,属于中档题.16.已知椭圆1C 与双曲线2C 有相同的焦点12F F ,,点P 是1C 与2C 的一个公共点,12PF F △是一个以2PF 为底的等腰三角形,24PF =,1C 的离心率为37,则2C 的离心率是______. 【答案】3 【解析】 【分析】设椭圆1C 的长轴为12a ,双曲线2C 的实轴为22a ,122F F c =,由椭圆的离心率结合题意可得1123PF F F ==,再由双曲线的离心率公式即可得解.【详解】设椭圆1C 的长轴为12a ,双曲线2C 的实轴为22a ,122F F c =, 由题意椭圆1C 的离心率12111122327F F c c e a a PF PF ====+, 又12PF F △是一个以2PF 为底的等腰三角形,24PF =,∴1212347F F F F =+,解得1123PF F F ==,∴双曲线2C 的离心率1222212232F F c ce a a PF PF ====-. 故答案为:3.【点睛】本题考查了椭圆性质、双曲线性质的综合应用,考查了运算求解能力,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知(2cos ,sin ),(cos ,23)m x x n x x ==,且()f x m n =⋅. (1)求()f x 在[0,]2π上的值域;(2)已知,,a b c 分别为ABC 的三个内角A ,B ,C 对应的边长,若()32Af =,且2a =,4b c +=,求ABC 的面积.【答案】(1)[0,3](2【解析】 【分析】(1)由题意结合平面向量数量积运算、三角恒等变换可得()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,根据0,2x π⎡⎤∈⎢⎥⎣⎦可得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,进而可得1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,即可得解; (2)由题意可得3A π=,利用余弦定理可得24()3b c bc =+-,求得4bc=后,利用三角形面积公式即可得解.【详解】(1)由题意可得2()2cos cos f x m nx x x=⋅=+1cos 222cos 2212sin 2126x x x x x π+⎛⎫=⨯+=++=++ ⎪⎝⎭ 0,2x π⎡⎤∈⎢⎥⎣⎦,∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦∴()f x 的值域为[0,3];(2)因为32A f ⎛⎫=⎪⎝⎭,所以2sin 136A π⎛⎫ ⎪⎝+⎭+=,sin 16A π⎛⎫+= ⎪⎝⎭因为0A π<<,所以3A π=,由余弦定理得:2222cos a b c bc A =+-,即224b c bc =+-∴24()3b c bc =+-,由4b c +=可得4bc =,1sin 32ABC S bc A ∴==△.【点睛】本题考查了平面向量数量积的坐标运算、三角恒等变换与解三角形的综合应用,考查了运算求解能力,属于中档题.18.已知正三棱柱111ABC A B C -中,12AB AA ==,D 是BC的中点.(1)求证:1//A B 平面1ADC ; (2)求三棱锥11C A AD -的体积. 【答案】(1)证明见解析;(2)33【解析】 【分析】(1)连结1A C ,设11AC AC M =,再连接DM ,可证1A B ∥DM ,即可证明;(2)根据等体积法可转化为1111C A AD D AC A V V --=,即可求其体积.【详解】证明:(1)连结1A C ,设11AC AC M =,再连接DM ,如图,则M 是1A C 的中点,DM 是1A BC 的中位线, 所以1A B ∥DM , 又因为1A B ⊄平面1ADC ,MD ⊂平面1ADC ,所以1A B ∥平面1ADC(2)过点作DH AC ⊥,垂足为H ,如图,在正三棱柱111ABC A B C -中,1A A ⊥平面ABC , ∴1A A AD ⊥, 又∵DH AC ⊥,1A AAD A =∴CH ⊥平面11ACC A ,32DH =,∴111111111332233223CA ADD AC A AC A V V SDH --==⨯=⨯⨯⨯⨯=. 【点睛】本题主要考查了线面平行的判定,等体积法,三棱锥的体积,属于中档题.19.环境问题是当今世界共同关注的问题,且多种多样,中国环境十大问题是指大气污染问题、水环境污染问题、垃圾处理问题、土地荒漠化和沙灾问题、水土流失问题、旱灾和水灾问题、生物多样性破坏问题、WTO 与环境问题、三峡库区的环境问题、持久性有机物污染问题.其中大气环境面临的形势非常严峻,大气污染物排放总量居高不下,我国环保总局根据空气污染指数PM 2.5浓度,制定了空气质量标准(前者是空气污染指数,后者是空气质量等级):(1)(0,50]优;(2)(50,100]良;(3)(100,150]轻度污染;(4)(150,200]中度污染;(5)(200,300]重度污染;(6)(300,)+∞严重污染.辽宁省某市政府为了改善空气质量,节能减排,从2012年开始考察了连续六年12月份的空气污染指数,绘制了频率分布直方图如图,经过分析研究,决定从2018年12月1日起在空气质量重度污染和严重污染的日子对机动车辆施行限号出行,请根据这段材料回答以下两个问题:①若按分层抽样的方法,从空气质量等级为优与良的天气中抽取5天,再从这5天中随机抽取2天,求至少有一天空气质量是优的概率;②该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的12月份共60天的空气质量进行统计,其结果如下表: 空气质量 优 良 轻度污染 中度污染 重度污染 严重污染 天数 122811621根据限行前6年180天与限行后60天的数据,计算并填写22⨯列联表,并回答是否有95%的把握认为空气质量的优良与汽车尾气的排放有关.参考数据:参考公式22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】①710②计算及填表见解析;有95%的把握认为空气质量的优良与汽车尾气的排放有关 【解析】 【分析】(1)利用分层抽样空气质量优的天气被抽取2天,空气良的天气被抽取3天,分 别标记,再利用古典概型的概率公式即可算出结果;(2)根据题目所给的数据填写2x2列联表,计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】(1)因为空气质量优与良的天气的概率之比为0.004:0.0062:3=按分层抽样从中抽取5天,则空气质量优的天气被抽取2天,记作1A ,2A ,空气良的天气被抽取3天,记作1B ,2B ,3B ,从这5天中随机抽取2天,所包含的基本事件有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()12,B B ,()13,B B ,()23,B B 共10个,记事件A 为“至少有一天空气质量优”,则事件A 所包含的基本事件有:()11,A B ,()12,AB ,()21,A B ,()22,A B ,()13,A B ,()22,A B ,()23,A B ,共7个,故7()10P A =,即至少有一天空气质量优的概率为710.(2)限行前空气质量为优良的概率为(0.004+0.006)×50=0.5, 则限行前空气质量为优良的天数为180×0.5=90, 列联表如下:由表中数据可得22240(90204090) 5.035 3.84118060130110K ⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为空气质量的优良与汽车尾气的排放有关.【点睛】本题主要考查了独立性检验的应用问题,以及古典概型的概率公式,也考查了计算能力的应用问题,属于中档题.20.己知椭圆22221(0)y x C a b a b +=>>:过点,1)2P ,1(0,1)F -,2(0,1)F 是两个焦点.以椭圆C 的上顶点M 为圆心作半径为()0r r >的圆, (1)求椭圆C 的方程;(2)存在过原点的直线l ,与圆M 分别交于A ,B 两点,与椭圆C 分别交于G ,H 两点(点H 在线段AB 上),使得AG BH =,求圆M 半径r 的取值范围.【答案】(1)22:12y C x +=(2)【解析】 【分析】(1)由题意结合椭圆性质可得122|a PF PF =+=2221b a c =-=,即可得解;(2)当直线斜率不存在时,r =当直线斜率存在时,设直线l 方程为:y kx =, ()11,G x y ,()22,H x y ,联立方程后利用弦长公式可得||GH=||AB =||||AB GH =,可得24212132r k k ⎛⎫=+ ⎪++⎝⎭,即可得解. 【详解】(1)设椭圆的焦距为2c ,由题意1c =,122|a PF PF =+=,所以22a =,2221b a c =-=,故椭圆C 的方程为2212y x +=;(2)当直线斜率不存在时,圆M 过原点,符合题意,r =当直线斜率存在时,设直线l 方程为:y kx =,()11,G x y ,()22,H x y , 由直线l 与椭圆C 交于G 、H 两点,则2212y kx y x =⎧⎪⎨+=⎪⎩,所以()22220k x +-=,>0∆, 则1212220,2x x x x k+==-+,所以||H G ==点M到直线l的距离d=,则||AB =, 因为AG BH =,点H 在线段AB 上,所以点G 在线段AB 的延长线上, 只需||||AG BH =即||||AB GH =,所以()2222812421k r k k +⎛⎫=- ⎪++⎝⎭, 则()()2422224242212332*********k k k r k k k k k k +++⎛⎫=+==+ ⎪++++++⎝⎭因为24223132224k k k ⎛⎫++=+-≥ ⎪⎝⎭,所以42110322k k <≤++,所以(]22,3r ∈,r ∈;综上,r 的取值范围为.【点睛】本题考查了椭圆方程的确定,考查了直线、圆、椭圆的综合应用,属于中档题. 21.已知函数()ln f x x =,()x g x e =. (1)若21()()(1)2h x af x x a x =+-+,a R ∈,求函数()h x 的单调区间; (2)不等式1()12()m m g x x f x x ⎛⎫⎡⎤+≥+⎪⎣⎦⎝⎭对于0x >恒成立,求实数m 的取值范围. 【答案】(1)答案不唯一,具体见解析(2)2m e≥ 【解析】 【分析】(1)求出函数的导数(1)()()x x a h x x--'=,对a 分类讨论即可求出函数的单调区间;(2)不等式恒成立可转化为()()2211ln mxmx exx ++,即()()221ln 1ln mx mxe e xx ++,令()(1)ln (0)F x x x x =+>,研究其单调性即可求解.【详解】(1)21()ln (1)2h x a x x a x =+-+,(0)x > 2(1)(1)()()(1)a x a x a x x a h x x a x x x-++--'=+-+==(ⅰ)当1a >时,增区间为(0,1)和(,)a +∞,减区间(1,)a (ⅱ)当1a =时,增区间(0,)+∞,无减区间(ⅲ)当01a <<时,增区间(0,)a 和(1,)+∞,减区间(,1)a (ⅳ)当0a ≤时,增区间(1,)+∞,减区间(0,1)(2)不等式1()12()mm g x x f x x ⎛⎫⎡⎤+≥+⎪⎣⎦⎝⎭,即()112ln mxm e x x x ⎛⎫+≥+ ⎪⎝⎭恒成立 ()()2211ln mx mx e x x +≥+,即()()221ln 1ln mx mx e e x x +≥+,设函数()(1)ln (0)x x x x ϕ=+>,1()1ln x x xϕ'=++, 1()1ln U x x x =++,22111()x U x x x x-'=-=,在(0,1)上,()0U x '<,在(1,)+∞上,()0U x '>,()x ϕ'在((0,1)上单调递减,在(1,)+∞上单调递增, ∴()(1)0x ϕϕ''≥=,所以()x ϕ在(0,)+∞上单调递增, 所以2mx e x ≥两边取自然对数,得ln 2m x x≥在0x >上恒成立. 设ln ()x F x x =,21ln ()xF x x-'=,在(0,)e 上,()0F x '>,()F x 在(,)e +∞上,()0F x '<,()F x 单调递减,所以1()()F x F e e≤=所以12m e ≥,即2m e≥【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知平面直角坐标系xOy 中,曲线1C 的方程为221162x y +=,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos()6πρθ+=1C 上的所有点的横坐标缩小到原来的倍,得曲线2C . (1)写出直线l 和曲线2C 的直角坐标方程;(2)设点(1,0)P , 直线l 与曲线2C 的两个交点分别为A ,B ,求11PA PB+的值.【答案】(10y --=,224x y +=(2 【解析】 【分析】(1)转化直线l 的极坐标方程为12sin 22ρθθ⎛⎫-= ⎪ ⎪⎝⎭,利用极坐标方程与直角坐标方程转化公式得直线l 的直角坐标方程;设点(),P x y 在曲线1C 上,点(),Q x y ''为坐标变换后点(),P x y 的对应点,由题意得12x x y ⎧=⎪⎨⎪='⎩',代入化简即可得解; (2)写出直线的参数方程112x t y ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入2C 的直角坐标方程,由根与系数的关系可得1A B t t +=-,30A B t t =-<,转化条件11PA PB +=即可得解.【详解】(1)直线l的极坐标方程可化为12cos sin 22ρθθ⎛⎫-= ⎪ ⎪⎝⎭,∴直线l0y --=;设点(),P x y 在曲线1C 上,点(),Q x y ''为坐标变换后点(),P xy 的对应点,则12x x y ⎧=⎪⎨⎪='⎩',∴()22221162x ⎛⎫' ⎪'⎝⎭+=,化简得()()224x y ''+=, ∴曲线2C 的直角坐标方程为224x y +=;(2)由题意点(1,0)P 在直线l 上,则直线l 的参数方程为1122x t y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数), 将直线l 的参数方程代入曲线2C 的直角坐标方程可得:230t t +-=,112130∆=+=>,则1A B t t +=-,30A B t t =-<,∴1111A B A B A B A B A B t t t t PA PB t t t t t t +-+=+====⋅⋅. 【点睛】本题考查了极坐标方程、直角坐标方程、参数方程的转化,考查了直线参数方程t 的几何意义的应用,属于中档题.23.已知函数()ln(12)f x x x m =--+-.(1)当2m =时,求函数()y f x =的定义域;(2)己知函数()f x 的定义域为R ,求实数m 的取值范围.【答案】(1)3|2x x ⎧⎫<-⎨⎬⎩⎭(2)3m <-【解析】【分析】(1)由题意,分类讨论求解不等式|1||2|2x x --+>,即可得解;(2)转化条件得|1||2|m x x <--+恒成立,由绝对值三角不等式求得|1||2|x x --+的最小值即可得解.【详解】(1)当2m =时,由题意可得|1||2|2x x --+>, 所以2122x x x <-⎧⎨-++>⎩或21122x x x -≤<⎧⎨--->⎩或1122x x x ≥⎧⎨--->⎩,解得32x <-, 所以函数()y f x =的定义域为3|2x x ⎧⎫<-⎨⎬⎩⎭;(2)由题意可得|1||2|0x x m --+->恒成立即|1||2|m x x <--+恒成立,又因为()()()|1||2||2||1||21|3x x x x x x --+=-+--≥-+--=-,当且仅当1x ≥时,等号成立.所以实数m 的取值范围为3m <-.【点睛】本题考查了绝对值不等式的求解及绝对值三角不等式的应用,考查了运算求解能力,属于中档题.。
2020届河北衡水金卷新高考原创押题考试(三)理科数学一、选择题(每小题5分,共60分)1.已知全集U =R ,集合{|lg }A x y x ==, 集合{|1}B y y ==,那么U A C B ⋂= ( )A. φB. (]0,1C. ()0,1D. ()1,+∞【答案】C 【解析】 【分析】先化简集合A 和B,再求U U C B A C B ⋂和.【详解】由题得A={x|x>0},B={y|y≥1},所以{|1},(0,1)U U C B y y A C B =<∴⋂=. 故答案为C【点睛】(1)本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 集合的运算要注意灵活运用维恩图和数轴,一般情况下,有限集的运算用维恩图分析,无限集的运算用数轴,这实际上是数形结合的思想的具体运用. 2.复数()2211i i+++的共轭复数是 A. 1i + B. 1i -C. 1i -+D. 1i --【答案】B 【解析】()()22121121112i i i i i ⋅-++=+-+=++Q ,故其共轭复数是1i - ,选B 3.已知向量,a b r r不共线,若()()3//a b ka b +-r r r r ,则实数k =( )A. 13- B. 12-C.13D.12【答案】A 【解析】 【分析】由向量共线的性质得()3ka b a b λ-=+r r r r,由此能求出实数k 的值.【详解】由于()()3//a b ka b +-r r r r ,所以存在实数λ,使得()3ka b a b λ-=+r r r r,因此k λ=且31λ=-,解得13k =-. 故选:A【点睛】本题考查实数值的求法,考查向量共线的性质等基础知识,考查运算求解能力,是基础题. 4.执行如图所示的程序框图,输出S 的值为( )A. 2log 101-B. 22log 31-C.92D. 6【答案】B 【解析】【详解】第一次循环,23log 2,2S i =+=;第二次循环,2233log 2log ,32S i =+=;以此类推得第七次循环,22223893log 2log log 3log 8,8272S i =++=+==L ;结束循环输出229log 2log 312=-,选B. 点睛:算法与流程图考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5.一次数学考试后,某老师从甲,乙两个班级中各抽取5人,记录他们的考试成绩,得到如图所示的茎叶图,已知甲班5名同学成绩的平均数为81,乙班5名同学成绩的中位数为73,则x y -的值为( )A. 2B. -2C. 3D. -3【答案】D 【解析】由茎叶图知727786(80)908157073x y +++++⎧=⎪⎨⎪+=⎩,解得0,3x y ==, 所以3x y -=-,故选D .6.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( ) A. 288种 B. 144种 C. 720种 D. 360种【答案】B 【解析】 【分析】根据题意分2步进行分析:①用倍分法分析《将进酒》,《望岳》和另外两首诗词的排法数目;②用插空法分析《山居秋暝》与《送杜少府之任蜀州》的排法数目,由分步计数原理计算可得答案【详解】根据题意分2步进行分析:①将《将进酒》,《望岳》和另外两首诗词的4首诗词全排列,则有4424A =种顺序Q 《将进酒》排在《望岳》的前面,∴这4首诗词的排法有44122A =种②,这4首诗词排好后,不含最后,有4个空位,在4个空位中任选2个,安排《山居秋暝》与《送杜少府之任蜀州》,有3412A =种安排方法则后六场的排法有1212144⨯=种 故选B【点睛】本题考查的是有关限制条件的排列数的问题,第一需要注意先把不相邻的元素找出来,将剩下的排好,这里需要注意定序问题除阶乘,第二需要将不相邻的两个元素进行插空,利用分步计数原理求得结果,注意特殊元素特殊对待.7.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =13x y x +++的最小值为( )A. -1B. -5217+ C.13D. -75【答案】D 【解析】作出不等式组表示的平面区域,如图所示,由题意,知214r ππ=,解得2r =.因为目标函数12133x y y z x x ++-==+++表示区域内上的点与点(3,2)P -连线的斜率加上1,由图知当区域内的点与点P 的连线与圆相切时斜率最小.设切线方程为2(3)y k x -=+,即320kx y k -++=,则有23221k k +=+,解得125k =-或0k =(舍),所以min 127155z =-=-,故选D .8.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A. 2n n S T =B. 21n n T b =+C. n n T a >D. 1n n T b +<【答案】D 【解析】【详解】由题意可得:332,323nnn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.9.双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点为1F ,2F ,抛物线N :()220y px p =>的焦点为2F ,点P 为双曲线M 与抛物线N 的一个交点,若线段1PF 的中点在y 轴上,则该双曲线的离心率为( )A.1B.1C.D.【答案】B 【解析】 【分析】先根据抛物线焦点为2F ,求得2p c =;再根据线段1PF 的中点在y 轴上,可得P 点横坐标,分析可知2PF x ⊥轴.由双曲线通经公式可得22PF p c ==,即可由勾股定理及双曲线定义得,a c 关系,进而求得离心率.【详解】抛物线N :()220y px p =>焦点为2F则抛物线焦点为,02p ⎛⎫⎪⎝⎭,()2,0F c ,()1,0F c - 所以2pc =,即2p c =, 因为线段1PF 的中点在y 轴上, 所以P 点横坐标为c , 则2PF x ⊥轴所以22PF p c ==,即212PF F F =则12PF ==根据双曲线定义可知122PF PF a -=所以22c a -=解得1ce a === 故选:B【点睛】本题考查了双曲线离心率的求法,抛物线焦点与双曲线焦点的关系,双曲线的几何意义,中点坐标公式的应用,属于中档题.10.已知函数1()cos 626f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,若存在123,,,,n x x x x L 满足12306n x x x x π≤<<<<≤L ,且()()()()()()12231n n f x f x f x f x f x f x --+-++-L ()*122,n n N =≥∈,则n 的最小值为( )A. 6B. 10C. 8D. 12【答案】C 【解析】 【分析】由辅助角公式先将函数()f x 化简,当()()()()1max min n n f x f x f x f x --=-时n 取得最小值,由正弦函数的性质即可求得n x 的值即可求解.【详解】函数1()sin cos 2626f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,根据助辅助角公式化简可得()sin sin 66f x x x ππ⎛⎫=+-= ⎪⎝⎭因为()()()()1max min 2n n f x f x f x f x --=-=所以当()()()()()()12231n n f x f x f x f x f x f x --+-++-L ()*122,n n N=≥∈时,n 的取值满足12330,,22x x x ππ===,4557,22x x ππ==,678911,,622x x x πππ=== 所以此时n 的最小值为8 故选:C【点睛】本题考查了正弦函数的图像与性质应用,辅助角化简三角函数式的应用,属于中档题.11.设12,F F 分别为双曲线()2222:1,0x y E a b a b-=>左、右焦点,以坐标原点O 为圆心,1OF 为半径的圆与双曲线E 的右支相交于,P Q 两点,与E 的渐近线相交于,,,A B C D 四点,若四边形12PFQF 的面积与四边形,,,A B C D 的面积相等,双曲线E 的离心率为( )【答案】C 【解析】 【分析】由双曲线的定义和勾股定理可求得2122PF PF b ⨯=,从而可得四边形12PFQF 的面积,然后求出点圆O 与E 的渐近线在第一象限的交点为(),a b ,可求出四边形ABCD 的面积,然后可得答案.【详解】由双曲线的定义及平面几何知识可知122PF PF a -=,①222124PF PF c +=,②2-②①得2122PF PF b ⨯=,∴四边形12PFQF 的面积为21121222S PF PF b =⨯⨯=, 由222x y c b y xa ⎧+=⎪⎨=⎪⎩,当0,0x y >>,解得,x a y b ==,∴圆O 与E 的渐近线在第一象限的交点为(),a b . ∴四边形ABCD 的面积24S ab =,∵224b ab =,∴2b a =,即2224,c a ce a a-===故选:C【点睛】本题考查双曲线定义渐进性的简单应用,属于中档题.12.已知函数22()1x f x e ax bx =-+-,其中,a b ∈R ,e 为自然对数的底数,若(1)0f =,'()f x 是()f x 的导函数,函数'()f x 在区间(0,1)内有两个零点,则a 的取值范围是( )A. 22(3,1)e e -+B. 2(3,)e -+∞C. 2(,22)e -∞+D. 22(26,22)e e -+【答案】A 【解析】 【分析】利用f (1)=0得出a ,b 的关系,根据f ′(x )=0有两解可知y =2e 2x 与y =2ax +a +1﹣e 2的函数图象在(0,1)上有两个交点,做出两函数图象,根据图象判断a 的范围. 【详解】解:∵f (1)=0,∴e 2﹣a +b ﹣1=0,∴b =﹣e 2+a +1, ∴f (x )=e 2x ﹣ax 2+(﹣e 2+a +1)x ﹣1, ∴f ′(x )=2e 2x ﹣2ax ﹣e 2+a +1, 令f ′(x )=0得2e 2x =2ax ﹣a ﹣1+e 2, ∵函数f ′(x )在区间(0,1)内有两个零点,∴y =2e 2x 与y =2ax ﹣a ﹣1+e 2的函数图象在(0,1)上有两个交点, 作出y =2e 2x 与y =2ax ﹣a ﹣1+e 2=a (2x ﹣1)+e 2﹣1函数图象,如图所示:若直线y=2ax﹣a﹣1+e2经过点(1,2e2),则a=e2+1,若直线y=2ax﹣a﹣1+e2经过点(0,2),则a=e2﹣3,∴e2﹣3<a<e2+1.故选:A.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题(每小题5分,共20分)13.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则7288用算筹式可表示为__________.【答案】【解析】 【分析】根据题意,分别用横式或纵式表示出7288的各位数字,合并后即可得解. 【详解】根据题意, 7288用算筹式表示时: 千位需要用横式表示,即7用来表示;百位需要用纵式表示,即2用来表示;十位需要用横式表示,即8用来表示;个位需要用纵式表示,即8用来表示.所以7288用算筹式可表示为;故答案为:.【点睛】本题考查了数学在中国传统文化中的应用,对所给条件分析清晰,进行合理运用,属于基础题.14.若随机变量()2~2,3X N ,且()()1P X P x a ≤=≥,则()52x a ax x ⎛+⋅- ⎝展开式中3x 项的系数是__________. 【答案】1620 【解析】随机变量()2~2,3X N ,均值是2,且()()1P X P x a ≤=≥,∴3a =;∴()()()55522233693x a ax x x x x x x x x ⎛⎛⎛+=+=++- ⎝⎝⎝; 又53x x ⎛ ⎝展开式的通项公式为()()35552155313rrr r r r r r T C x C xx ---+⎛=⋅⋅=-⋅⋅⋅ ⎝, 令3512r -=,解得83r =,不合题意,舍去;令3522r -=,解得2r =,对应2x 的系数为()232512270C -⋅⋅=;令3532r -=,解得43r =,不合题意,舍去;∴展开式中3x 项的系数是62701620⨯=,故答案为1620.点睛:本题考查了正态分布曲线的特点及其几何意义,也考查二项式系数的性质与应用问题,是基础题;根据正态分布的概率性质求出a 的值,再化()()5522693x a ax x x x ⎛⎛+=++ ⎝⎝;利用(53x ⎛ ⎝展开式的通项公式求出含2x 的系数,即可求出对应项的系数.15.关于x的方程1xe m x =-无实根,则实数m 的取值范围为___.【答案】)20,e ⎡⎣【解析】 【分析】程1x e m x =-无实根,即直线()1y m x =-与曲线x y e =无公共点,找直线()1y m x =-与曲线x y e =相切的时候m 的值,然后分析可得答案.【详解】由1x e m x =-,得()1xe m x =-,若直线()1y m x =-与曲线xy e =相切,设切点为()00,x y ,00xy e = ,∵e xy '=,∴0x m e =, ∴()0001xx e ex =-,∴02x =,∴2m e =.直线()1y m x =-恒过点()1,0.因为原方程无实数根,所以实数m 的取值范围为)20,e ⎡⎣.故答案为:)20,e⎡⎣【点睛】本题考查方程的根的情况,转化为两曲线的交点问题,属于中档题.16.如图,在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c ,且222a b c bc =++,a ,S 为ABC ∆的面积,圆O 是ABC ∆的外接圆,P 是圆O上一动点,当cos S B C +取得最大值时,PA PB ⋅u u u r u u u r的最大值为_______.【答案】332+. 【解析】试题分析:∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设圆O 的半径为R ,则322sin sin3a R A π===,∴1R =,∴13cos cos sin 3cos cos 2S B C bc A B C +=+ 33cos cos bc B C =+3sin sin 3cos cos 3cos()B C B C B C =+=-, 当6B C π==时,3cos cos S B C +取得最大值,建立如图直角坐标系,则(0,1)A ,31(,)2B -,31(,)22C ,设(cos ,sin )P θθ,则 31(cos ,sin 1)(cos ,sin )2PA PB θθθθ⋅=-+-u u u r u u u r 3333cos sin 3cos()2223πθθθ=-+=++,当且仅当cos()13πθ+=时,PA PB ⋅u u u r u u u r 取最大值3+32.考点:1.正余弦定理解三角形;2.三角恒等变形;3.平面向量数量积的坐标运算.三、解答题(17,18,19,20,21每题12分,22,23选做一题每题10分,共70分)17.已知等差数列{}n a 的前n 项和为n S ,且11a =,345S S S +=.(1)求数列{}n a 的通项公式;(2)令11(1)n n n n b a a -+=-,求数列{}n b 的前2n 项和2n T .【答案】(Ⅰ)21n a n =-(Ⅱ)284n n -- 【解析】试题分析: (Ⅰ)求等差数列通项公式,一般方法为待定系数法,即根据条件列出关于首项与公差的方程组,解出首项与公差再代入通项公式即可,(Ⅱ)涉及符号数列求和,一般方法为分组求和,即按奇偶,项的正负重新组合,利用平方差公式转化为求特殊数列(如等差数列)的和.试题解析: (Ⅰ)设等差数列{}n a 的公差为d ,由345S S S +=可得1235a a a a ++=, 即253a a =,所以3(1)14d d +=+,解得2d =.∴ 1(1)221n a n n =+-⨯=-.(Ⅱ)由(Ⅰ)可得:112(1)(21)(21)(1)(41)n n n b n n n --=-⋅-+=-⋅-.∴ 22222122(411)(421)(431)(441)(1)4(2)1n n T n -⎡⎤=⨯--⨯-+⨯--⨯-++-⋅⨯-⎣⎦L 22222241234(21)(2)n n ⎡⎤=-+-++--⎣⎦L22(21)4(1234212)4842n n n n n n +=-+++++-+=-⨯=--L . 点睛:本题采用分组转化法求和,即通过两个一组进行重新组合,将原数列转化为一个等差数列. 分组转化法求和的常见类型有分段型(如,{2,n nn n a n =为奇数为偶数)及本题的符号型(如2(1)n n a n =- ) 18.如图,在四边形ABCD 中,//AB CD ,23BCD π∠=,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD CD BC CF ===.(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成锐二面角最大,并求此时二面角的余弦值. 【答案】(1)见解析;(2)77【解析】【详解】试题分析:(Ⅰ)在梯形ABCD 中,设1AD CD BC ===,题意求得2AB =,再由余弦定理求得23AB =,满足222AB AC BC =+,得则BC AC ⊥.再由CF ⊥平面ABCD 得AC CF ⊥,由线面垂直的判定可.进一步得到AC 丄平面BCF ;(Ⅱ)分别以直线,,CA CB CF 为:x 轴,y 轴轴建立如图所示的空间直角坐标系,设1AD CD CF === ,令FM λ=()03λ≤≤得到,,,C A B M 的坐标,求出平面MAB 的一法向量.由题意可得平面的FCD 一个法向量,求出两法向量所成角的余弦值,可得当λ0=时,有最小值为7,此时点M 与点F 重合. 试题解析:(Ⅰ)证明:在梯形ABCD 中,∵//AB CD ,设1AD CD BC ===, 又∵23BCD π∠=,∴2AB =,∴2222cos603AC AB BC AB BC =+-⋅⋅︒= ∴222AB AC BC =+.则BC AC ⊥. ∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC CF ⊥,而CF BC C =I ,∴AC ⊥平面BCF .∵//EF AC ,∴EF ⊥平面BCF . (Ⅱ)解:分别以直线,,CA CB CF 为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设1AD CD BC CD ====,令(03FM λλ=≤≤, 则())()()0,0,0,3,0,0,0,1,0,,0,1C AB M λ,∴()()3,1,0,,1,1AB BM λ=-=-u u u v u u u u v设(),,n x y z =v为平面MAB 的一个法向量,由00n AB n BM ⎧⋅=⎨⋅=⎩u u u v v u u u u v v 得300x y x y z λ⎧-+=⎪⎨-+=⎪⎩,取1x =,则()1,3,3n λ=-v ,∵()1,0,0m =v是平面FCB 的一个法向量,∴()()22cos ,133134n m n m n mλλ⋅===++-⨯-+v vv v v v∵03λ≤≤,∴当0λ=时,cos θ有最小值为77, ∴点M 与点F 重合时,平面MAB 与平面FCB 所成二面角最大,此时二面角的余弦值为7. 19.噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解强度D (单位:分贝)与声音能量I (单位:2/W cm )之间的关系,将测量得到的声音强度i D 和声音能量()1,2,,10i I i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.表中lg i i W I =,101110i i W W ==∑ (1)根据表中数据,求声音强度D 关于声音能量I 的回归方程lg D a b I =+;(2)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点P 共受到两个声源的影响,这两个声源的声音能量分别是1I 和2I ,且10121410I I +=.已知点P 的声音能量等于声音能量1I 与2I 之和.请根据(1)中的回归方程,判断P 点是否受到噪声污染的干扰,并说明理由. 附:对于一组数据()()()1122,,,,,n n v v v μμμL,其回归直线v αβμ=+的斜率和截距的最小二乘估计分别为:()()()121ii i ii uuuu v v uu β∧==--=-∑∑,v u αβ∧∧=-【答案】(1)10lg 160.7i D I =+(2)会受到干扰,理由见解析. 【解析】 【分析】(1)令lg i i W I =,建立D 与W 的线性回归方程,结合所给公式求得b .代入样本中心点求得a ,即可得声音强度D 关于声音能量I 的回归方程. (2)由点12P I I =+,结合10121410I I +=,利用基本不等式求得点P 能量的最小值.由(1)得声音强度D 的预报值,比较大小即可判断.【详解】(1)令lg i i W I =,则i D a bW =+由表中参考数据可得()()()10110215.1100.51i i i i i W W D D b W W==--===-∑∑ 将45.7,11.5D W ==-代入i D a bW =+ 可得()45.71011.5160.7a D bW =-=+⨯-= 所以10160.7D W =+即声音强度D 关于声音能量I 的回归方程为10lg 160.7i D I =+ (2)已知点P 的声音能量等于声音能量1I 与2I 之和, 所以12P I I =+而10121410I I +=,即101214101I I -⎛⎫⨯+= ⎪⎝⎭所以12P I I =+()1012121410I I I I -⎛⎫=+⨯⨯+ ⎪⎝⎭1021124105I I I I -⎛⎫=⨯++ ⎪⎝⎭10910-≥⨯由(1)可知点P 的声音强度预报值为()10min 10lg 910160.710lg960.760D -=⨯+=+>所以点P 会受到噪声污染的干扰【点睛】本题考查了非线性回归方程的求法,利用线性回归方程进行预报与判断,属于中档题.20.已知12P ⎫⎪⎭在椭圆2222:1(0)x y C a b a b+=>>上,F 为右焦点,PF x ⊥轴,,,,A B C D 为椭圆上的四个动点,且AC ,BD 交于原点O . (1)判断直线:()(,)2m n l x m n y m n R ++-=∈与椭圆的位置关系; (2设()11,A x y ,()22,B x y 满足12124y y x x =,判断AB BC k k +的值是否为定值,若是,请求出此定值,并求出四边形ABCD 面积的最大值,否则说明理由.【答案】(1)直线l 与椭圆相切或相交.(2)AB BC k k +的值是定值,0AB BC k k +=;()max 1ABCD S = 【解析】 【分析】(1)将直线l 变形,可确定直线l 所过定点的坐标,可得该定点坐标在椭圆上,即可判断出直线l 与椭圆的位置关系.(2)先根据条件,求得椭圆的标准方程.讨论直线AB 的斜率情况可知当斜率不存在或斜率为0时不满足12124y y x x =.进而设直线AB 的方程为y kx m =+,联立椭圆方程,利用韦达定理及等式12124y y x x =,化简即可求得k 的值,确定AB BC k k +为定值;由点到直线距离公式求得d ,利用弦长公式求得AB ,即可用m 表示出AOB S ∆,由二次函数性质求得AOB S ∆的最大值,并根据4ABCD AOB S ∆=即可求得ABCD S 的最大值.【详解】(1)直线11:()(,)222m n l x m n y m n m n R ++-=+∈,将直线方程化简变形可得022x x y m y n ⎛⎛++-= ⎝⎭⎝⎭,因为,m n R ∈,令0202x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,解得12x y ⎧=⎪⎨=⎪⎩ ,所以直线l过定点12P ⎫⎪⎭, 而由P 在椭圆上,可知直线l 与椭圆相切或相交.(2)12P ⎫⎪⎭在椭圆2222:1(0)x y C a b a b+=>>上,PF x ⊥轴,由椭圆性质可得212b c a ==,则222212c ba abc ⎧=⎪⎪=⎨⎪=+⎪⎩解得2,1a b == ,所以椭圆的标准方程为2214x y +=,因为()11,A x y ,()22,B x y ,,,,A B C D 为椭圆上的四个动点且AC ,BD 交于原点O . 所以()11,C x y --,()22,D x y --,当直线AB 的斜率不存在时,不满足12124y y x x =,因而直线AB 的斜率一定存在.当直线AB 斜率存在且为0时,不满足12124y y x x =,所以直线AB 的斜率一定存在且不为0. 设直线AB 的方程为y kx m =+.则2214y kx m x y =+⎧⎪⎨+=⎪⎩,化简可得()()222418410k x kmx m +++-=, 所以()2121222418,4141m km x x x x k k -+=-⋅=++,()()()()2222284414416410,km k m k m ∆=-+-=-+>①因为1122,kx m y kx m y =+=+,所以()()()2212121212y y kx m kx m k x x km x x m =++=+++,则()()2222222414184414141m m km k km m k k k ⎡⎤--⎛⎫⎢⎥⨯+⨯-+= ⎪⎢⎥+++⎝⎭⎢⎥⎣⎦, 整理可得241k =, 解得12k =±.由题意可知A B C D 、、、的位置等价,所以不妨设12AB k =,则12BC k =-, 则11022AB BC k k +=-=, 即AB BC k k +为定值.直线AB 的方程为12y x m =+.即102x y m -+= 则点O 到直线AB的距离为d =因为()2121222418,4141m km x x x x k k -+=-⋅=++代入可得()212122,21x x m x x m +=-⋅=-则由弦长公式可得AB =所以1122AOB S AB d ∆=⋅⋅====当21m =时取等号.而21m =时满足①. 所以()max 1AOB S ∆=此时44ABCD AOB S ∆==故四边形ABCD 面积的最大值的最大值为4【点睛】本题考查了直线过定点的求法,直线与椭圆位置关系的判断,椭圆标准方程的求法,韦达定理在求弦长公式中的应用,椭圆中的四边形面积问题综合应用,属于难题. 21.已知函数()()()21'0xf x ax x e f =+-+.(1)讨论函数()f x 的单调性; (2)若()()()ln ,xx g x ef x x h x e -=+=,过()0,0O 分别作曲线()yg x =与()yh x =的切线12,l l ,且1l 与2l 关于x 轴对称,求证:()321222e e a e ++-<<-.【答案】(1)见解析;(2) 见解析. 【解析】试题分析:(1) 求出()'f x ,分五种情讨论,分别令()'0f x >得增区间,()'0f x <得减区间;(2)根据导数的几何意义可求出两切线的斜率分别为,e e -,根据切点处两函数纵坐标相等可得关于1,x a 的两个等式,由其中一个等式求得1x 的范围,再根据另一个等式利用导数求得a 的范围.试题解析:由已知得()()()2'21,'00xf x ax a x e f ⎡⎤=++=⎣⎦,所以()()21xf x ax x e =+-.(1)()()()2'2121xxf x ax a x e x ax a e ⎡⎤⎡⎤=++=++⎣⎦⎣⎦. ① 若0a >,当12x a<--或0x >时,()'0f x >;当120x a --<<时,()'0f x <,所以()f x 的单调递增区间为()1,2,0,a ⎛⎫-∞--+∞ ⎪⎝⎭;单调递减区间为12,0a ⎛⎫--⎪⎝⎭. ②若()()()0,1,'x xa f x x e f x xe ==-=,当0x >时,()'0f x >;当0x <时,()'0f x <,所以()f x 的单调递增区间为()0,+∞;单调递减区间为(),0-∞. ③ 若102a -<<,当12x a >--或0x <时,()'0f x <;当102x a <<--时,()'0f x >,所以()f x 的单调递增区间为10,2a ⎛⎫-- ⎪⎝⎭;单调递减区间为()1,0,2,a ⎛⎫-∞--+∞ ⎪⎝⎭.④若()211,'022x a f x x e =-=-≤,故()f x 的单调递减区间为(),-∞+∞.⑤若12a <-,当12x a <--或0x >时,()'0f x <;当120x a--<<时,()'0f x >,所以()f x 的单调递增区间为12,0a ⎛⎫-- ⎪⎝⎭;单调递减区间为()1,2,0,a ⎛⎫-∞--+∞ ⎪⎝⎭.当0a >时,()f x 的单调递增区间为()1,2,0,a ⎛⎫-∞--+∞ ⎪⎝⎭;单调递减区间为12,0a ⎛⎫-- ⎪⎝⎭. 当0a =时,()f x 的单调递增区间为()0,+∞;单调递减区间为(),0-∞.当102a -<<时,()f x 的单调递增区间为10,2a ⎛⎫--⎪⎝⎭;单调递减区间为()1,0,2,a ⎛⎫-∞--+∞ ⎪⎝⎭.当12a =-时,()f x 的单调递减区间为(),-∞+∞;当12a <-时,()f x 单调递增区间为12,0a ⎛⎫-- ⎪⎝⎭ ; 单调递减区间为1,2a ⎛⎫-∞-- ⎪⎝⎭,()0,+∞; (2)()()()22ln 1ln 1ln xx x g x ef x x e ax x e x ax x x --=+=-+-+=+-+,设2l 的方程为2y k x =,切点为()22,x y ,则222222,x x y y e k e x ===,所以2221,,x y e k e ===.由题意知12k k e =-=-,所以1l 的方程为y ex =-,设1l 与()y g x =的切点为()11,x y ,则()111121111111'21,22y e k g x ax e a x x x x +==++==-=--. 又2111111ln y ax x x ex =++-+=-,即1113ln 022e x x ++-=,令()()1311ln ,'222e e u x x x u x x++=+-=+,在定义域上,()'0u x >,所以()0,+∞上,()u x 是单调递增函数,又()2310,ln 021212e e e e u u e e -⎛⎫=>=+-< ⎪++⎝⎭,所以()1?01e u u e ⎛⎫< ⎪+⎝⎭,即111e x e <<+,令11t x =,则()()2111,12e t a t t e t e +⎡⎤<<=-++⎣⎦,所以()()32112,122e e e a a a a e e +++⎛⎫>=-<=- ⎪⎝⎭,故 ()321222e e a e ++-<<-.【方法点睛】本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.22.在直角坐标系xOy 中,曲线C 的参数方程为3cos 3sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为(cos sin )1ρθθ-=.(1)求C 和l 的直角坐标方程;(2)已知直线l 与y 轴交于点M ,且与曲线C 交于A ,B 两点(A 在第一象限),则11||||MA MB -的值. 【答案】(1)曲线C 为229x y +=,直线l 为10x y --=.(2)8- 【解析】 【分析】(1)消去曲线C 参数方程中的参数,将曲线C 的参数方程化为直角坐标方程;利用极坐标转化为直角坐标的公式,将直线l 的极坐标方程化为直角坐标方程.(2)求得M 点的坐标,写出直线l 的参数方程,并代入229x y +=,化简后写出韦达定理,根据直线参数的几何意义求得11||||MA MB -的值. 【详解】(1)曲线C 的参数方程为3cos 3sin x y θθ=⎧⎨=⎩,两式平方相加得229x y +=.直线l 的极坐标方程为(cos sin )1ρθθ-=,即10x y --=.(2)直线:10l x y --=与y 轴的交点为()0,1M -,所以直线l的参数方程为212x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).代入229x y +=并化简得280t -=,所以12128t t t t +=⋅=-.画出图像如下图所示,依题意设A 点对应1t ,B 点对应2t .则11||||MA MB-121212118t t t t t t +=+==-.【点睛】本小题主要考查参数方程转化为普通方程,极坐标方程转化为直角坐标方程,考查利用直线参数的几何意义进行计算,属于中档题.23.[选修4-5:不等式选讲]:已知函数()2f x x a x a =++-. (1)当1a =时,求不等式()42f x x ≥-+的解集; (2)设0a >,0b >,且()f x 的最小值为t .若33t b +=,求12a b+的最小值. 【答案】(1) 7(,][1,)3-∞--+∞U (2)322+【解析】 【分析】(1)当1a =时,()|2||1|f x x x =++-,原不等式可化为2|2||1|4x x ++-≥,分类讨论即可求得不等式的解集;(2)由题意得,()f x 的最小值为t ,所以3t a =,由333a b +=,得1a b +=,利用基本不等式即可求解其最小值.【详解】(1)当1a =时,()21f x x x =++-,原不等式可化为2214x x ++-≥,① 当2x ≤-时,不等式①可化为2414x x ---+≥,解得73x ≤-,此时73x ≤-; 当21x -<<时,不等式①可化为2414x x +-+≥,解得1x ≥-,此时11x -≤<; 当1x ≥时,不等式①可化为2414x x ++-≥,解得13x ≥,此时1x ≥, 综上,原不等式的解集为][7,1,3⎛⎫-∞-⋃-+∞ ⎪⎝⎭.(2)由题意得,()2f x x a x a =++-≥ ()()23x a x a a +--=,因为()f x 的最小值为t ,所以3t a =,由333a b +=,得1a b +=,所以()1212a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭2333b a a b =++≥+=+, 当且仅当2b a a b =,即1a =,2b =12a b+的最小值为3+【点睛】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
2020届河北省衡水金卷原创精准模拟考试(一)文科数学试题★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i 12i z =+,则z 的虚部是 A .i -B .1-C .2D .2i -2.已知集合2{1,1},{|20,Z}A B x x x x =-=+-<∈,则A B ⋃=A. {1}-B. {1,1}-C. {1,0,1}-D. {1,0,1,2}- 3.“,,,a b c d 成等差数列”是“a d b c +=+”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知()()1,21,2,2a m b m =-=--,若向量a b ,则实数m =A.45 B. 52 C. 0或52 D. 0或455.某商场在2018年5月1日举行特大优惠活动,凡购买商品达到98元者,可获得一次抽奖机会,抽奖工具是一个圆面转盘,被分为4个扇形块,其面积依次成公比为2的等比数列,指针箭头落在面积最小区域时,就中一等奖.则一位消费者购买商品达到98元能抽中一等奖的概率 A.115 B. 215 C. 131 D. 2316.已知角α在第二象限,若22cos 3α=-,则2πcos 24α⎛⎫+= ⎪⎝⎭A .32B .21 C .31D .0 7.将函数π()2cos(2)6f x x =+的图象向左平移(0)t t >个单位长度,所得图象对应的函数为奇函数,则t 的最小值为 A.2π3B.π6C.π2D.π38.已知3515a b ==,则,a b 不可能满足的关系是A.4a b +>B.4ab >C.22(1)(1)2a b -+-> D. 228a b +< 9函数)(x f 在R 单调递减,且为奇函数。
2020届河北省衡水金卷新高考冲刺模拟考试(二十)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2211220A B x x x =--=-≤,,,,,则A B =I ( ) A. ()12, B. []12, C. {}12, D. {}12x x ==, 【答案】C 【解析】 【分析】首先求集合B ,再求A B I . 【详解】220x x -≤, 解得:02x ≤≤{}02B x x ∴=≤≤,{}1,2A B ∴=I .故选:C【点睛】本题考查集合的交集,意在考查计算能力,属于基础题型. 2.若3sin()25πα-=,则cos2α=( ) A.725B. 2425C. 725-D. 2425-【答案】C 【解析】 【分析】根据题意先求出3cos 5α=,然后再用倍角公式求解即可得到结果. 【详解】由条件得3sin cos 25παα⎛⎫-==⎪⎝⎭,∴2237cos22cos 121525αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选C .【点睛】本题考查诱导公式和倍角公式的应用,考查变形和计算能力,解题的关键是正确进行公式的变形,属于基础题.3.若00x y >>,,则2x y +≤是224x y +≤的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先判断当2x y +≤时,两边平方后能判断224x y +≤成立,反过来,判断是否成立,再判断充分必要条件.【详解】当2x y +≤时,且0,0x y >>()222424x y x y xy ∴+≤⇒++≤, 22424x y xy ∴+≤-< ,∴若00x y >>,, 2224x y x y +≤⇒+≤,反过来,当2x y ==时,满足224x y +≤,当此时2x y +> ,∴当00x y >>,,2242x y x y +≤⇒+≤/.故选:A【点睛】本题考查充分必要条件,意在考查基本的判断方法,属于基础题型. 4.已知等比数列{}n a 满足1223612a a a a +=+=,,则1a 的值为( ) A. 1 B. 2C. 3D. 4【答案】B 【解析】 【分析】由题意列方程组11211612a a q a q a q +=⎧⎨+=⎩求解. 【详解】设等比数列的公比为q ,11211612a a q a q a q +=⎧∴⎨+=⎩ ,解得:12,2q a == 故选:B【点睛】本题考查等比数列基本量的求解,属于基础题型. 5.某三棱锥的三视图如图所示,已知它的体积为43,则图中x 的值为( )A. 2B.2C. 1D.12【答案】C 【解析】 【分析】画出该三视图对应的直观图,再由棱锥的体积公式得出x 的值. 【详解】该三视图对应的直观图是三棱锥S ABC -,如下图所示由棱锥的体积公式得:311442223233S ABC V x x x x -⎛⎫=⋅⋅⋅⋅== ⎪⎝⎭,解得:1x = 故选:C【点睛】本题主要考查了已知三视图求体积,属于中档题. 6.已知ln 2421log 52a b c e ===,,,则a b c ,,满足( ) A. a b c << B. b a c <<C. c a b <<D. c b a <<【答案】A 【解析】 【分析】根据对数的运算法则化简,再根据函数的单调性比较大小. 【详解】4221log 5log 5log 52a === 2213log 32b == ,2log y x =Q 是单调递增函数,2221log 5log 3log 42∴<<<= ,ln 22c e ==,故选:A【点睛】本题考查对数的运算,和比较大小,意在考查基础计算能力,属于基础题型.7.已知直线:1l y x =-与抛物线24y x =相交于A B ,两点,M 是AB 的中点,则点M 到抛物线准线的距离为( ) A.72B. 4C. 7D. 8【答案】B 【解析】 【分析】根据数形结合分析可知点M 到抛物线准线的距离1'2MM AB =,再根据弦长公式求AB . 【详解】由题意可知直线1y x =-过抛物线24y x =的焦点()1,0,如图,',','AA BB MM 都和准线垂直,并且垂直分别是',','A B M ,由图象可知()1'''2MM AA BB =+, 根据抛物线的定义可知''AA BB AB +=,1'2MM AB ∴=, 214y x y x=-⎧⎨=⎩ 联立得2610x x -+=, 126x x += ,1228AB x x ∴=++=,故选:B【点睛】本题考查抛物线的定义和弦长公式,意在考查数形结合分析问题和解决问题的能力,属于基础题型.8.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A. B.C. D.【答案】A 【解析】 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos 2f x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即()0f x ¢< 所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A【点睛】本题主要考查了函数图像的识别,属于中档题.9.关于函数()sin cos f x x x =+有下述四个结论:①()f x 是周期函数;②()f x 的最小值为;③()f x 的图象关于y 轴对称;④()f x 在区间42ππ⎛⎫⎪⎝⎭,单调递增.其中所有正确结论的编号是( ) A. ①② B. ①③C. ②③D. ②④【答案】B 【解析】 【分析】①代入周期公式,判断周期;②去绝对值得到分段函数判断最小值;③利用定义判断函数的奇偶性;④去绝对值,化简函数,再判断函数的单调性.【详解】①()()()2sin 2cos 2sin cos f x x x x x πππ+=+++=+()()2f x f x π∴+=,()f x ∴是周期为2π的周期函数,故①正确;②()f x Q 的周期是2π,所以分析[]0,2x π∈时函数的值域,当[)0,x Îp 时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭ , 5,444x πππ⎡⎫+∈⎪⎢⎣⎭Q ,sin 42x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦,()f x ∴的值域是(-,当[],2x ππ∈时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,59,444x πππ⎡⎤+∈⎢⎥⎣⎦,cos 4x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,()f x ∴的值域是⎡-⎣,综上可知函数()f x 的值域是⎡-⎣,最小值是-1,故②不正确;③()()()()sin cos sin cos f x x x x x f x -=-+-=+=()f x ∴是偶函数,关于y 轴对称,故③正确;④由②知,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()4f x x π⎛⎫=+ ⎪⎝⎭ ,3,424x πππ⎡⎤+∈⎢⎥⎣⎦ ,而sin y x =在423,ππ⎡⎤⎢⎥⎣⎦上单调递减,故④不正确. 综上可知,正确编号是①③. 故选:B【点睛】本题考查含绝对值的三角函数性质的判断,意在考查转化与化归的思想,推理能力,和计算能力,属于中档题型,本题的关键是根据函数的周期,正确去掉绝对值,然后再分析函数的性质.10.已知双曲线()2222100x y a b a b-=>>,的左、右焦点分别为12F F ,,过1F 作圆222x y a +=的切线,与双曲线右支交于点M ,若1230F MF ∠=°,则双曲线的渐近线斜率为( )A. (3±-B. (3±+C. 13⎛±+ ⎝⎭)D. 13⎛±- ⎝⎭【答案】A 【解析】 【分析】由直角三角形以及中位线的性质得出24MF a =,由双曲线的定义得16F M a =,再由余弦定理以及222c a b =+化简得出(3ba=±,即可得出双曲线的渐近线斜率. 【详解】取切点为B ,连接BO ,作21AF MF ⊥,垂足于A 因为2BO AF P ,且O 为12F F ,的中点,所以222AF BO a == 在直角三角形2AF M 中,1230F MF ∠=°,所以2224MF AF a ==由双曲线的定义得: 1226F M a MF a =+=由余弦定理可知:()()()222264264cos30c a a a a =+-⨯⨯︒ 化简得:()221363c a =-,又222c a b =+所以()221263b a =-,即()222126333b a=-=-所以()33ba=±- 故双曲线的渐近线斜率为()33ba±=±- 故选:A【点睛】本题主要考查了双曲线的定义,涉及了直角三角形的性质以及余弦定理,属于中档题.11.2019年11月18日国际射联步手枪世界杯总决赛在莆田市综合体育馆开幕,这是国际射联步手枪世界杯总决赛时隔10年再度走进中国.为了增强趣味性,并实时播报现场赛况,我校现场小记者李明和播报小记者王华设计了一套播报转码法,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的a bc z ,,,…,的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数通过变换公式:()()**26121322262x N x x x y x x N x x +⎧⎪⎪=⎨⎪+∈∈≤⎪≤⎩,,不能被整除,,能被整除,将明文转换成密文,如6613162→+=,即f 变换成251:25132p +→=,即y 变换成m .若按上述规定,若王华收到的密文是ukweat ,那么原来的明文是( ) A. fujianB. puxianC. putianD. fuxian【答案】C 【解析】 【分析】分别得出u 、w 对应的自然数,将21y =、23y =代入公式得出对应的明文,由排除法即可得出答案. 【详解】u 对应的自然数为21,即21y =,则1212x +=或13212x+=,解得:41x =(舍),16x =即u 对应的明文为p ,故排除A ,D ;w 对应的自然数为23,即23y =,则1232x +=或13232x+=,解得:45x =(舍),20x =,即w 对应的明文为t ,故排除B ; 故选:C【点睛】本题主要考查了分段函数已知函数值求自变量,属于中档题.12.已知对任意实数x 都有()()'2xf x f x e -=,()01f =-,若()()1f x k x >-,则k 的取值范围是( )A. ()1+∞, B. 32342e ⎛⎫ ⎪⎝⎭, C. 1214e ⎛⎫ ⎪⎝⎭, D. 3214e ⎛⎫ ⎪⎝⎭, 【答案】D 【解析】 【分析】首先根题意构造函数()()xf x F x e=,并且求得函数()()21xf x e x =-,再讨论1,1x x >< 和1x =三种情况,参变分离后讨论k 的取值范围. 【详解】设()()xf x F x e=, ()()()()()()22x xxx f x e f x e f x f x F x ee ''--'===, ()2F x x c ∴=+,即()()()22xxf x x c f x e x c e=+⇒=+, ()01f c ==-,不等式()()()()1211xf x k x ex k x >-⇒->-当1x >时,()211x e x k x -<-,即()min211x e x k x ⎡⎤-<⎢⎥-⎣⎦ ,设()()211x e x g x x -=-,()()()()222232311xx x x e g x e x x x x -'=⋅=⋅---,1x > 当31,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '< ,()g x 单调递减,当3,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '>,()g x 单调递增, ∴当32x =时,函数取得最小值,32342g e ⎛⎫= ⎪⎝⎭,∴当1x >时,324k e <,当1x <时,()211x e x k x ->-,即()max211x e x k x ⎡⎤->⎢⎥-⎣⎦设()()211x e x g x x -=-,()()()()222232311xx x x e g x e x x x x -'=⋅=⋅---,1x < , 当0x <时,()0g x '>,()g x 单调递增, 当01x <<时,()0g x '<,()g x 单调递减, 0x ∴=时,()g x 取得最大值,()01g =,1x ∴<时,1k >,当1x =时,()10f e =>恒成立, 综上可知:3214k e <<. 故选:D【点睛】本题考查构造函数,不等式恒成立求参数的取值范围,意在考查利用函数的导数构造函数,并利用导数分析函数的性质,利用导数构造函数需熟记一些函数的导数,()()()()xf x f x xf x ''=+,2x x =⎪⎝⎭,()()()()2x f x xf x x f x ''=+ ()()()()()xxe f x e f x f x ''=+,()()()x xf x f x f x e e ''-⎛⎫= ⎪⎝⎭. 二、填空题(本题共4小题,每小题5分,共20分)13.已知复数z 满足13iz i =+(i 为虚数单位),则复数z =__________. 【答案】3i + 【解析】 【分析】 先化简13iz i+=,再求z . 【详解】22133331i i i iz i i i ++-+====--3z i ∴=+.故答案为:3i +【点睛】本题考查复数的化简,共轭复数,属于简单题型.14.已知x y ,满足20030x y y x y -≥⎧⎪≥⎨⎪+-≤⎩,则2z x y =+的取值范围是__________.【答案】[]05,【解析】 【分析】首先作出不等式表示的可行域,再令0z =作出初始目标函数,通过平移直线求得函数的最大值,求2z x y =+的取值范围.【详解】首先画出不等式组表示的可行域,如图OAB ∆,令0z =,画出初始目标函数20x y +=,然后平移到点B 取得最大值2030x y x y -=⎧⎨+-=⎩,解得:1,2x y ==,max 1225z ∴=+⨯=.当目标函数过点()0,0时,取得最小值,min 0200z =+⨯=,2z x y ∴=+的取值范围是[]0,5.故答案为:[]0,5【点睛】本题考查线性规划,意在考查画图,数形结合分析问题的能力,属于基础题型.15.在三棱锥P ABC -中,60ABC ∠=︒,90PBA PCA ∠=∠=︒,点P 到底面ABC 2,若三棱锥P ABC -的外接球表面积为6π,则AC 的长为__________. 3【解析】 【分析】PN ^平面ABC ,垂足为点N ,连接,NB NC ,由条件可知AN 是四边形ABNC 外接圆的直径,并作出几何体外接球的球心,并且求出2AN =,根据同弦所对的圆周角相等,可知60ANC ∠=o ,求出AC 的长. 【详解】PN ^平面ABC ,垂足为点N ,连接,NB NC ,,PN AB PB AB ⊥⊥,AB ∴⊥平面PBN ,BN ⊂平面PBN ,AB BN ∴⊥,同理AC CN ⊥, AN ∴是四边形ABNC 外接圆的直径,取AN 的中点M ,即M 是四边形ABNC 外接圆的圆心, 作OM ⊥平面ABC ,则OA OB OC ON ===过PN 的中点H 作PN 的垂线,交OM 于点O ,则ON OP =OA OB OC ON OP ∴====,O ∴是三棱锥P ABC -外接球的球心,246S R ππ==,62R ∴=,22OM =, 2231122AM R OM ∴=-=-=, 2AN ∴=,即底面外接圆的直径是2,60ABC ∠=o Q ,60ANC ∴∠=o ,33AC AN ∴=⨯=.故答案3【点睛】本题考查几何体的外接球问题,意在考查空间想象能力和计算能力,属于中档题型,一般几何体的外接球问题关键是确定球心,也可利用补体求解,若是几何体可以补成长方体或正方体,可以转化为正方体或长方体的外接球问题.16.在锐角ABC V 中,角A B C ,,所对的边分别为a b c ,,,点O 为ABC V 外接圆的圆心,3A π=,且AO AB AC λμ=+u u u r u u u r u u u r,则λμ的最大值为__________.【答案】19【解析】 【分析】首先变形()()AO OB OA OC OA λμ=-+-u u u r u u u r u u u r u u u r u u u r ,得到()1AO OB OC λμλμ--=+u u u r u u u r u u u r,两边平方后,得到()2221λμλμλμ∴--=+-,最后利用基本不等式求λμ的最大值【详解】ABC ∆Q 是锐角三角形,∴O 在ABC ∆的内部,0,1λμ∴<< ()()AO OB OA OC OA λμ=-+-u u u r u u u r u u u r u u u r u u u r()1AO OB OC λμλμ--=+u u u r u u u r u u u r,两边平方后()()222222212AO OB OCOB OC OB OC λμλμλμλμ--=+=++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r3A π=Q ,120BOC ∴∠=o,且AO BO CO ==u u u r u u u r u u u r, ()2221λμλμλμ∴--=+-()132λμλμ∴+=+0,1λμ<<Q ,13λμ∴+≥t =,2341t t ∴-+≥,解得:1t ≥(舍)或13t ≤,1139λμ≤⇒≤, λμ∴的最大值是19.故答案为:19【点睛】本题考查向量加,减和数量积运算的综合问题,意在考查转化与化归的思想和计算能力,本题的关键的关键转化是()()AO OB OA OC OA λμ=-+-u u u r u u u r u u u r u u u r u u u r ,整理后得到()1AO OB OC λμλμ--=+u u u r u u u r u u u r,然后再两边平方求λμ的最大值.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分17.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=. (1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长.【答案】(1)3π;(2【解析】 【分析】(1)根据正弦定理变换互化为sin cos 2sin sin sin cos sin A B C B B A B -=,再化简求得1cos 2A =,求角A ;(2)根据面积求8AB =,ADC ∆中,根据余弦定理求CD 的长.【详解】(1)因为sin cos 2sin cos A B c b B A b-=,由正弦定理可得sin cos 2sin sin sin cos sin A B C BB A B-=,化简得:sin cos 2sin cos cos sin A B C A A B =-, 所以sin cos cos sin 2sin cos A B A B C A +=, 即()sin 2sin cos A B C A +=.又因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 则sin 2sin cos C C A =.因为0C π<<,所以sin 0C ≠,所以1cos 2A =. 因为0A π<<,所以3A π=.(2)因为11sin 5sin 2234ABC S AB AC A AB AB π=⋅⋅=⨯⨯⨯=V ,因为ABC S =V 4AB =8AB =, 因为3AD DB =,即34AD AB =,所以6AD =.在ACD V 中,563AC AD A π===,,,由余弦定理得:2222cos CD AC AD AC AD A =+-⋅⋅, 则212536256312CD =+-⨯⨯⨯=,所以CD =【点睛】本题考查正余弦定理解三角形,意在考查转化与化归的思想和计算能力,属于基础题型,一般边和角在一个是式子的时候,可以采用正弦定理边角互化,转化为三角函数恒等变形问题.18.设数列{}n a 的前n 项和为n S ,且22n S n n =-,{}n b 为正项等比数列,且1134362b a b a =+=+,.(1)求数列{}n a 和{}n b 的通项公式; (2)设1211log n n n c a b ++=⋅,求{}n c 的前n 项和n T .【答案】(1)23n a n =-,212n n b -=;(2)21n nT n =+. 【解析】 【分析】(1)首先已知n S 求n a ,再设数列{}n b 的首项1b ,设公比为q ,231b q b =,求数列{}n b 的通项公式; (2)由(1)可知()()12121n c n n =-+,再利用裂项相消法求和.【详解】(1)由22n S n n =-,得当1n =时,111a S ==-,当2n ≥时,()()22112143n S n n n n -=---=-+, 所以当2n ≥时,123n n n a S S n -=-=-,11a =-也满足此式.所以23n a n =-.又1134326232b a b a =+==+=,,因为{}n b 为正项等比数列,设{}n b 的公比为()0q q >.所以23116b q b ==,即4q =, 所以11211242n n n n b b q ---=⋅=⋅=. (2)因为()2111213212n n n a n n b +++=+-=-=,.所以()()()211212111log 21log 22121n n n n c a b n n n +++===-⋅-+.11122121n n ⎛⎫=- ⎪-+⎝⎭所以123n n T c c c c =++++…1111111112335572121n n ⎛⎫=-+-+-++- ⎪-+⎝⎭ (11122121)n n n ⎛⎫=-=⎪++⎝⎭. 所以21n nT n =+. 【点睛】本题考查已知数列的前n 项和n S ,求通项公式,以及数列求和,已知考查基本方法和计算计算能力,属于基础题型,11n nn S a S S -⎧=⎨-⎩12n n =≥,一般求和的方法包括:1.公式法求和,2.分组转化法求和,3.裂项相消法求和,4.错位相减法求和,5.倒序相加法求和,6.规律求和法.19.如图,正方形ABCD 的边长为22,以AC 为折痕把ACD V 折起,使点D 到达点P 的位置,且PA PB =.(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PC 的中点,设()01PN PA i λ=<<u u u r u u u r ,且三棱锥A BMN -的体积为89,求λ的值.【答案】(1)证明见解析;(2)13.【解析】 【分析】(1)要证明面面垂直,需证明线面垂直,取AC 中点O ,连结PO BO ,,由条件证明,PO AC PO OB ⊥⊥;(2)利用等体积转化1839A BMN B AMN AMN V V S BO --==⋅=V ,解得43AMN S =V ,由面积公式解得λ的值. 【详解】解:(1)取AC 中点O ,连结POBO ,. 因为PC PA =,所以PO AC ⊥. 在POB V 中,122PO OB AC ===,22PB PA == 则222PB PO OB =+, 所以PO OB ⊥,又AC OB O =I ,且AC OB ⊂、面ABC , 所以PO ⊥面ABC ,又PO ⊂面PAC ,所以面PAC ⊥面ABC . (2)因为面PAC ⊥面ABC ,又面PAC I 面ABC AC =,且BO AC ⊥, 所以OB ⊥面PAC ,所以13A BMN B AMN AMN V V S BO --==⋅V . 又因为2OB =,89A BMN V -=,所以43AMN S =V .因为PN PA λ=u u u r u u u r ,所以()112AMN APM PAC S S S λλ-=-=V V V . 又142PAC S PA PC =⋅=V ,所以14423λ-⨯=,得13λ=.【点睛】本题考查面面垂直的证明和利用等体积转化求参数的问题,意在考查空间想象能力和推理证明,计算能力,属于中档题型,本题第二问的关键是等体积转化A BMN B AMN V V --=,一般求四面体的体积或是求点到面的距离都需要考虑等体积转化,求点到面的距离也可以转化为其他等价的点到平面的距离.20.已知椭圆()2222:10x y C a b a b +=>>的右焦点为F ,左,右顶点分别为A B ,,离心率为12,且过点312⎛⎫⎪⎝⎭,. (1)求C 的方程;(2)设过点F 的直线l 交C 于P ,Q (异于A B ,)两点,直线PAQB ,的斜率分别为12k k ,.若21k tk =,求t 的值.【答案】(1)22143x y +=;(2)3. 【解析】 【分析】 (1)根据12c a =,求得2243b a =,再代入点的坐标,求得椭圆方程; (2)设直线PB 的斜率为3k ,直线l 的方程1x my =+和椭圆方程22143x y +=联立,利用根与系数的关系表示13k k 和23k k 的值,再求21k t k =. 【详解】(1)依题意得椭圆的离心率为12c e a ===, 则2243b a =.将点312⎛⎫ ⎪⎝⎭,代入椭圆方程2222:1x y C a b+=得221913a a +=, 则2243a b ==,,故椭圆C 的方程为22143x y +=.(2)设直线PB 的斜率为()()31122k P x y Q x y ,,,,.由题意可知,直线PQ 的斜率不为0,故可设直线1l x my =+:. 由221143x my x y =+⎧⎪⎨+=⎪⎩,,消去x ,得()2234690m y my ++-=, 所以122634m y y m +=-+,122934y y m =-+. 所以()2112232211212221y y y y k k x x m y y m y y ⋅=⨯=---++ 22222992496413434m m m m m -+==--++++. 又因为点P 在椭圆上,所以211321344y k k x ==--, 则213k k =,所以3t =.【点睛】本题考查椭圆方程和直线与椭圆的位置关系的综合应用问题,意在考查利用根与系数的关系求解定值,属于中档题型,本题第二问的关键是设直线PB 的斜率为3k ,并且表示13k k 和23k k 的值. 21.已知函数()ln 1f x ax x ax =++.(1)函数()f x 在1x =处的切线l 过点()22-,,求l 的方程; (2)若*N a ∈且函数()f x 有两个零点,求a 的最小值.【答案】(1)22y x =-+即220x y +-=;(2)8.【解析】【分析】(1)首先求出在1x =处的切线方程,然后代入点()2,2-,求参数a 的值;(2)首先利用导数判断函数的单调性和最小值,因为()f x 有两个零点,所以()min 0f x <即210ae --<得2a e >,再根据零点存在性定理证明()f x 在211a e e ⎛⎫ ⎪⎝⎭,上有一个零点,在211e ⎛⎫ ⎪⎝⎭,上有一个零点,得到a 的最小值.【详解】(1)因为()()ln 10f x ax x ax x =++>,所以()1'ln ln 2f x a x ax a a x a x =+⋅+=+,所以()'12f a =又()11f a =+,所以()f x 在1x =处切线l 方程为()()121y a a x -+=-,即21y ax a =-+.又因为直线l 过点()22-,,所以得241a a -=-+即1a =-.所以直线l 方程为22y x =-+即220x y +-=.(2)因为()()'ln 2ln 2f x a x a a x =+=+.令()'0f x =得ln 2x =-即2x e -=,因为*a N ∈所以0a >,所以当20x e -<<时,()'0f x <,当2x e ->时,()'0f x >,则()f x 在()20e -,上单调递减,在()2e -+∞,上单调递增,所以()()22min 1f x f e ae --==-.因为()f x 有两个零点,所以()min 0f x <即210ae --<得2a e >,又因为()110f a =+>,1111ln 1a a a a f a a e e e e ⎛⎫⎛⎫=⋅⋅+⋅+ ⎪ ⎪⎝⎭⎝⎭()2211aa a a a a e a a e e e -=++=-+.设()()21a g a e a a a =-+>则()'2a g a e a =-,因为()'g a 在()1+∞,上单调递增,所以()'0g a >,所以()g a 在()1+∞,单调递增,所以()()10g a g e >=>. 又10a e >,所以10a f e ⎛⎫> ⎪⎝⎭, 故()f x 在211a e e ⎛⎫ ⎪⎝⎭,上有一个零点,在211e ⎛⎫ ⎪⎝⎭,上有一个零点, 即()f x 在()0+∞,上有两个零点, 则2a e >又*a N ∈且2739e ≈.,所以a 得最小值为8.【点睛】本题考查导数的几何意义,和已知零点个数求参数的取值范围,意在考查转化与化归的思想和计算能力,本题第二问的难点是函数的最小值()min 0f x <后,如何说明左右各有一个零点,即根据零点存在性定理说明,当1a >时,证明1111ln 10a a a a f a a e e e e ⎛⎫⎛⎫=⋅⋅+⋅+> ⎪ ⎪⎝⎭⎝⎭. (二)选考题:共10分.请考生在第22,23题中任选--题作答.如果多做,则按所做的第一个题计分.选修4-4:坐标系与参数方程22.已知曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换'3'x x y y ⎧=⎪⎨⎪=⎩得到曲线'C ,以原点为极点,x 轴的正半轴为极轴,建立极坐标系.设A 点的极坐标为32π⎛⎫ ⎪⎝⎭,. (1)求曲线'C 的极坐标方程;(2)若过点A 且倾斜角为6π的直线l 与曲线'C 交于M N ,两点,求AM AN ⋅的值. 【答案】(1)'C 的极坐标方程为:1ρ=(2)54【解析】【分析】(1) 由曲线C 的参数方程得出其普通方程,利用坐标变换得出'C 的方程,再转化为极坐标方程;(2)利用直线的参数方程的参数的几何意义求解即可.【详解】解:(1)曲线C 的普通方程为:2213x y +=, 将曲线C上的点按坐标变换'3'x x y y ⎧=⎪⎨⎪=⎩得到''x y y ⎧=⎪⎨=⎪⎩,代入()()22''1x y +=得'C 的方程为:221x y +=.化为极坐标方程为:1ρ=.(2)点A 在直角坐标的坐标为3,02⎛⎫-⎪⎝⎭, 因为直线l 过点A 且倾斜角为6π, 设直线l的参数方程为3212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数), 代入22:1C x y +=得:25024t t -+=. 设M N ,两点对应的参数分别为12t t ,,则1212524t t t t +==. 所以1254AM AN t t ⋅==. 【点睛】本题主要考查了参数方程与普通方程以及极坐标方程的转化、直线的参数方程参数的几何意义,属于中档题.选修4-5:不等式选讲23.已知函数()221f x m x =--,m R ∈,且102f x ⎛⎫+≥ ⎪⎝⎭的解集为{}11x x -≤≤. (1)求m 的值;(2)若,,a b c 都为正数,且11124m a b c ++=,证明:249a b c ++≥.【答案】(1)1m =(2)证明见解析【解析】【分析】(1)由题设条件得出220m x -≥,解得m x m -≤≤,根据102f x ⎛⎫+≥ ⎪⎝⎭的解集求出m 的值;(2)将1代换为11124a b c ++,利用基本不等式证明不等式即可.【详解】(1)由102f x ⎛⎫+≥ ⎪⎝⎭得220m x -≥得m x m -≤≤, 因为102f x ⎛⎫+≥ ⎪⎝⎭的解集为{}11x x -≤≤,所以1m =.(2)由(1)得111124a b c ++=, ∴()1112442241119242424b a c a c b a b c a b c a b a c b c ⎛⎫⎛⎫⎛⎫⎛⎫++++=++++++++≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.当且仅当24a b c ==时,等号成立.所以249a b c ++≥成立.【点睛】本题主要考查了利用基本不等式证明不等式,注意“1”的代换,属于中档题.。
2020届河北省衡水金卷新高考原创冲刺模拟试卷(二)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|01,}A x x x N =≤≤∈,则集合A 的子集个数为( ) A .1 B .2 C .3 D .42.已知a b >,c d <,则下列命题中正确的是( ) A .a c b d ->- B .a bd c> C .ac bd > D .c b d a ->- 3.若点(3,4)P -在角α的终边上,则cos α=( ) A.35-B.35C.45-D.454.向量(1,1)a =-, (1,0)b =,若()(2)a b a b λ-⊥+,则λ=( ) A .2 B .2- C . 3- D . 35. 已知直线,a b ,平面,,,a b αβαα⊂⊂,则//,//a b ββ是//αβ的 ( ) A .充分但不必要条件 B .必要但不充分条件 C. 充分必要条件 D .既不充分也不必要条件6.已知1cos 62πα⎛⎫-= ⎪⎝⎭,则cos cos 3παα⎛⎫+-= ⎪⎝⎭( )A .12 B .12± C.2 D.2±7. 函数()ln(2)f x x x2=--的零点所在的大致区间为( ) A .()1,2 B .()2,3 C .()3,4 D .()4,5 8.函数2ln xy x=的图象大致为( )9.设a=60.7,b=0.76,c=log 0.76,则a ,b ,c 这三个数的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .a <c <b10.函数23,1,()23,1,x x f x x x x +≤⎧=⎨-++>⎩与函数2()g x x =的图象交点的个数是( )A.0B.1C.2D.311.如图,在正方形网格纸上,粗实线画出的是某多面体的三视图及其部分尺寸.若该多面体的顶点在同一球面上,则该球的表面积等于( ) A .8π B .18π C. 24π D. 12.已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12,x x ,都有1212()()2f x f x x x ->-恒成立,则实数a 的取值范围是( )A .(0,1]B .(1,)+∞C .(0,1)D .[1,)+∞A.B.C.D.第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置)13.设x y 、满足约束条件:013x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,则2z x y =-的最小值为 _____________.14.在ABC ∆中,4,5,6a b c ===,则sin 2sin AC = ________ . 15.已知0m >,0n >,24m n +=,则12m n+的最小值是 __________ .16.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =⋅,则数列12n n S -⎧⎫⎨⎬⎩⎭项中的最大值为__________________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17. (本小题满分12分)已知集合{|13}A x x =≤≤,{|02}B x x =<<. (1)分别求AB ,()R C B A ;(2)已知集合{}1C x x a =<<,若C A ⊆,求实数a 的取值集合.18.(本小题满分12分)已知函数()cos (cos )f x x x x =+. (1)求()f x 的最小值;(2)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若()1f C =,433=∆ABC S ,7=c ,求ABC ∆的周长.19.(本小题满分12分)已知n S 为等比数列{}n a 的前n 项和,18a =,且41a -,5a ,431a +成等差数列. (1)求数列{}n a 的通项公式及n S ;(2)若21log ()n n n b a a +=⋅,11n n n c b b +=⋅,求数列{}n c 的前n 项和n T .20. (本小题满分12分)直三棱柱ABC-A 1B 1C 1中,AB=5,AC=3,BC=4,点D 是 线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD.(2) 线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB1? 若存在,试求出AD 的长度;若不存在,请说明理由.21.(本小题满分12分)已知函数()()xf x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.请考生在(22)、(23)、两题中任选一题作答。
2020届河北省衡水金卷新高考原创冲刺模拟试卷(十九)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
每小题只有一个选项符合题意,请将正确答案填入答题卷中。
) 1.已知集合{}062≤--=x x x A ,{}2>=x x B ,则( )A.)(3,2B.](3,2C.)(2,3-D.)[2,3-2.若复数z 满足5)21(=+i z ,其中i 为虚数单位,则复数z 的共轭复数=z ( ) A.i 21- B .i 21+ C .i 21+- D .i 21--3.“在()b a ,内0)(<'x f ”是“)(x f 在()b a ,内单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.已知在平面直角坐标系xoy 中,()1,2A ,()1,-m B ,若OB OA //,则=m( )A.2B. 2-C. 21D.21-5.设变量y x ,满足⎪⎩⎪⎨⎧≤≤--≥-+10202y y x y x ,则目标函数y x z 2+=的最小值为( )A .2B .3C .4D .56.设等差数列{}n a 的前n 项和为n S ,若352a a =,则=59S S ( )A.109B.1815C. 59D. 5187.设5tan,2log ,25.05.0π===c b a ,则( )A.c a b <<B.c b a <<C.b c a <<D.c a b <<8.我们知道:在平面内,点),(00y x 到直线0=++C By Ax 的距离公式2200B A C By Ax d +++=,通过类比的方法,可求得:在空间中,点)3,4,2(到直线0222=+++z y x 的距离为( )A .3B .5 C.6 D .55189.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为51-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A.π)53(+B. π)15(-C.π)15(+D.π)53(-10.函数)62sin(2)(π-=x x f 的图像为C ,以下结论错误..的是( ) A.图像C 关于直线65π=x 对称B.图像C 关于点⎪⎭⎫⎝⎛0,127π对称C.函数)(x f 在区间⎪⎭⎫ ⎝⎛-3,6ππ内是增函数D.由x y 2sin 2=图像向右平移6π个单位长度可以得到图像C11.已知直三棱柱111C B A ABC -中,︒=∠90ABC ,2,11===CC BC AB ,则异面直线1AB 与1BC 所成角的余弦值为( )A .53B .53-C .54D .54-12.已知实数b a ,满足0ln 42=--b a a ,R c ∈,则22)2()(c b c a ++-的最小值为( )A .553 B .59 C .55D .51第Ⅱ卷(非选择题90分)二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填入答题卷中。
2020届河北衡水金卷新高考原创考前信息试卷(三)
文科数学
★祝考试顺利★
注意事项:
1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=,B=,则A B=
A.[-1,)
B.(1,)
C.)
D.R
2.若==a bi(a,b R) ,则a2019b2020=
A. 1
B.0
C.1
D.2
3.若la+bl=,a=(1,1) ,Ibl=1,则a与b的夹角为
A. B. C. D.
4.已知等比数列的前n项和为,若,,则的公比为
A.或
B.或 D.3或 2
5.已知点P在圆O:x2+y2=1上,角α的始边为x轴的非负半轴,终边为射线OP,则当Sin2α+sinα取最小值时,点P位于
A.x轴上方
B.x轴下方
C.y轴左侧
D.y轴右侧
6.执行如图所示的程序框图,若输入的n=3,则输出的S=
A.1
B.5
C.14
D.30
7.在△ABC中,角A,B,C的对边分别为a,b,c,
已知(2b-c) cosA=a cosC,则A=
A. B. C. D.
8.若函数f(x) =(sinx) ln(x) 是偶函数,则实数a=
A. 1
B.0
C.1
D.
9.由共青团中央宣传部、中共山东省委宣传部、共青团山东省委、山
东广播电视台联合出品的《国学小名士》第三季于2019年11月24日晚在山东卫视首播。
本期最精彩的节目是π的飞花令:出题者依次给出π所含数字3.141592653……答题者则需要说出含有此数字的诗句。
雷海为、杨强、马博文、张益铭与飞花令少女贺莉然同场PK,赛况激烈让人屏住呼吸,最终π的飞花令突破204位。
某校某班级开元旦联欢会,同学们也举行了一场π的飞花令,为了增加趣味性,他们的规则如下:答题者先掷两个骰子,得到的点数分别记为x,y,再取出π的小数点后第x位和第y位的数字,然后说出含有这两个数字的一个诗句,若能说出则可获得奖品。
按照这个规则,取出的两个数字相同的概率为
A. B. C. D.
10.已知sin(α) =cos(α),则s in2α=
A. 1
B.0
C.
D.1
11.已知圆M的圆心为双曲线C:=1(a0,b0)虚轴的一个端点,半径为a b,若圆M截直线l:y=kx所得的弦长的最小值为2b,则C的离心率为
A. B. C. D.2
12.已知f’(x)是定义在R上的函数f(x)的导函数,且f(1x)=f(1x),当x1时,F’(x)>f(x)
恒成立,则下列判断正确的是
A.f(2)f(3)
B.f(2)f(3)
C.f(2)f(3)
D.f(2)f(3)
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分。
13.若是等差数列的前n项和,且=18,则= 。
14.若函数f(x)=则f(ln3)= 。
15.已知F1,F2是椭圆C:=1 (0b4)的左、右焦点,点P在C上,线段PF1与y轴交于点M,O为坐标原点,若OM为△PF1F2的中位线,且=1,则= 。
16.四面体ABCD中,△ABD和△BCD都是边长为2的正三角形,二面角A-BD-C大小为
120°,则四面体ABCD外接球的体积为。
三、解答题:共70分。
解答应写出文字说明,证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
已知函数f(x) =2(sin x cos x) sin x1。
(1)求f(x)的最小正周期;
(2)将函数f(x)的所有正的零点按从小到大依次排成一列,得到数列,令
a n=,S n为数列的前n项和,求证:。
18.(12分)
如图,四棱锥P-ABCD中,PA平面ABCD,AB AC,AB∥CD,AB=2CD,E,F分别为
PB,AB的中点。
(1) 求证:平面PAD∥平面EFC;
(2) 若PA=AB=AC=2,求点B到平面PCF的距离。
19.(12分)
某工厂加工产品A的工人的年龄构成和相应的平均正品率如下表:
(1)画出该工厂加工产品A的工人的年龄频率分布直方图;
(2)估计该工厂工人加工产品A的平均正品率;
(3)该工厂想确定一个转岗年龄x岁,到达这个年龄的工人不再加工产品A,转到其他岗位,为了使剩余工人加工产品A的平均正品率不低于90%,若年龄在同一区间内的工人加工产品A的正品率都取相应区间的平均正品率,则估计x最高可定为多少岁?
20.(12分)
已知F(1,0),点P在第一象限,以PF为直径的圆与y轴相切,动点P的轨迹为曲线C。
(1)求曲线C的方程;
(2)若曲线C在点P处的切线的斜率为k1,直线PF的斜率为k2,求满足k1k2=3的点P的个数。
21.(12分)
已知函数f(x)=(x-1)2x,g(x)=。
(1)求g(x)的单调区间;
(2)已知f(x)有两个极值点x1,x2(x1x2)且f(x1)10,求证:t2。
(二)选考题:共10分。
请考生在第22、23两题中任选一题作答。
如果多做,则按所做第一个题目计分。
22.[选修4-4:坐标系与参数方程](10分)
已知曲线C的参数方程为(θ为参数) ,直线l过点P(1,2) 且倾斜角为。
(1)求曲线C的普通方程和直线l的参数方程;
(2) 设l与C的两个交点为A,B,求+。
23.[选修4-5:不等式选讲](10分)
已知函数f(x)=的最大值为m。
(1)求m;
(2) 已知正实数a,b满足4a2b2=2。
是否存在a,b,使得=m。