自动控制原理_ 控制系统的数学模型_第1学时 微分方程和传递函数_
- 格式:pdf
- 大小:2.39 MB
- 文档页数:25
第二章自动控制系统的数学模型教学目的:(1)建立动态模拟的概念,能编写系统的微分方程。
(2)掌握传递函数的概念及求法。
(3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。
(4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。
(5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。
(6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力教学要求:(1)正确理解数学模型的特点;(2)了解动态微分方程建立的一般步骤和方法;(3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数;(4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入下的闭环传递函数、误差传递函数,能够熟练的掌握;(5)掌握运用梅逊公式求闭环传递函数的方法;(6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函数的方法。
教学重点:有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。
教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式。
的余子式k教学方法:讲授本章学时:10学时主要内容:2.0 引言2.1 动态微分方程的建立2.2 线性系统的传递函数2.3 典型环节及其传递函数2.4系统的结构图2.5 信号流图及梅逊公式2.0引言:什么是数学模型?为什么要建立系统的数学模型?1. 系统的数学模型:描述系统输入输出变量以及各变量之间关系的数学表达式。
1) 动态模型:描述系统处于暂态过程中个变量之间关系的表达式,他一般是时间函数。
自动控制原理传递函数
自动控制原理中,传递函数是一个非常重要的概念。
传递函数描述了控制系统
输入和输出之间的关系,是分析和设计控制系统的重要工具。
本文将介绍传递函数的基本概念、性质和应用。
传递函数是描述线性时不变系统输入和输出之间关系的数学函数。
对于一个线
性时不变系统,其传递函数可以用拉普拉斯变换表示。
传递函数通常用G(s)表示,其中s是复变量。
传递函数的形式可以是分子多项式除以分母多项式的比值,也可
以是一些特定形式的函数。
传递函数的性质包括,稳定性、因果性、实数性等。
稳定性是指系统在输入有
界的情况下,输出也是有界的。
因果性是指系统的输出只依赖于当前和过去的输入,而不依赖于未来的输入。
实数性是指系统的传递函数在实轴上的取值都是实数。
传递函数在控制系统分析和设计中有着广泛的应用。
通过传递函数,可以方便
地分析系统的频率响应特性,如幅频特性、相频特性等。
同时,传递函数也可以用于控制系统的设计,例如根据要求设计控制器的参数,使系统的性能满足特定的要求。
在实际工程中,传递函数也经常用于建立系统的数学模型。
通过测量系统的输
入和输出,可以辨识出系统的传递函数,从而对系统进行建模和仿真。
这对于系统的分析和预测具有重要意义。
总之,传递函数是自动控制原理中一个非常重要的概念。
通过传递函数,可以
方便地描述和分析控制系统的性能,并且可以用于控制系统的设计和建模。
因此,对传递函数的理解和掌握是控制工程师必备的基本能力之一。
希望本文对传递函数的基本概念、性质和应用有所帮助。
第二章自动控制系统的数学模型本章要点系统的数学模型是对系统进行定量分析的基础和出发点。
本章主要介绍从微分方程、传递函数和系统框图去建立自动控制系统的数学模型。
内容包括系统微分方程的建立步骤、传递函数的定义与性质、系统框图的建立、等效变换及化简、系统各种传递函数的求取以及典型环节的数学模型。
为了对自动控制系统性能进行深入的分析和设计,须定量计算系统的动、静态性能指标。
而要完成此项任务,就必须掌握其变化规律,用一个反映其运动状态的数学表达式描述系统的动态过程。
这种描述系统各变量之间关系的数学表达式称为系统的数学模型。
系统数学模型的建立主要有解析法和实验法。
解析法是从系统元件所遵循的一些基本规律出发去推导系统的数学模型。
如果不了解系统的结构和运动规律,则应采用实验法建立数学模型,即在系统的输入端加上测试信号,在根据测试出的输出响应信号建立其数学模型。
系统的数学模型有多种,经典控制理论中常用的数学模型有:微分方程(时域数学模型)、传递函数(复域数学模型)、频率特性(频域数学模型)和动态结构图(几何模型)。
第一节系统的微分方程微分方程是描述系统的输入量和输出量之间关系最直接的方法。
当系统的输入量和输出量都是时间t的函数时,其微分方程可以确切描述系统的运动过程。
一、系统微分方程的建立步骤1.根据系统的组成结构、工作原理和运动规律,确定系统的输入量和输出量。
2.从输入端开始,根据各环节所遵循的运动规律,依次列写微分方程。
联立方程,消去中间变量,求取一个只包含系统输入量和输出量的微分方程。
3.将方程整理成标准形式。
即把含输出量的各项放在方程的左边,把含输入量的各项放在方程的右边,方程两边各导数按降幂排列,并将有关系数化为具有一定物理意义的表示形式,如时间常数等。
二、举例说明例2-1求图2-1所示RC网络的微分方程。
解:由图可知,输入量为u i(t) , 输出量为u o(t) ,根据电路遵循的基尔霍夫电压定律,有dtt du Ct i t u R t i t u o o i )()()()()(=+=消去上式中的中间变量i(t) ,得)()()(t u dtt du RCt u o o i += 整理得 ()()()o o i du t RCu t u t dt+= 例2-2 求直流电动机的微分方程。
自动控制原理传递函数
自动控制原理传递函数是描述控制系统输入输出关系的数学模型,通常以s域传递函数的形式表示。
在控制系统中,输入信
号经过传递函数的作用,产生输出信号。
传递函数是由系统的微分方程所得到的拉普拉斯变换得到的。
控制系统中的传递函数通常是指示系统的输入与输出之间的关系,称为开环传递函数。
在控制系统中,传递函数是通过将系统的微分方程进行拉普拉斯变换得到的。
传递函数可以用来分析系统的动态性能,并通过调整传递函数的参数来改善系统的稳定性、快速性和准确性。
传递函数通常用以下形式表示:
G(s) = Y(s) / U(s)
其中,G(s)是传递函数,Y(s)是输出信号的拉普拉斯变换,U(s)是输入信号的拉普拉斯变换。
传递函数描述了输入与输出信号之间的关系,以及系统对输入信号的响应速度和稳定性等性能。
控制系统设计中,可以根据给定的性能要求,选择合适的传递函数来实现所需的控制效果。
常见的传递函数包括比例传递函数、积分传递函数、微分传递函数以及它们的组合。
通过对传递函数进行数学分析和计算,可以得到系统的稳定性、频率响应、步跃响应等性能指标。
控制系统设计师可以根据这些指标来优化系统的性能,并进行参数调整和改进。
总之,传递函数是自动控制原理中非常重要的概念,它描述了控制系统输入与输出之间的关系。
通过分析和优化传递函数,可以实现控制系统的稳定性、准确性和快速性等性能要求。
《自动控制原理》课程标准第一部分课程概述一、课程名称中文名称:《自动控制原理》英文名称:《Automatic control theory》二、学时与适用对象课程总计72学时,其中理论课62学时,实验10学时。
本标准适用于三年制专科机械工程专业。
三、课程地位、性质《自动控制原理》是研究自动控制共同规律的技术科学,是工科高等院校电类、控制类、机械类等专业的一门主干技术基础课程。
该课程的开设重在使学生掌握与自动控制原理相关的专业知识和综合应用能力,培养解决自动控制系统调试与维护方面实际问题的能力。
掌握和了解自动控制的基本理论和方法,对从事机械工程专业的工程技术人员是很有必要的。
四、课程基本理念本课程的教学应把握以下几点基本原则:一是增加对前沿和最具特色机械装备研发、使用、推广等背景知识的介绍,激发学员对该课程的探索兴趣;二是突出从理工类专业的角度理解设备运行原理和设计思路的方法,向学员强调学好这门课必须具备数学、电子学、计算机软硬件方面坚实的知识基础,重在自动控制系统的分析与改进,体现有别于理工院校自动控制课程的强调理论探索、侧重系统设计及实现等的教学模式;三是鼓励学员查询相关资料、书籍,不要满足于仅仅了解系统原理的简单程度,强化学员的自学能力,培养获取并运用信息的能力,为今后从事机械装备的创新型革新及研制打好基础;四是注重与学员的交流、并积极引导学员之间的相互交流,培养良好协作的团队精神。
五、课程设计思路在本课程开设之前,学员已经具备了多门课程的先导知识。
在教学过程中,鼓励学员学习和使用MATLAB软件,对于课堂作业,通过MATLAB进行验证。
讲授中应力争多介绍自动化领域前沿成果,拓展学员的知识面,启发解决问题的思路。
在总结教学经验和研究成果的基础上,对课程目标分别从知识与技能、过程与方法、情感态度与价值观等方面进行具体明确的阐述。
1.依据课程特点,设计教学思路自动控制原理是研究在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行的原理及技术,数学基础要求较高,理论性很强。