七年级数学上册第三章用字母表示数3.1字母表示数典例用字母表示数素材1苏科版讲解
- 格式:doc
- 大小:73.00 KB
- 文档页数:2
七年级数学上册第三章用字母表示数3.1 字母表示数典例解析用字母表示数素材2 (新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章用字母表示数3.1 字母表示数典例解析用字母表示数素材2 (新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章用字母表示数3.1 字母表示数典例解析用字母表示数素材2 (新版)苏科版的全部内容。
典例解析:用字母表示数例1.一辆公共汽车上有38人,在前门站下去a人,又上来b人.1.用式子表示这时车上有多少人.2.根据这个式子,求a=25,b=18时,车上有多少人?分析:用车上原有的人数减去下去的人数,再加上上来的b人,所以这时车上的人数用式子表示是38-a+b.把a=25,b=18代入上式得车上这时的人数.解:1.38-a+b2.当a=25,b=18时 38-25+18=31答:车上有(38-a+b)人.当a=25,b=18时,车上共有31人.例2.用含有a、b、h的式子表示右图的面积.分析:这是一个组合图形,由一个三角形和一个长方形组成的,三角形的面积是ah÷2,长方形的面积是ah,最后求三角形和长方形的面积和就是这个组合图形的面积.解:三角形的面积是:ah÷2 长方形的面积是:ah组合图形的面积是:ah÷2+ah答:这个组合图形的面积是:ah÷2+ah.例3.汉口到上海的水路长1125千米.一艘轮船从汉口开往上海,每小时行26千米.1.开出t小时后,离开汉口多少千米?如果12t,离开汉口有多少千米?=2.开出t小时后,到上海还要航行多少千米?如果20=t,到上海还有多少千米?分析:由题意知每小时26千米是轮船的速度,t小时是行驶的时间,则离开汉口的路程是速度乘时间,即26t;当12=t时,表示给出t所代表的数值,求26t这个含有字母的式子的值是多少.到上海还要行多少千米,就是求剩下的路程,用总路程1125减去t小时行的路程.解: 1.26t如果12t 26t=26×12=312=2.1125-26t如果20t 1125-26t=1125-26×20=605=答:开出t小时后,离开汉口26t千米;如果12t,离开汉口312千米;开出t小时后,到上=海还要航行(1125-26t)千米;如果20t,到上海还有605千米.=例4. 一列火车每小时行80千米,t小时所行路程是多少千米?当3t时,火车所行路程是多=少千米?当5.0t时,火车所行路程是多少千米?=分析:由题意知每小时80千米是火车的速度,t小时是行驶时间,则t小时所行路程是速度乘时间,即80t;当3=t时,表示给出t所代表的数值,求80t这个含有字母的式t或5.0=子的值是多少,可直接代入求值.解:火车t小时行驶的路程是80t.当3t时,80t=80×3=240=当5.0t时,80t=80×0。
课题:3.1字母表示数教学目标:一、知识目标1.知道在现实情境中字母表示数的意义.2.会用字母表示一些简单问题中的数量关系和变化规律.3.在探索规律的过程中感受从具体到抽象的归纳思想方法.二、能力目标1.经历字母表示数的过程,会用字母表示规律.2.引导学生探索、归纳,提高学生分析问题,解决问题的能力.三、情感目标1.通过师生交往、互动,激发学生探究数学问题的兴趣,养成自主学习的好习惯.2.在活动中,学会与他人交流与合作.教学重点:体会字母表示数的意义,会用字母表示数量关系教学难点:探索用代数式来表示规律的过程教学过程:一、创设情景,揭示课题1.观察图片,说出它们表示的意义(学生举例).在生活中常用图标表示某种意义,给我们的生活带来了方便.2.唱儿歌:一只青蛙一张嘴,两只眼睛四条腿,扑通一声跳下水……提问:两只青蛙呢?……八只青蛙呢?……十六只青蛙呢?……同学们唱到这里就有一点困难了,但是儿歌还能继续唱下去,想一想你能用一句话把这首儿歌唱完吗?思考一下,并与同桌交流.二、温故知新1.由于学生小学时已经初步涉及用字母表示数(如用字母表示运算律、面积、周长等),通过回顾由此增强学生对“字母表示数”的感性认识:字母不但可以表示数,而且可以简明地表达数学公式,用以揭示数学规律.请同学们观察下面的式子:加法交换律:a + b = b + a 乘法交换律:a×b = b×a2.姐姐的年龄比弟弟大四岁,求姐姐的年龄.你能用一个式子来表示姐弟年龄的关系吗?3.带领同学们一起回忆长方形和圆的周长、面积公式.问:同学们感受到字母表示数的优越性了吗?请谈谈你的感受设计一组练习,在老师的指导之下,逐步学会用字母表示数和数量关系.小明今年岁,小明比小丽大2岁,小丽今年()岁 .小丽5走了,那么她的平均速度是()一件羊毛衫标价元,按标价的8折出售,则这件羊毛衫的售价是()元.某城市5年前人均收入为元,预计今年人均收入是5年前的2倍多500元,那么今年人均收入将达()元.某城市市区人口万人,市区绿地面积万平方米,则平均每个人拥有绿地()平方米如图,这个三角形的面积是()如图,这个圆柱体的体积是()如图,这个长方体的体积是(),表面积是()三、探索交流,形成能力1 观察月历涂色方框中的四个数有什么关系?2 搭一条、两条、三条、四条金鱼各用几根火柴棒?3 用同样大小的正方形纸片,按以下方式拼大正方形.第一个图形有1个小正方形第二个图形比第一个多()小正方形第三个图形比第二个多()小正方形第四个图形比第三个多()小正方形想一想:第5个图形比第4个多几个小正方形?请在方格纸上画出第9个图形并验证你的猜想.请问:第10个图形比第4个多几个小正方形?第100个图形比第99个多几个小正方形?第n 个图形比第n -1个多几个小正方形?小组讨论,师生互动,全班交流.“学生讨论”给予较充分的时间,使其经历探索规律的过程进一步感知用字母表示书、数给研究问题带来的方便,从而体会到用字母表示数的意义所在.四、课堂练习:P80 练一练五、归纳小结,整体把握师生共同小结,用字母表示数的意义.用字母表示一些简单问题中的数量关系和变化规律.六、布置作业七、教后反思:。
典例解析:用字母表示数例1.选择答案填空.63除以6与x 的积,应表示为( ). A .x ⨯÷663 B .)6(63x ⨯÷ C .x 663÷ D .x ⨯÷)663(分析:应选B 和C 两个答案,6与x 的积应该先算,所以先B 是正确的.不过,当“x ⨯6” 写成“x 6”以后,“x 6”就应该看做一个数,即看做6与x 的乘积, 所以答案C 也是正确的. 解:63除以6与x 的积,应表示为( B 、C ). 例2.用含有字母的式子表示:1.一小有学生x 人,女生比男生少37人,二小的学生人数比一小的2倍多19人, 二小有学生多少人?2.一个三角形的高是h 厘米,底比高的3倍多2厘米,这个三角形的面积是( ) 平方厘米.3.爸爸今年a 岁,是儿子小亮年龄的8倍,6年后他们父子共有( )岁. 4.两村相距x 千米.已知甲、乙两人分别从两村同时出发,相向而行,t 小时相遇. 已知甲每小时行a 千米,则乙每小时行( )千米.分析: 1.一小有男生x 人,女生(x -37人),一小有学生[x +(x -37)]人,二小学生人数可表示.2.三角形的高是h 厘米,底是(3h +2)厘米,面积可表示出来.3.爸爸今年a 岁,儿子今年a ÷8(岁),6年后父子年龄共增加6×2(岁)4.“相遇问题”,甲、乙两人每小时共行(速度之和)x ÷t (千米),从而乙每小时行x ÷t -a (千米)解: 1.2[x +(x -37)]+192.h (3h +2)÷2 3.a +a ÷8+6×2 4.x ÷t -a例3.果园里有苹果树x 棵,桃树y 棵,且x >y .请用字母x 、y 表示下列数量关系.1.苹果树比桃树多多少棵? 2.苹果树和桃树共多少棵?3.梨树的棵数比苹果树与桃树的和的2倍少15棵,梨树有多少棵? 分析:题中第1问是两数差的问题,用大数减小数,也就是y x -.第2问是求两数和,用y x +.第3问是求比两数和的2倍还少15的数,就是从x 与y 和的2倍中再减去15. 解:1.y x -2.y x + 3.15)(2-+y x例4.下列各式中的字母取什么值时,等式成立?1.x -x =0; 2.m ÷5=3; 3.a ÷a =1; 4.0÷b =0 分析:使等式成立,即把字母的取值代入各式,左、右两边恰好相等.特别要注意的是:字母的取值必须使式子有意义.解:1.x -x =0,x 可以为任意数;2.m ÷5=3,m =5×3,m =15; 3.a ÷a =1,a 可以是除0以外的任意数; 4.0÷b =0,b 可以是除0以外的任意数.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确) 1.如图,已知,添加下列条件中的一个,不能判断的是( )A .B .C .D .【答案】D【解析】根据全等三角形的判定定理一一判断即可. 【详解】由,还有一条公共边AB,故A. ,可利用AAS 判定;B. ,可利用SAS 判定;C. ,可利用ASA 判定;D. ,不能判定;故选D. 【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理. 2.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2【答案】D【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.3.在多项式①222x xy y +-;②222x y xy --+;③22x xy y ++;④2414x x ++中,能用完全平方公式分解因式的有( ) A .①②B .②③C .①④D .②④【答案】D【解析】本题利用完全平方公式,需要逐一进行分析.【详解】①x2+2xy−y2不符合完全平方公式的特点,不能用完全平方公式进行因式分解;②−x2−y2+2xy符合完全平方公式的特点,能用完全平方公式进行因式分解;③x2+xy+y2不符合完全平方公式的特点,不能用完全平方公式进行因式分解;④4x2+1+4x符合完全平方公式的特点,能用完全平方公式进行因式分解。
中小学最新教育资料
中小学最新教育资料常用数学符号的由来
“+”:是15世纪德国数学家魏德美所创。
在横线上加一竖,表示增加的意思。
“-”:亦是魏德美创造。
在加号上减去一竖,表示减少。
“×”:是18世纪美国数学家欧德莱首先使用。
乘是增加的另一种表示方法,所以将“+”号斜了过来。
“÷”:是18世纪瑞士人哈纳所创。
意思是表示分界,所以用一横线把两个点分开。
“=”:是16世纪英国学者列科尔德发明。
他认为世界上只有用这两条平行而又相等的直线符号来表示等值最为恰当。
典例解析:用字母表示数例1.一辆公共汽车上有38人,在前门站下去a 人,又上来b 人.1.用式子表示这时车上有多少人.2.根据这个式子,求a =25,b =18时,车上有多少人?分析:用车上原有的人数减去下去的人数,再加上上来的b 人,所以这时车上的人数用式子表示是38-a +b .把a =25,b =18代入上式得车上这时的人数.解:1.38-a +b2.当a =25,b =18时 38-25+18=31答:车上有 (38-a +b )人.当a =25,b =18时,车上共有31人.例2.用含有a 、b 、h 的式子表示右图的面积.分析:这是一个组合图形,由一个三角形和一个长方形组成的,三角形的面积是ah ÷2,长方形的面积是ah ,最后求三角形和长方形的面积和就是这个组合图形的面积.解:三角形的面积是:ah ÷2 长方形的面积是:ah组合图形的面积是:ah ÷2+ah答:这个组合图形的面积是:ah ÷2+ah .例3.汉口到上海的水路长1125千米.一艘轮船从汉口开往上海,每小时行26千米.1.开出t 小时后,离开汉口多少千米?如果12=t ,离开汉口有多少千米?2.开出t 小时后,到上海还要航行多少千米?如果20=t ,到上海还有多少千米?分析:由题意知每小时26千米是轮船的速度,t 小时是行驶的时间,则离开汉口的路程是速度乘时间,即26t ;当12=t 时,表示给出t 所代表的数值,求26t 这个含有字母的式子的值是多少.到上海还要行多少千米,就是求剩下的路程,用总路程1125减去t 小时行的路程.解: 1.26t 如果12=t 26t =26×12=3122.1125-26t 如果20=t 1125-26t =1125-26×20=605答:开出t 小时后,离开汉口26t 千米;如果12=t ,离开汉口312千米;开出t 小时后,到上海还要航行(1125-26t )千米;如果20=t ,到上海还有605千米.例4. 一列火车每小时行80千米,t 小时所行路程是多少千米?当3=t 时,火车所行路程是多少千米?当5.0=t 时,火车所行路程是多少千米?分析:由题意知每小时80千米是火车的速度,t 小时是行驶时间,则t 小时所行路程是速度乘时间,即80t ;当3=t 或5.0=t 时,表示给出t 所代表的数值,求80t 这个含有字母的式子的值是多少,可直接代入求值.解:火车t 小时行驶的路程是80t .当3=t 时,80t =80×3=240当5.0=t 时,80t =80×0.5=40答:当3=t 时,火车行驶240千米.当5.0=t 时,火车行驶40千米.例5.水果店上午运来苹果a 箱,下午运来苹果b 箱,每箱苹果m 千克.1.用式子表示水果店一共运来苹果的千克数和上午、下午运来苹果的平均千克数,以及上午运来的苹果比下午的多多少千克?2.当a =40,b =25,m =20时,求出上面几个式子的实际数.分析:1.上午运来a 箱,下午运来b 箱,共(a +b )箱,每箱m 千克,故共 m (a +b )(千克),或上午a 箱,共am (千克),下午b 箱,共bm (千克),上、下午共(am + bm )千克;上、下午运来苹果的平均数为 m (a +b )÷2(千克)或(am +bm )÷2(千克).上午运来的苹果比下午的多(am -bm )(千克).2.把 a =40,b =25,m =20分别代人上面各式中相应的字母,计算即得实际数.解:1.上午、下午共运来苹果:m (a +b )(千克)或(am +bm )(千克);上、下午运来苹果的平均数为:m (a +b )÷2(千克)或(am +bm )÷2(千克);上午运来的苹果比下午的多:(am -bm )(千克)或m (a -b )(千克).2.当a =40, b =25, m =20时m (a +b )=20×(40+25)=1300(千克),m (a +b )÷2=20×(40+25)÷2=650(千克)m (a -b )=20×(40-25)=300(千克).七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,点E 在BC 的延长线上,下列条件中能判断AD ∥BC 的是( )A .∠1=∠3B .∠2=∠4C .∠B =∠DCED .∠B+∠BCD =180°【答案】B 【解析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:由∠2=∠4,可得AD ∥CB ;由∠1=∠3或∠B =∠DCE 或∠B+∠BCD =180°,可得AB ∥DC ;故选B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.如图,在ABC 中,BC 边上的高为( )A .BDB .CFC .AED .BF【答案】C 【解析】根据从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高进行分析即可.【详解】在△ABC 中,BC 边上的高是过点A 垂直于BC 的线是AE .故选:C【点睛】此题主要考查了三角形的高,关键是掌握三角形的高的定义.3.如图,在ABC ∆中,32B =︒∠,BAC ∠的平分线AD 交BC 于点D ,若DE 垂直平分AB ,则C ∠的度数为()A.90︒B.84︒C.64︒D.58︒【答案】B【解析】分析:根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.详解:∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=32°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=32°,∴∠C=180°-32°-32°-32°=84°,故选B.点睛:本题考查的是线段的垂直平分线的性质、角平分线的定义,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如果a=355,b=444,c=533,那么a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【解析】根据幂的乘方得出指数都是11的幂,再根据底数的大小比较即可.【详解】a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.【点睛】本题考查了幂的乘方,关键是掌握a mn=(a n)m.5.如图,∠1=50°,直线a平移后得到直线b,则∠2﹣∠3=()A.l30°B.120°C.100°D.80°【答案】A【解析】由平移的性质得到a与b平行,利用两直线平行同旁内角互补以及三角形外角性质,即可求出所求.【详解】解:如图∵直线a平移后得到直线b,∴a∥b,∴∠1+∠ABO=180°,∵∠1=50°,∴∠ABO=130°,∵∠3=∠BOC,∠2=∠BOC+∠ABO,∴∠2﹣∠3=∠2﹣∠BOC=∠ABO=130°.故选:A.【点睛】此题考查了平移的性质,平行线的性质,以及三角形外角的性质,熟练掌握平移的性质是解本题的关键.6.若不等式组的解集是,则的值为()A.-1 B.2 C.3 D.4【答案】B【解析】解关于x的不等式组求得x的范围,由-1<x<2得出关于a、b的方程组,从而求得a、b的值,继而得出a-b的值.【详解】解:解不等式3x-a<2,得:x<,解不等式x+2b>3,得:x>3-2b,∵不等式组的解集为-1<x<2,∴,解得:a=4,b=2,则a-b=2,故选:B.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.7.下列各图形中,具有稳定性的是A.B.C.D.【答案】C【解析】根据三角形具有稳定性,四边形没有稳定性进行分析即可.【详解】A、多个四边形,没有稳定性;B、下面不是三角形,没有稳定性;C、是两个三角形,有稳定性;D、下面是四边形,没有稳定性.故选:C.【点睛】三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状.8.已知,则x+y的值为()A.0 B.﹣1 C.1 D.5【答案】C【解析】根据非负数的性质列出关于x、y的方程组,求出x、y的值代入x+y求值即可:∵,∴。
七年级数学上册第三章用字母表示数3.1 字母表示数素材2 (新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章用字母表示数3.1 字母表示数素材2 (新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章用字母表示数3.1 字母表示数素材2 (新版)苏科版的全部内容。
教学引入素材
教科书以摆火柴棒引入,我们在教学中可以设计欢快活泼的歌唱形式如:儿歌《数青蛙》:一只青蛙一张嘴,两只眼睛四条腿。
两只青蛙两张嘴,四只眼睛八条腿。
三只青蛙三张嘴,六只眼睛十二条腿.四只青蛙四张嘴,八只眼睛十六条腿.……。
可供选择的素材
在教材提供的购买门票、蟋蟀叫的次数与温度的关系外还可以提供与学生学习生活联系更紧密的实例.如:学生体质健康测试标准有关公式.学生的握力体重指数(m)是衡量学生身体素质的一个重要指标,它等于学生的握力(G千克)除以学生的体重(M千克)再乘以100.我们可以设问:(1)用代数式表示学生的握力体重指数;(2)若九年级男生小明的体重是50千克,当小明的握力分别是10千克、15千克、20千克时,他的握力体重指数是多少?(3)九年级男生的合格标准是m≥35.小明的握力至少要达到多少千克时才能合格?
又如:为了测试一种皮球的弹跳高度与下落高度(h)之间的关系,通过测试得到如下一组数据:
那么用h表示对应的弹跳高度是 .。
典例解析:用字母表示数例1.一辆公共汽车上有38人,在前门站下去a 人,又上来b 人.1.用式子表示这时车上有多少人.2.根据这个式子,求a =25,b =18时,车上有多少人?分析:用车上原有的人数减去下去的人数,再加上上来的b 人,所以这时车上的人数用式子表示是38-a +b .把a =25,b =18代入上式得车上这时的人数.解:1.38-a +b2.当a =25,b =18时 38-25+18=31答:车上有 (38-a +b )人.当a =25,b =18时,车上共有31人.例2.用含有a 、b 、h 的式子表示右图的面积.分析:这是一个组合图形,由一个三角形和一个长方形组成的,三角形的面积是ah ÷2,长方形的面积是ah ,最后求三角形和长方形的面积和就是这个组合图形的面积.解:三角形的面积是:ah ÷2 长方形的面积是:ah组合图形的面积是:ah ÷2+ah答:这个组合图形的面积是:ah ÷2+ah .例3.汉口到上海的水路长1125千米.一艘轮船从汉口开往上海,每小时行26千米.1.开出t 小时后,离开汉口多少千米?如果12=t ,离开汉口有多少千米?2.开出t 小时后,到上海还要航行多少千米?如果20=t ,到上海还有多少千米? 分析:由题意知每小时26千米是轮船的速度,t 小时是行驶的时间,则离开汉口的路程是速度乘时间,即26t ;当12=t 时,表示给出t 所代表的数值,求26t 这个含有字母的式子的值是多少.到上海还要行多少千米,就是求剩下的路程,用总路程1125减去t 小时行的路程.解: 1.26t 如果12=t 26t =26×12=3122.1125-26t 如果20=t 1125-26t =1125-26×20=605答:开出t 小时后,离开汉口26t 千米;如果12=t ,离开汉口312千米;开出t 小时后,到上海还要航行(1125-26t )千米;如果20=t ,到上海还有605千米.例4. 一列火车每小时行80千米,t 小时所行路程是多少千米?当3=t 时,火车所行路程是多少千米?当5.0=t 时,火车所行路程是多少千米?分析:由题意知每小时80千米是火车的速度,t 小时是行驶时间,则t 小时所行路程是速度乘时间,即80t ;当3=t 或5.0=t 时,表示给出t 所代表的数值,求80t 这个含有字母的式子的值是多少,可直接代入求值.解:火车t 小时行驶的路程是80t .当3=t 时,80t =80×3=240当5.0=t 时,80t =80×0.5=40答:当3=t 时,火车行驶240千米.当5.0=t 时,火车行驶40千米.例5.水果店上午运来苹果a 箱,下午运来苹果b 箱,每箱苹果m 千克.1.用式子表示水果店一共运来苹果的千克数和上午、下午运来苹果的平均千克数,以及上午运来的苹果比下午的多多少千克?2.当a =40,b =25,m =20时,求出上面几个式子的实际数.分析:1.上午运来a 箱,下午运来b 箱,共(a +b )箱,每箱m 千克,故共 m (a +b )(千克),或上午a 箱,共am (千克),下午b 箱,共b m (千克),上、下午共(am+ bm )千克;上、下午运来苹果的平均数为 m (a +b )÷2(千克)或(am +bm )÷2(千克).上午运来的苹果比下午的多(am -bm )(千克).2.把 a =40,b =25,m =20分别代人上面各式中相应的字母,计算即得实际数.解:1.上午、下午共运来苹果:m (a +b )(千克)或(am +bm )(千克);上、下午运来苹果的平均数为:m (a +b )÷2(千克)或(am +bm )÷2(千克);上午运来的苹果比下午的多:(am -bm )(千克)或m (a -b )(千克).2.当a =40, b =25, m =20时m (a +b )=20×(40+25)=1300(千克),m (a +b )÷2=20×(40+25)÷2=650(千克)m (a -b )=20×(40-25)=300(千克).2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )A .12B .23C .25D .7102.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q 3.如图,A 、B 两点在双曲线y=4x上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .64.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .5.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为( )A .4B .6C .8D .106.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20% 7.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-48.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >09.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D10.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A.30°B.35°C.40°D.45°11.关于x的正比例函数,y=(m+1)23mx-若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-1 212.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233πB.233π-C.3π-D.3π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 318 652 793 1 604 4 005发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).14.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线11+22y x=图象上的概率为__.15.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.16.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为_____.17.在数轴上与2 所对应的点相距4个单位长度的点表示的数是______.18.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值.20.(6分)如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长;⑵.求CD 的长.21.(6分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1). ①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,求k 的取值范围.22.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值23.(8分)如图,已知抛物线y =x 2﹣4与x 轴交于点A ,B (点A 位于点B 的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.24.(10分)解分式方程:12x-=3x25.(10分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.26.(12分)先化简2221169x xx x x-⎛⎫-⋅⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值.27.(12分)先化简再求值:a ba-÷(a﹣22ab ba-),其中a=2cos30°+1,b=tan45°.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2.D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.3.D【解析】【分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S1=4+4-1×1=2.故选D.4.D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.5.C【解析】【分析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=12 CF•CE.【详解】解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BC∥DE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以△CEF的面积=12CF•CE=8;故选:C.点睛:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.6.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.D【解析】【详解】2122m xx x -=--,去分母,方程两边同时乘以(x ﹣1),得:m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .8.C【解析】【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a 、b 在数轴上的位置可知:a <1,b >1,且|a|>|b|,∴a+b <1,ab <1,a ﹣b <1,a÷b <1.故选:C .9.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,表示的点与点B最接近,所以3故选B.10.B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11.B【解析】【分析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.12.B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π-故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.16 【解析】【分析】根据题意列出图表,即可表示(a ,b )所有可能出现的结果,根据一次函数的性质求出在11+22y x =图象上的点,即可得出答案. 【详解】画树状图得:∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线11+22y x =图象上的只有(3,2),∴点(a ,b )在11+22y x =图象上的概率为16. 【点睛】 本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.15.3 4.【解析】【详解】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34;故答案为34.【点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.16.(﹣3,1)【解析】如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,90CEO AFOCOE OAFOC OA⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,3),∴CE=OF=1,OE=AF=3,∴点C坐标(﹣3,1),,1).故答案为(3点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.17.2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.18.2【解析】【分析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴当10-1x=0,即x=2时,y1最小值=12,∴y最小值=2.即MN的最小值为2;故答案为:2.【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】【详解】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34 DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF ∽△DNE 得:MF=34(t ﹣3), ∴AF=4﹣MF=﹣34t+254, ∵点G 为EF 的三等分点,∴G (3236t +,13t ), 代入直线AD 的解析式y=﹣34x+6得:t=7517; 综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.20.(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB 的长;(2)用三角形的面积等于底乘以高的一半求解. 解:(1).∵在Rt ⊿ABC 中,90ACB ∠=o ,20,15AC BC ==.∴25AB ==,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=,∴20×15=25CD.∴12CD =.21. (1)y 1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k 的取值范围是16≤k≤12或k =﹣1.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C 1:y 1=ax 2+2ax+a ﹣1即可求得a 的值; ②根据对称的性质得出B 的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是1 6≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.22.(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关【解析】【分析】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)利用利润=单个利润 数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m 值即可;【详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.23.(1) ;(1) y =x 1﹣4x+1或y =x 1+6x+1.【解析】【分析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【详解】解:(1)由x 1﹣4=0得,x 1=﹣1,x 1=1,∵点A 位于点B 的左侧,∴A (﹣1,0),∵直线y =x+m 经过点A ,∴﹣1+m =0,解得,m =1,∴点D 的坐标为(0,1),∴AD =22OA OD =12;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,y =x 1+bx+1=(x+2b )1+1﹣24b , 则点C′的坐标为(﹣2b ,1﹣24b ), ∵CC′平行于直线AD ,且经过C (0,﹣4),∴直线CC′的解析式为:y =x ﹣4,∴1﹣24b =﹣2b ﹣4, 解得,b 1=﹣4,b 1=6,∴新抛物线对应的函数表达式为:y =x 1﹣4x+1或y =x 1+6x+1.【点睛】本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.24.x=1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】方程两边都乘以x (x ﹣2),得:x=1(x ﹣2),解得:x=1,检验:x=1时,x (x ﹣2)=1×1=1≠0,则分式方程的解为x=1.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25. (1)m≥﹣;(2)m 的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m 2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m+2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx+c =1(a≠1)的两根时,x 1+x 2=﹣,x 1x 2=是解答此题的关键.26.3x x -,当x=2时,原式=2-. 【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.试题解析:原式=()()2x x 1x 12x 1x 1x 3--⎛⎫-⋅ ⎪--⎝⎭-=()()2x x 1x 3x 1x 3--⋅--=x x 3- 当x=2时,原式=2223=--.27.1a b -;【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a 和b 的值,代入计算可得.【详解】 原式=a b a -÷(2a a ﹣22ab b a-) =222a b a ab b a a--+÷ =()2•a b a a a b -- =1a b-,当a =2cos30°+1=+1,b =tan45°=1时,原式==3. 【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.。
典例解析:用字母表示数例1.一辆公共汽车上有38人,在前门站下去a 人,又上来b 人.1.用式子表示这时车上有多少人.2.根据这个式子,求a =25,b =18时,车上有多少人?分析:用车上原有的人数减去下去的人数,再加上上来的b 人,所以这时车上的人数用式子表示是38-a +b .把a =25,b =18代入上式得车上这时的人数.解:1.38-a +b2.当a =25,b =18时 38-25+18=31答:车上有 (38-a +b )人.当a =25,b =18时,车上共有31人.例2.用含有a 、b 、h 的式子表示右图的面积.分析:这是一个组合图形,由一个三角形和一个长方形组成的,三角形的面积是ah ÷2,长方形的面积是ah ,最后求三角形和长方形的面积和就是这个组合图形的面积.解:三角形的面积是:ah ÷2 长方形的面积是:ah组合图形的面积是:ah ÷2+ah答:这个组合图形的面积是:ah ÷2+ah .例3.汉口到上海的水路长1125千米.一艘轮船从汉口开往上海,每小时行26千米.1.开出t 小时后,离开汉口多少千米?如果12=t ,离开汉口有多少千米?2.开出t 小时后,到上海还要航行多少千米?如果20=t ,到上海还有多少千米?分析:由题意知每小时26千米是轮船的速度,t 小时是行驶的时间,则离开汉口的路程是速度乘时间,即26t ;当12=t 时,表示给出t 所代表的数值,求26t 这个含有字母的式子的值是多少.到上海还要行多少千米,就是求剩下的路程,用总路程1125减去t 小时行的路程.解: 1.26t 如果12=t 26t =26×12=3122.1125-26t 如果20=t 1125-26t =1125-26×20=605答:开出t 小时后,离开汉口26t 千米;如果12=t ,离开汉口312千米;开出t 小时后,到上海还要航行(1125-26t )千米;如果20=t ,到上海还有605千米.例4. 一列火车每小时行80千米,t 小时所行路程是多少千米?当3=t 时,火车所行路程是多少千米?当5.0=t 时,火车所行路程是多少千米?分析:由题意知每小时80千米是火车的速度,t 小时是行驶时间,则t 小时所行路程是速度乘时间,即80t ;当3=t 或5.0=t 时,表示给出t 所代表的数值,求80t 这个含有字母的式子的值是多少,可直接代入求值.解:火车t 小时行驶的路程是80t .当3=t 时,80t =80×3=240当5.0=t 时,80t =80×0.5=40答:当3=t 时,火车行驶240千米.当5.0=t 时,火车行驶40千米.例5.水果店上午运来苹果a 箱,下午运来苹果b 箱,每箱苹果m 千克.1.用式子表示水果店一共运来苹果的千克数和上午、下午运来苹果的平均千克数,以及上午运来的苹果比下午的多多少千克?2.当a =40,b =25,m =20时,求出上面几个式子的实际数.分析:1.上午运来a 箱,下午运来b 箱,共(a +b )箱,每箱m 千克,故共 m (a +b )(千克),或上午a 箱,共am (千克),下午b 箱,共bm (千克),上、下午共(am + bm )千克;上、下午运来苹果的平均数为 m (a +b )÷2(千克)或(am +bm )÷2(千克).上午运来的苹果比下午的多(am -bm )(千克).2.把 a =40,b =25,m =20分别代人上面各式中相应的字母,计算即得实际数.解:1.上午、下午共运来苹果:m (a +b )(千克)或(am +bm )(千克);上、下午运来苹果的平均数为:m (a +b )÷2(千克)或(am +bm )÷2(千克);上午运来的苹果比下午的多:(am -bm )(千克)或m (a -b )(千克).2.当a =40, b =25, m =20时m (a +b )=20×(40+25)=1300(千克),m (a +b )÷2=20×(40+25)÷2=650(千克)m (a -b )=20×(40-25)=300(千克).七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,则点B的坐标为()A.(0,﹣2)B.(3,0)C.(0,3)D.(﹣2,0)【答案】C【解析】直接利用点的坐标特点进而画出图形得出答案.【详解】解:如图所示:,过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,故点B的坐标为:(0,3).故选C.【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.2.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【答案】D【解析】试题分析:普查适用于范围较小,事件较短的一些事件,或者是精确度要求非常高的事件.本题中A、B、C三个选项都不适合普查,只适合做抽样调查.考点:调查的方式3.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面的四个图中,能由图1经过平移得到的是()图1A .B .C .D .【答案】A【解析】分析:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移.详解:根据“平移”的定义可知,由题图经过平移得到的图形如下:故选A .点睛:本题考查了生活中平移的现象,解决本题的关键是熟记平移的定义.4.如图,在四边形ABCD 中,AD ∥BC ,∠A=60°,下列结论一定正确的是( )A .∠D=120°B .∠C=60°C .AB ∥CD D .∠B=120°【答案】D【解析】根据平行线的性质,逐个看能否证明.【详解】根据AD ∥BC ,∠A=60°,所以可得180********B A ︒︒︒︒∠=-∠=-=故选D.【点睛】本题主要考查平行线的性质定理,即两直线平行,同旁内角互补.5.已知x ,y 满足231325x y x y -=⎧⎨-=⎩①②,如果①×a+②×b 可整体得到x+11y 的值,那么a ,b 的值可以是() A .a 2=,b 1=- B .a 4=-,b 3= C .a 1=,b 7=- D .a 7=-,b 5=【答案】D【解析】把a 和b 的值逐项代入①×a+②×b 验证,即可求出答案.【详解】A. 把①×2+②×(-1)得,x-4y=-3,故不符合题意;B. 把①×(-4)+②×3得,x+6y=11,故不符合题意;C.把①×1+②×(-7)得,-19x+11y=-34,故不符合题意;D.把①×(-7)+②×5得,x+11y=18,故符合题意; 故选D.【点睛】本题考查了加减法解二元一次方程组,解答本题的关键是熟练掌握整式的运算法则.6.下列实数中是无理数的是( )A .B .0C .D .【答案】C【解析】根据无理数的定义即可判断.【详解】A. 为分数,故错误;B. 0为整数,故错误;C. =2,为无理数,正确;D.,为整数,故错误. 选C.【点睛】此题主要考查无理数的定义,解题的关键是熟知无理数的分类.7.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 【答案】D【解析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.8.下面的交叉路口标志中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】结合轴对称图形的概念进行求解.【详解】第1个是轴对称图形,本选项符合题意;第2个不是轴对称图形,本选项不符合题意;第3个是轴对称图形,本选项符合题意;第4个不是轴对称图形,本选项不符合题意.故选:B.【点睛】此题考查轴对称图形,解题关键在于对图形的识别.9.如图,直线,点在直线上,以点为圆心,适当长为半径画弧,分别交直线,于点,,连接,.若,则的大小为()A.B.°C.D.【答案】B【解析】先由题意可得:AB=AC,根据等边对等角的性质,可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,同旁内角互补即可求得∠1的度数.【详解】解:根据题意得:AB=AC,∴∠ACB=∠ABC=70°,∵直线l 1∥l 2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°-∠ABC-∠ACB=180°-70°-70°=40°.故选:B .【点睛】此题考查了平行线的性质,等腰三角形的性质.解题的关键是注意掌握两直线平行,同旁内角互补与等边对等角定理的应用.10.下列实数中,最小的数是A .B .0C .1D .【答案】A【解析】根据各项数字的大小排列顺序,找出最小的数即可. 【详解】由题意得:,最小的数为:. 故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.二、填空题题112018_________【答案】1【解析】根据无理数的估算,即可得到答案.【详解】解:∵2441936=,2452025=, 193620182025<< ∴44201845<<; 20181.故答案为:1.【点睛】 本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到44201845<<.12.已知11a b +=(,a b 均为大于1的整数)a b a b =______.【答案】3或2.【解析】根据题意分别求出a和b的值即可得解. 【详解】∵a+b=11 (a,b均为大于1的整数),∴29ab=⎧⎨=⎩或92ab=⎧⎨=⎩;38ab=⎧⎨=⎩或83ab=⎧⎨=⎩;47ab=⎧⎨=⎩或74ab=⎧⎨=⎩;56ab=⎧⎨=⎩或65ab=⎧⎨=⎩,为有理数,∴29ab=⎧⎨=⎩或38ab=⎧⎨=⎩∴当a=2,b=9=,当a=3,b=8= 2.故答案为:3或2.【点睛】本题主要考查了二次一次方程的解,根据条件列出二元一次方程的所有解是解决本题的关键.13.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A2(0,4),再将A2做上述变换得到A3___________,这样依次得到A1,A2,A3,…A n;…,则A2018的坐标为___________.【答案】(﹣3,1) (0,4)【解析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣2),A5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.14.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,1cm【解析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm 时,周长=10+10+6=1cm ,所以其周长是22cm 或1cm .故答案为:22,1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 15.若216y my ++是完全平方式,则m =___.【答案】8±【解析】利用完全平方公式的题中判断即可求出m 的值.【详解】216y my ++是完全平方式,8m ∴=±,故答案为:8±【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若∠EFB=32°,则∠AEG 的度数是__.【答案】116°【解析】先求出∠GEF ,∠AEG=180°–2∠GEF.【详解】因为∠EFB=32°,又∵AE∥BF,折叠问题∴∠C ´EF=∠GEF=∠EFB=32°,所以∠AEG=180°–2∠GEF=116°. 【点睛】知道折叠后哪些角相等是解题的关键.17.如图,把一张长方形的纸条ABCD 沿EF 折叠,若∠BFC′比∠1多9°,则∠AEF 为_____.【答案】123°.【解析】∠EFC=x,∠1=y,则∠BFC′=x﹣y,根据“∠BFC′比∠1多9°、∠1与∠EFC互补”得出关于x、y的方程组,解之求得x的值,再根据AD∥BC可得∠AEF=∠EFC.【详解】设∠EFC=x,∠1=y,则∠BFC′=x﹣y,∵∠BFC′比∠1多9°,∴x﹣2y=9,∵x+y=180°,可得x=123°,即∠EFC=123°,∵AD∥BC,∴∠AEF=∠EFC=123°,故答案为123°.【点睛】本题考查了平行线的性质及折叠问题,解题的关键是学会利用参数,构建方程组解决问题.三、解答题18.某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?【答案】自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得204520-=,x x60 2.5解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.19.(1)解方程组 :44335(9)6(2)xy x y ⎧+=⎪⎨⎪-=-⎩(2)解不等式2241232xx x ---≤<(3)利用简单方法计算:2.3413.20.6613.226.4⨯+⨯-(4)因式分解:324126m m m -+-【答案】(1)60.5x y =⎧⎨=-⎩;(2)25x ≤<;(3)13.2;(4)()22263m m m --+【解析】(1)先变成一元一次方程,求出x 的值,再求出y 即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可;(3)先分解因式,再求出即可;(4)提取公因式即可.【详解】解:(1)整理得:34165633x y x y +=⎧⎨-=⎩①②①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=-0.5,所以原方程组的解是:60.5x y =⎧⎨=-⎩;(2)原不等式组化为:2242324132x x x x --⎧≤⎪⎪⎨--⎪<⎪⎩①②∵解不等式①得:x≥2,解不等式②得:x <5,∴不等式组的解集是2≤x<5;(3)2.34×13.2+0.66×13.2-26.4=2.34×13.2+0.66×13.2-13.2×2=13.2×(2.34+0.66-2)=13.2×1=13.2;(4)-4m3+12m2-6m=-2m(2m2-6m+3).【点睛】本题考查了解二元一次方程组,解一元一次不等式组,有理数的混合运算和分解因式等知识点,能灵活运用知识点进行计算是解此题的关键.20.(1)请在横线上填写适当的内容,完成下面的解答过程:如图①,如果∠ABE+∠BED+∠CDE=360°,试说明AB∥CD.理由:过点E作EF∥AB所以∠ABE+∠BEF=°()又因为∠ABE+∠BED+∠CDE=360°所以∠FED+∠CDE=°所以EF∥.又因为EF∥AB,所以AB∥CD.(2)如图②,如果AB∥CD,试说明∠BED=∠B+∠D.(3)如图③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,则∠BFC的度数是(用含α的代数式表示).【答案】(1)180,两直线平行,同旁内角互补,180,CD;(2)见解析;(3)180°﹣12α.【解析】(1)先判断出∠FED+∠CDE=180°得出EF∥CD,即可得出结论;(2)先判断出∠BEH=∠B,再判断出EH∥CD,得出∠DEH=∠D,即可的得出结论;(3)先判断出∠ABE+∠DCE=360°-α,进而判断出∠ABF+∠DCF=180°-12α,借助(2)的结论即可得出结论.【详解】解:(1)过点E作EF∥AB∴∠ABE+∠BEF=180°(两直线平行,同旁内角互补)∵∠ABE+∠BED+∠CDE=360°∴∠FED+∠CDE=180°∴EF∥CD∵EF∥AB∴AB∥CD;故答案为:180,两直线平行,同旁内角互补,180,CD;(2)如图2,过点E作EH∥AB,∴∠BEH=∠B,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠DEH=∠D,∴∠BED=∠BEH+∠DEH=∠B+∠D;(3)如图3,过点E作EG∥AB,∴∠ABE+∠BEG=180°,∵EG∥AB,CD∥AB,∴EG∥CD,∴∠DCE+∠CEG=180°∴∠ABE+∠BEG+∠CEG+∠DCE=360°,∴∠ABE+∠BEC+∠DCE=360°,∴∠ABE+∠DCE=360°﹣∠BEC,∵∠BEC=α,∴∠ABE+∠CCE=360°﹣α,∵BF,CF分别平分∠ABE,∠DCE,∴∠ABE=2∠ABF,∠DCF=2∠ECF,∴∠ABF+∠DCF =180°﹣12α, 过点F 作作FH ∥AB , 同(2)的方法得,∠BFC =∠ABF+∠DCF =180°﹣12α, 故答案为:180°﹣12α.【点睛】此题主要考查了平行线的性质和判定,角平分线的意义,正确作出辅助线是解本题的关键.21.(1)如图1,ABC ∆中,B C ∠=∠,求证:AB AC =;(2)如图2,ABC ∆中,AB AC =,45BAC ∠=,CD AB ⊥,AE BC ⊥,垂足分别为D 、E ,CD 与AE 交于点F .试探究线段AF 与线段CE 的数量关系.(3)如图3,ABC ∆中,245ABC ACB ︒∠=∠=,BD AC ⊥,垂足为D ,若线段6AC =,则ABC ∆的面积为 .【答案】(1)见解析(2)2AF CE =(3)1【解析】(1)如图1中,作AH ⊥BC 于H .只要证明△ABH ≌△ACH 即可解决问题;(2)结论:AF=2EC .只要证明△ADF ≌△CDB 即可解决问题;(3)如图3中,作CH ⊥BA 交BA 的延长线于H ,延长CH 交BD 的延长线于E .只要证明BD=12AC ,即可解决问题;【详解】(1)证明:如图1中,作AH BC ⊥于H .∵AH BC ⊥,∴90AHB AHC ︒∠=∠=,在ABH ∆和ACH ∆中,B CAHB AHC AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABH ∆≌ACH ∆,∴AB AC =.(2)解:如图2中,结论2AF CE =.理由:∵45BAC ∠=,CD AB ⊥,∴90ADC ∠=,∴45DAC DCA ︒∠=∠=,∴AD DC =,∵AE BC ⊥,∴90ADF CEF ︒∠=∠=,∵AFD CFE ∠=∠,∴DAF BCD ∠=∠,∵90ADF CDB ︒∠=∠=,∴ADF ∆≌CDB ∆,∴AF BC =,∵AB AC =,AE BC ⊥,∴BE EC =,∴2AF EC =.(3)解:如图3中,作CH BA ⊥交BA 的延长线于H ,延长CH 交BD 的延长线于E .∵90BHC ︒∠=,∴45HBC HCB ︒∠=∠=,∴BH HC =,∵BD CD ⊥,∴90BDA AHC ︒∠=∠=,∵BAD CAH ∠=∠,∴EBH ACH ∠=∠,∵90BHE CHA ︒∠=∠=,∴BHE ≌CHA ,∴AC BE =,∵022.5ACB ∠=,45BCH ︒∠=,∴ACD ECD ∠=∠,∵CDB CDE ∠=∠,CD CD =,∴CDB △≌CDE ∆,∴BD DE =, ∴132BD AC ==,∴192ABCS AC BD=⨯⨯=.故答案为1.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的判定、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.春天到了,七(2)班组织同学到公园春游,张明、李华对着景区示意图,如下描述牡丹园位置(图中小正方形边长代表100m)张明:“牡丹园坐标(300,300)”李华:“牡丹园在中心广场东北方向约420m处”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系;(2)用坐标描述其它景点位置.【答案】见解析【解析】(1)以牡丹亭向左3个单位,向下3个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】(1)建立平面直角坐标系如图所示;(2)中心广场(0,0),音乐台(0,400),望春亭(-200,-100),南门(100,-600),游乐园(200,-400).【点睛】本题考查了坐标确定位置,根据牡丹亭的位置确定出坐标原点的位置是解题的关键.23.回答下列问题:(1)如图1,在ABC △中,70ABC ∠=︒,50∠=°ACB ,,BO CO 分别为ABC ∠和ACB ∠的角平分线,则BOC ∠=__________(2)如图2,在ABC △中,60A ∠=︒,13∠=∠OBC ABC ,13∠=∠OCB ACB ,求出BOC ∠的度数【答案】(1)120︒;(2)140∠=︒BOC .【解析】(1)根据角平分线的性质和三角形内角和进行计算,即可得到答案;(2)根据角平分线的性质和三角形内角和进行计算,即可得到答案.【详解】(1)因为,BO CO 分别为ABC ∠和ACB ∠的角平分线,且70ABC ∠=︒,50∠=°ACB .所以35OBC ∠=︒,25OCB ∠=︒,则根据三角形内角和定理可知1802535120BOC ∠=︒-︒-︒=︒. (2)因为60A ∠=︒,根据三角形内角和定理,所以18060120ABC ACB ∠+∠=︒-︒=︒,又因为13∠=∠OBC ABC ,13∠=∠OCB ACB ,所以OBC OCB ∠+∠=1()3ABC ACB ∠+∠=1120403⨯︒=︒,所以根据三角形内角和定理可知18040140BOC ∠=︒-︒=︒.【点睛】本题考查角平分线的性质和三角形的内角和,解题的关键是掌握角平分线的性质和三角形的内角和. 24.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买10辆全新的混合动力公交车,现有A B 、两种型号,它们的价格及年省油量如下表:经调查,购买一辆A 型车比购买一辆B 型车多20万元,购买2辆A 型车比购买3辆B 型车少60万元. (1)请求出a 和b 的值;(2)若购买这批混合动力公交车(两种车型都要有), 每年能节省的油量不低于22.4万升,请问有几种购车方案?(不用一一列出)请求出最省钱的购车方案所需的车款.【答案】(1)120100a b =⎧⎨=⎩;(2)有4种购车方案,最省钱的购车方案所需的购车款为1120万元. 【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得a 和b 的值;(2)根据题意可以列出相应的不等式,从而可以求得有几种购车方案.【详解】解:(1)根据题意得:202360a b a b -=⎧⎨=-⎩解得:120100a b =⎧⎨=⎩(2)设购买A 型车x 辆,则购买B 型车()10x -辆.根据题意得:()2.421022.4x x +-解得:6x ≥∵100x -> ∴10x <∵610x ≤< 且x 为整数∴x 可取的整数有6,7,8,9∴一共有4种购车方案.当6x =时,最省钱的购车款为()120100101120x x +-=(万元).答:有4种购车方案,最省钱的购车方案所需的购车款为1120万元.【点睛】本题考查二元一次方程组和不等式,解题的关键是熟练掌握二元一次方程组和不等式. 25.求x的值:9(3x﹣2)2=64.【答案】x1=149,x2=﹣29.【解析】分析:根据平方根的意义,直接开平方即可求解.详解:开平方得:3(3x﹣2)=±8解得:x1=149,x2=﹣29.点睛:此题实质上是给出了一种解关于x的一元二次方程的方法,只需要将3x-2看做一个整体,再根据平方根的定义求解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点(39,1)M a a --在第三象限,则点a 的取值范围是( )A .3a <B .1a >C .13a <<D .空集【答案】C【解析】根据第三象限点的符号特点列出不等式组,解之可得.【详解】解:根据题意知 39010a a -⎧⎨-⎩<<, 解得1<a <3,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.如图,在一个单位面积为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,……是斜边在x 轴上,且斜边长分别为2,4,6,……的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2 (1,-1),A 3(0,0),则依图中所示规律,点A 2019的横坐标为( )A .1010B .1010-C .1008D .1008-【答案】D 【解析】先观察图像找到规律,再求解.【详解】观察图形可以看出A 1--A 4;A 5---A 8;…每4个为一组,∵2019÷4=504 (3)∴A 2019在x 轴负半轴上,纵坐标为0,∵A 3、A 7、A 11的横坐标分别为0,-2,-4,∴A2019的横坐标为-(2019-3)×=-1.∴A2019的横坐标为-1.故选:D.【点睛】本题考查的是点的坐标,正确找到规律是解题的关键. 3.在下列实数中,无理数是( )A.5B.4C.3.14 D.1 3【答案】A【解析】分析:根据无理数的定义逐项识别即可. 详解:A. 5是无理数;B. 42=是有理数;C. 3.14是有理数;D. 13是有理数;故选A.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3,35等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅(0的个数一次多一个).4.小明把同样数量的花种撒在甲、乙两块地上,则甲、乙两块地的撒播密度比为(撒播密度=花总数量撒播面积)()甲乙A .44a b a b +-B .44a ba b +- C .44a b a b -+ D .44a ba b -+【答案】C【解析】设播种的数量为n ,分别表示出甲、乙两块地的撒播密度,求出之比即可.【详解】解:设播种的数量为n .∴甲的撒播密度为21()4na b +,乙的撒播密度为22nn b -.∴甲、乙的撒播密度比为()222222244()():1()()()4a b nn a b a b a b a b a b a b -+-==-+++4()44a b a ba b a b --==++.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.下列各对x ,y 的值是方程3x -2y =7的解是( )A .B .C .D .【答案】C【解析】分别将各选项中的x 的值代入方程,解方程分别求出y 的值,再作出判断即可.【详解】解:A ,当x =1时,3-2y =7解得:y =-2≠2,故A 不符合题意;B ,当x =3时,9-2y =7解得:y =1≠-1,故B 不符合题意;C ,当x =-1时,-3-2y =7解得:y =-5,故C 符合题意;D ,当x =5时,15-2y =7解得:y =4≠-4,故D 不符合题意;故答案为:C【点睛】此题考查二元一次方程的解,解题关键在于把各选项的值代入方程.6.如图AF 平分BAC ∠,D 在AB 上,DE 平分BDF ∠且12∠=∠,则下面四个结论:①//DF AC ;②//DE AF ;③EDF DFA ∠=∠;④180C DEC ∠+∠=,其中成立的有( )A .①②③B .①②④C .①③④D .②③④【答案】A【解析】根据平行线的判定和性质解答即可.【详解】∵AF 平分∠BAC ,DE 平分∠BDF ,∴∠BDF=2∠1,∠BAC=2∠2,∵∠1=∠2,∴∠BDF=∠BAC ,∴DF ∥AC ;(故①正确)∴∠BDE=∠1,∠BAF=∠2,∴∠BDE=∠BAF ,∴DE ∥AF ;(故②正确)∴∠EDF=∠DFA ;(故③正确)∵DF ∥AC∴∠C+∠DFC=180°.(故④错误)故选:A .【点睛】此题考查平行线的判定.解题关键在于正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.如图,下列四组条件中,能判断AB∥CD的是( )A.∠1=∠2 B.∠BAD=∠BCDC.∠ABC=∠ADC,∠3=∠4 D.∠BAD+∠ABC=180°【答案】C【解析】A.∵∠1=∠2 ,∴AD∥BC,故此选项不正确;B.由∠BAD=∠BCD不能推出平行, 故此选项不正确;C.∵∠3=∠4,∠ABC=∠ADC∴∠ABD=∠CDB∴ AB∥CD, 故此选项正确D.∵∠BAD+∠ABC=180°,∴AD∥BC,故此选项不正确.故选C.8.已知一个三角形的两边长分别为8cm和3cm,则此三角形第三边的长可能是()A.2cm B.3cm C.5cm D.9cm【答案】D【解析】设第三边的长为x,再根据三角形的三边关系进行解答即可.【详解】解:设第三边的长为x,则8﹣3<x<8+3,即5cm<x<11cm.故选:D.【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.9.某市2017年有25000名学生参加中考,为了了解这25000名考生的中考成绩,从中抽取了1000名考生的成绩进行分析,以下说法正确的是()2A.25000名考生是总体B.每名考生的成绩是个体C.1000名考生是总体的一个样本D.样本容量是25000【答案】B【解析】A. ∵25000名考生的中考成绩是总体,故不正确;B. ∵每名考生的成绩是个体,故正确;C. ∵1000名考生的中考成绩是总体的一个样本,故不正确;D. ∵样本容量是1000 ,故不正确;故选B.10.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【答案】B【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【详解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.二、填空题题11.如图,AB∥CD,BC平分∠ABD,且∠C=40°,则∠D的度数是_____.【答案】100°【解析】先根据平行线的性质,得出∠ABC的度数,再根据BC平分∠ABD,即可得到∠DBC的度数,最后根据三角形内角和进行计算即可.【详解】解:∵AB∥CD,∴∠ABC=∠C=40°,又∵BC平分∠ABD,∴∠DBC=∠ABC=40°,∴△BCD中,∠D=180°﹣40°﹣40°=100°,故答案为100°.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.12.若点P(|a|﹣2,a)在y轴的负半轴上,则a的值是_____.【答案】﹣1.【解析】根据y轴负半轴上点的横坐标为0列方程求解,再根据纵坐标是负数判断出a是负数解答【详解】解:∵点P(|a|﹣1,a)在y轴的负半轴上,∴|a|﹣1=0且a<0,解得a=±1且a<0,所以,a=﹣1.故答案为:﹣1.【点睛】此题考查象限及点的坐标的有关性质,解题关键在于判断出横坐标为0A B C等的学生情况如扇形图所示,则13.据统计,某班50名学生参加综合素质测试,评价等级为、、该班综合素质评价为A等的学生有________名.【答案】1;【解析】先由扇形图可知C等的学生占总体的百分比是10%,然后根据B等的学生数计算B等的学生占总体的百分比,从而求出A 等的学生占总体的百分比,从而求出该班综合评价学生人数.【详解】解:由扇形图可知B等的学生有30人,占总人数50人的60%,C等的学生占总体的百分比是10%,∴A等的学生占总体的百分比是:1-60%-10%=30%,又知某班50名学生参加期末考试,∴该班综合评价为A等的学生有50×30%=1名,故答案为:1.【点睛】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.14.一个三角形的三边为2、5、x,另一个和它全等的三角形的三边为y、2、6,则x+y=_______.【答案】11【解析】∵一个三角形的三边为2、5、x,另一个和它全等的三角形的三边为y、2、6,∴x=6,y=5,则x+y=11.故答案为:11.15.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示,点A 4n 的坐标(n 是正整数)是:A 4n (________,______).【答案】2n-1, 0【解析】根据A 4,A 8、A 12都在x 轴上,得出A 4n 也在x 轴上,再根据A 4,A 8、A 12点的坐标的规律,即可得出答案.【详解】由图可知,A 4,A 8、A 12都在x 轴上,∵小蚂蚁每次移动1个单位,∴OA 4=1,OA 8=3,OA 12=5,∴A 4(1,0),A 8(3,0)OA 12(5,0),OA 4n =4n÷2-1=2n-1,∴点A 4n 的坐标(2n-1,0);故答案为:(2n-1,0).【点睛】本题考查了点的坐标,仔细观察图形,确定出A 4n 都在x 轴上再根据各点的坐标,找出规律是解题的关键. 16.如图,若12l l //,1x ∠=︒,则2∠=______.【答案】(180﹣x )°.【解析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l 1∥l 2,∠1=x°,。
可供选择的素材在教材提供的购买门票、蟋蟀叫的次数与温度的关系外还可以提供与学生学习生活联系更紧密的实例。
如:学生体质健康测试标准有关公式。
学生的握力体重指数(m)是衡量学生身体素质的一个重要指标,它等于学生的握力(G千克)除以学生的体重(M千克)再乘以100.我们可以设问:(1)用代数式表示学生的握力体重指数;(2)若九年级男生小明的体重是50千克,当小明的握力分别是10千克、15千克、20千克时,他的握力体重指数是多少?(3)九年级男生的合格标准是m≥35.小明的握力至少要达到多少千克时才能合格?又如:为了测试一种皮球的弹跳高度与下落高度(h)之间的关系,通过测试得到如下一组数据:203040506070100下落高度(h)弹跳高度8121620242840那么用h表示对应的弹跳高度是。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Partof the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
典例解析:用字母表示数例1.选择答案填空.63除以6与x 的积,应表示为( ).A .x ⨯÷663B .)6(63x ⨯÷C .x 663÷D .x ⨯÷)663(分析:应选B 和C 两个答案,6与x 的积应该先算,所以先B 是正确的.不过,当“x ⨯6”写成“x 6”以后,“x 6”就应该看做一个数,即看做6与x 的乘积, 所以答案C 也是正确的.解:63除以6与x 的积,应表示为( B 、C ).例2.用含有字母的式子表示:1.一小有学生x 人,女生比男生少37人,二小的学生人数比一小的2倍多19人, 二小有学生多少人?2.一个三角形的高是h 厘米,底比高的3倍多2厘米,这个三角形的面积是( ) 平方厘米.3.爸爸今年a 岁,是儿子小亮年龄的8倍,6年后他们父子共有( )岁.4.两村相距x 千米.已知甲、乙两人分别从两村同时出发,相向而行,t 小时相遇. 已知甲每小时行a 千米,则乙每小时行( )千米.分析: 1.一小有男生x 人,女生(x -37人),一小有学生[x +(x -37)]人,二小学生人数可表示.2.三角形的高是h 厘米,底是(3h +2)厘米,面积可表示出来.3.爸爸今年a 岁,儿子今年a ÷8(岁),6年后父子年龄共增加6×2(岁)4.“相遇问题”,甲、乙两人每小时共行(速度之和)x ÷t (千米),从而乙每小时行x ÷t -a (千米)解: 1.2[x +(x -37)]+192.h (3h +2)÷23.a +a ÷8+6×24.x ÷t -a例3.果园里有苹果树x 棵,桃树y 棵,且x >y .请用字母x 、y 表示下列数量关系.1.苹果树比桃树多多少棵?2.苹果树和桃树共多少棵?3.梨树的棵数比苹果树与桃树的和的2倍少15棵,梨树有多少棵?分析:题中第1问是两数差的问题,用大数减小数,也就是y x -.第2问是求两数和,用y x +.第3问是求比两数和的2倍还少15的数,就是从x 与y 和的2倍中再减去15.解:1.y x -2.y x +3.15)(2-+y x例4.下列各式中的字母取什么值时,等式成立?1.x -x =0; 2.m ÷5=3;3.a ÷a =1; 4.0÷b =0分析:使等式成立,即把字母的取值代入各式,左、右两边恰好相等.特别要注意的是:字母的取值必须使式子有意义.解:1.x -x =0,x 可以为任意数;2.m ÷5=3,m =5×3,m =15;3.a ÷a =1,a 可以是除0以外的任意数;4.0÷b =0,b 可以是除0以外的任意数.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =k x 在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤16 2.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π- 3.设点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 4.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3- 5.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤6.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A.6B.6 C.2D.37.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定8.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A.25︒B.30︒C.35︒D.40︒9.在同一直角坐标系中,函数y=kx-k与kyx=(k≠0)的图象大致是()A.B.C.D.10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°11.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A .AD AE DB EC = B .AB AC AD AE = C .AC EC AB DB = D .AD DE DB BC= 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:2()4()a a b a b ---=___.14.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.15.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C',再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB 3=,BC 4=,则折痕EF 的长为______.16.如图,点A (m ,2),B (5,n )在函数k y x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .17.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.18.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.20.(6分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.21.(6分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?22.(8分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.23.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?24.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?25.(10分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)26.(12分)如图,AB 是O e 的直径,AF 是O e 切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作DA 的平行线与AF 相交于点F ,已知CD 23=,BE 1=.()1求AD 的长;()2求证:FC 是O e 的切线.27.(12分)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:由于△ABC 是直角三角形,所以当反比例函数k y x =经过点A 时k 最小,进过点C 时k 最大,据此可得出结论.∵△ABC 是直角三角形,∴当反比例函数k y x=经过点A 时k 最小,经过点C 时k 最大, ∴k 最小=1×2=2,k 最大=4×4=1,∴2≤k≤1.故选C .2.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,33∴△ABC 的面积为12BC•AD=1232⨯3 S 扇形BAC =2602360π⨯=23π, ∴莱洛三角形的面积S=3×23π﹣2×3﹣3, 故选D .【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.3.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1. ∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况: ①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限; ③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限; ④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A . 4.D 【解析】 【分析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答. 【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D . 【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征. 5.A 【解析】 【分析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2. 【详解】①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <2,故正确; ②∵对称轴1,2bx a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).6.B【解析】【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1, 则(1,5)与(13,1)表示的两数之积是1. 故选B . 7.C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入2(6) 2.6y a x =-+,得:36a+2.6=2, 解得:160a ,=-∴y 与x 的关系式为21(6) 2.660y x =--+; 当x=9时,()2196 2.6 2.45 2.4360y =--+=>,∴球能过球网, 当x=18时,()21186 2.60.2060y =--+=>,∴球会出界. 故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围. 8.B 【解析】试题分析:作点P 关于OA 对称的点P 3,作点P 关于OB 对称的点P 3,连接P 3P 3,与OA 交于点M,与OB 交于点N,此时△PMN 的周长最小.由线段垂直平分线性质可得出△PMN 的周长就是P 3P 3的长,∵OP=3,∴OP 3=OP 3=OP=3.又∵P 3P 3=3,,∴OP 3=OP 3=P 3P 3,∴△OP 3P 3是等边三角形, ∴∠P 3OP 3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.9.D【解析】【分析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键. 10.B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,11.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.12.D【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.()()()22a b a a -+- 【解析】分析:先提公因式,再利用平方差公式因式分解即可. 详解:a 2(a-b )-4(a-b ) =(a-b )(a 2-4) =(a-b )(a-2)(a+2), 故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键. 14.37 【解析】 【分析】根据题意列出一元一次方程即可求解. 【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得: a+a+4=10, 解得:a=3,∴这个两位数为:37 【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键. 15.2512【分析】首先由折叠的性质与矩形的性质,证得BND V 是等腰三角形,则在Rt ABN V 中,利用勾股定理,借助于方程即可求得AN 的长,又由ANB V ≌C'ND V ,易得:FDM ABN ∠∠=,由三角函数的性质即可求得MF 的长,又由中位线的性质求得EM 的长,则问题得解 【详解】如图,设BC'与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:NBD CBD ∠∠=,1AM DM AD 2==,FMD EMD 90∠∠==o , Q 四边形ABCD 是矩形,AD //BC ∴,AD BC 4==,BAD 90∠=o , ADB CBD ∠∠∴=, NBD ADB ∠∠∴=, BN DN ∴=,设AN x =,则BN DN 4x ==-,Q 在Rt ABN V 中,222AB AN BN +=,2223x (4x)∴+=-,7x 8∴=, 即7AN 8=,C'D CD AB 3===Q ,BAD C'90∠∠==o ,ANB C'ND ∠∠=, ANB ∴V ≌()C'ND AAS V, FDM ABN ∠∠∴=, tan FDM tan ABN ∠∠∴=,AN MFAB MD ∴=, 7MF 832∴=,7MF 12∴=,由折叠的性质可得:EF AD ⊥,EF//AB ∴,AM DM =Q , 13ME AB 22∴==, 3725EF ME MF 21212∴=+=+=,故答案为2512.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用. 16.2. 【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A (2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k 的几何意义;2.平移的性质;3.综合题. 17.x≤﹣1. 【解析】试题分析:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1. 考点:二次函数的性质. 18.a≥﹣1且a≠1 【解析】 【分析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1.故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)100、35;(2)补图见解析;(3)800人;(4)5 6【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人; (4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种, 所以这两位同学最认可的新生事物不一样的概率为105126=. 点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.∵AC 平分BCD BC ∠,平分ABC ∠, ∴ACB DBC ∠=∠ 在ABC V 与DCB V 中,{ABC DCB ACB DBC BC BC∠=∠∠=∠= ABC ∴V DCB V ≌ AB DC ∴=.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC ,根据ASA 推出△ABC ≌△DCB ,根据全等三角形的性质推出即可.解答:证明:∵AC 平分∠BCD ,BC 平分∠ABC , ∴∠DBC=12∠ABC ,∠ACB=12∠DCB , ∵∠ABC=∠DCB , ∴∠ACB=∠DBC , ∵在△ABC 与△DCB 中,ABC DCB{BC BC ACB DBC∠=∠=∠=∠, ∴△ABC ≌△DCB , ∴AB=DC .21.(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元. 【解析】 【分析】(1)设顾客购买x 元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x 的值说明在什么情况下购物合算(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数; (3)设进价为y 元,根据售价-进价=利润,则可得出方程即可. 【详解】解:设顾客购买x 元金额的商品时,买卡与不买卡花钱相等. 根据题意,得300+0.8x =x , 解得x =1500,所以当顾客消费等于1500元时,买卡与不买卡花钱相等; 当顾客消费少于1500元时,300+0.8x >x 不买卡合算; 当顾客消费大于1500元时,300+0.8x <x 买卡合算; (2)小张买卡合算,3500﹣(300+3500×0.8)=400, 所以,小张能节省400元钱;(3)设进价为y 元,根据题意,得(300+3500×0.8)﹣y =25%y , 解得 y =2480答:这台冰箱的进价是2480元.【点睛】此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM ,可证△BDM ≌△CEM ,可得MD=ME ,即可解题.试题解析:证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM.∵M 是BC 的中点,∴BM=CM.在△BDM 和△CEM 中,∵{BD CEDBM ECM BM CM=∠=∠=,∴△BDM ≌△CEM (SAS ).∴MD=ME .考点:1.等腰三角形的性质;2.全等三角形的判定与性质.23.(1)10,30;(2)y=15(02)3030(211)x x x x ≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A 地时距地面的高度b 的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y 关于x 的函数关系;(3)当乙未到终点时,找出甲登山全程中y 关于x 的函数关系式,令二者做差等于50即可得出关于x 的一元一次方程,解之即可求出x 值;当乙到达终点时,用终点的高度﹣甲登山全程中y 关于x 的函数关系式=50,即可得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.24.(1)35元/盒;(2)20%.【解析】【详解】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:3500240011x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.25.路灯的高CD的长约为6.1 m.【解析】设路灯的高CD为xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴BN AB CD AC=,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴1.75 1.251.75x x=-,解得x=6.125≈6.1.∴路灯的高CD约为6.1m.26.(1)AD=;(2)证明见解析.【解析】【分析】(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.【详解】证明:()1连接OD,AB Q 是O e 的直径,CD AB ⊥,11CE DE CD 23322∴===⨯=设OD x =,BE 1=Q ,OE x 1∴=-,在Rt ODE V 中,222OD OE DE =+,222x (x 1)3)∴=-+,解得:x 2=,OA OD 2∴==,OE 1=,AE 3∴=,在Rt AED V 中,2222AD AE DE 3(3)23=+=+=()2连接OF 、OC ,AF Q 是O e 切线,AF AB ∴⊥,CD AB ⊥Q ,AF//CD ∴,CF//AD Q ,∴四边形FADC 是平行四边形,AB CD ⊥QAC AD ∴=n nAD CD ∴=,∴平行四边形FADC 是菱形FA FC ∴=,FAC FCA ∠∠∴=,AO CO =Q ,OAC OCA ∠∠∴=,FAC OAC FCA OCA ∠∠∠∠∴+=+,即OCF OAF 90∠∠==o ,即OC FC ⊥,Q 点C 在O e 上,FC ∴是O e 的切线.【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.27.1【解析】【分析】先提取公因式ab ,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【详解】解:a 3b+2a 2b 2+ab 3=ab (a 2+2ab+b 2)=ab (a+b )2,将a+b=3,ab=2代入得,ab (a+b )2=2×32=1. 故代数式a 3b+2a 2b 2+ab 3的值是1.。
七年级数学上册第三章用字母表示数3.1字母表示数素材2 (新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章用字母表示数 3.1 字母表示数素材2 (新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章用字母表示数3.1 字母表示数素材2 (新版)苏科版的全部内容。
教学引入素材教科书以摆火柴棒引入,我们在教学中可以设计欢快活泼的歌唱形式如:儿歌《数青蛙》:一只青蛙一张嘴,两只眼睛四条腿。
两只青蛙两张嘴,四只眼睛八条腿。
三只青蛙三张嘴,六只眼睛十二条腿.四只青蛙四张嘴,八只眼睛十六条腿.……以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The aboveis the whole contentofthisarticle, Gorkysaid:"the bookisthe ladder of human progress." I hope you canmake progress with the helpofthis ladder. Materia llife is extremely rich,science and technology are developing rapidly, allof which gradually change the way ofpeople's study and leisure.Manypeople are no longer eager to pursue a document, but as long asyou still have such a small persistence,youwillcontinue togrow andprogress. When the complex world leadsustochase out, readingan articleor doing a problemmakes us calm down and retu rn toourselves. Withlearning, wecan activate ourimagination and thinking,establish our belief,keepourpurespiritual world and resistthe attack of the external world.。
典例解析:用字母表示数
例1.选择答案填空.
63除以6与x 的积,应表示为( ).
A .x ⨯÷663
B .)6(63x ⨯÷
C .x 663÷
D .x ⨯÷)663(
分析:应选B 和C 两个答案,6与x 的积应该先算,所以先B 是正确的.不过,当“x ⨯6”
写成“x 6”以后,“x 6”就应该看做一个数,即看做6与x 的乘积, 所以答案C 也是正确的.
解:63除以6与x 的积,应表示为( B 、C ).
例2.用含有字母的式子表示:
1.一小有学生x 人,女生比男生少37人,二小的学生人数比一小的2倍多19人, 二小有学生多少人?
2.一个三角形的高是h 厘米,底比高的3倍多2厘米,这个三角形的面积是( ) 平方厘米.
3.爸爸今年a 岁,是儿子小亮年龄的8倍,6年后他们父子共有( )岁.
4.两村相距x 千米.已知甲、乙两人分别从两村同时出发,相向而行,t 小时相遇. 已知甲每小时行a 千米,则乙每小时行( )千米.
分析: 1.一小有男生x 人,女生(x -37人),一小有学生[x +(x -37)]人,二
小学生人数可表示.
2.三角形的高是h 厘米,底是(3h +2)厘米,面积可表示出来.
3.爸爸今年a 岁,儿子今年a ÷8(岁),6年后父子年龄共增加6×2(岁)
4.“相遇问题”,甲、乙两人每小时共行(速度之和)x ÷t (千米),从而乙每小时行x ÷t -a (千米)
解: 1.2[x +(x -37)]+19
2.h (3h +2)÷2
3.a +a ÷8+6×2
4.x ÷t -a
例3.果园里有苹果树x 棵,桃树y 棵,且x >y .请用字母x 、y 表示下列数量关系.
1.苹果树比桃树多多少棵?
2.苹果树和桃树共多少棵?
3.梨树的棵数比苹果树与桃树的和的2倍少15棵,梨树有多少棵?
分析:
题中第1问是两数差的问题,用大数减小数,也就是y x -.第2问是求两数和,用y x +.第3问是求比两数和的2倍还少15的数,就是从x 与y 和的2倍中再减去15.
解:1.y x -
2.y x +
3.15)(2-+y x
例4.下列各式中的字母取什么值时,等式成立?
1.x -x =0; 2.m ÷5=3;
3.a ÷a =1; 4.0÷b =0
分析:
使等式成立,即把字母的取值代入各式,左、右两边恰好相等.特别要注意的是:字母的取值必须使式子有意义.
解:1.x -x =0,x 可以为任意数;
2.m ÷5=3,m =5×3,m =15;
3.a ÷a =1,a 可以是除0以外的任意数;
4.0÷b =0,b 可以是除0以外的任意数.。