2018届毕业班第一次诊断性考试试题数学理Word版含答案
- 格式:doc
- 大小:1.03 MB
- 文档页数:11
凉山州2018届高中毕业班第一次诊断性检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的元素个数为()A. 6B. 5C. 4D. 3【答案】B【解析】【详解】集合,根据集合交集的概念得到个数为5个。
故答案为:B。
2.命题“,”的否定是()A. ,B. ,C. ,D.【答案】C【解析】因为“,”是全称命题,所以依据含一个量词的命题的否定可知:其否定是存在性命题,即“,”,应选答案C 。
3.已知复数,则()A. B. 0 C. 1 D.【答案】C【解析】复数,故答案为:C。
4.已知,则的最小正周期是()A. B. C. D.【答案】A【解析】根据三角函数周期的概念得到故答案为:A。
5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则椭圆的离心率是()A. B. C. D.【答案】D【解析】根据题意,以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则有2b=,即a=3b,则c==2b,则椭圆的离心率e==;故选:D.6.已知锐角满足,则等于()A. B. C. D.【答案】A【解析】由cos(α﹣)=cos2α,得,∴sinα+cosα>0,则cosα﹣sinα=.两边平方得:,∴.故答案为:A。
7.执行如图所示的程序框图,当输出时,则输入的值可以为A.B.C.D.【答案】B【解析】由题意,模拟执行程序,可得程序框图的功能是计算S=n×(n-1)×…×5的值,由于S=210=7×6×5,可得:n=7,即输入n的值为7.故选:B.8.已知点的坐标满足不等式组,为直线上任一点,则的最小值是()A. B. C. 1 D.【答案】A【解析】点的坐标满足不等式组的可行域如图:点的坐标满足不等式组,为直线上任一点,则的最小值,就是两条平行线与之间的距离:,故选A.点睛:本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力,解决本题的关键是作出不等式组所表示的平面区域与的位置关系,难度一般;画出约束条件的可行域,利用已知条件,把的最小值转化求解平行线间的距离即可.9.在中,已知,则该的形状为()A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰或直角三角形【答案】D【解析】试题分析:由正弦定理,得,则即,即,所以,即,即为等腰或直角三角形.考点:三角形形状的判定.10.设是上的奇函数,且在区间上递减,,则的解集是()A. B.C. D.【答案】C【解析】根据题意,函数f(x)是奇函数,在区间(0,+∞)上单调递减,且f (2)=0,则函数f(x)在(-∞,0)上单调递减,且f(-2)=-f(2)=0,当x>0时,若f(x)>0,必有0<x<2,当x<0时,若f(x)>0,必有x<-2,即f(x)>0的解集是(-∞,-2)∪(0,2);故答案选:C.点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集。
甘肃省兰州市2018届高三一诊数学(理)试题+Word版含答案兰州市2018年高三诊断考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|0}M x x =≥,集合2{|1}N x x=<,则()U MC N =( )A .(0,1)B .[0,1]C .[1,)+∞D .(1,)+∞2.已知复数512z i =-+(i 是虚数单位),则下列说法正确的是( )A .复数z 的实部为5B .复数z 的虚部为12iC .复数z 的共轭复数为512i +D .复数z 的模为133.已知数列{}na 为等比数列,且22642a aa π+=,则35tan()a a =( )A 3.3-.3D .3±4.双曲线22221x y a b-=的一条渐近线与抛物线21y x=+只有一个公共点,则双曲线的离心率为( )A .54B .5C .54D 55.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( )A .49-B .43-C .43 D .496.数列{}na 中,11a=,对任意*n N ∈,有11n nan a +=++,令1i ib a =,*()i N ∈,则122018b b b++⋅⋅⋅+=( )A .20171009B .20172018C .20182019D .403620197.若1(1)nx x++的展开式中各项的系数之和为81,则分别在区间[0,]π和[0,]4n 内任取两个实数x ,y ,满足sin y x >的概率为( )A .11π-B .21π-C .31π-D .128.刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为()A.3π B.3π C.3πD.4π9.某程序框图如图所示,则程序运行后输出的S的值是()A.1008 B.2017 C.2018 D.302510.设p :实数x ,y 满足22(1)[(22)]x y -+-322≤-q :实数x ,y 满足111x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要的条件 11.已知圆C :22(1)(4)10x y -+-=和点(5,)M t ,若圆C 上存在两点A ,B 使得MA MB ⊥,则实数t 的取值范围是( )A .[2,6]-B .[3,5]-C .[2,6]D .[3,5]12.定义在(0,)2π上的函数()f x ,已知'()f x 是它的导函数,且恒有cos '()sin ()0x f x x f x ⋅+⋅<成立,则有( )A .()2()64f ππ> B .3()()63f ππ> C .()3()63f ππ>D .()3()64f ππ>二、填空题:本大题共4小题,每小题5分,共20分.13.若2sin()45πα-=-,则cos()4πα+= . 14.已知样本数据1a ,2a , (2018)a 的方差是4,如果有2iib a =-(1,2,,2018)i =⋅⋅⋅,那么数据1b ,2b , (2018)b 的均方差为 .15.设函数()sin(2)f x x ϕ=+()2πϕ<向左平移3π个单位长度后得到的函数是一个奇函数,则ϕ= . 16.函数23()123x x f x x =+-+,23()123x x g x x =-+-,若函数()(3)(4)F x f x g x =+-,且函数()F x 的零点均在[,](,,)a b a b a b Z <∈内,则b a -的最小值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.已知向量(cos2,sin 2)a x x =,(3,1)b =,函数()f x a b m =⋅+.(1)求()f x 的最小正周期;(2)当[0,]2x π∈时,()f x 的最小值为5,求m 的值. 18.如图所示,矩形ABCD 中,AC BD G=,AD ⊥平面ABE ,2AE EB BC ===,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求平面BCE 与平面CDE 所成角的余弦值.19.某地一商场记录了12月份某5天当中某商品的销售量y (单位:kg )与该地当日最高气温x (单位:C )的相关数据,如下表: x 11 9 8 52y 7 8 8 1012(1)试求y 与x 的回归方程y bx a =+;(2)判断y 与x 之间是正相关还是负相关;若该地12月某日的最高气温是6C ,试用所求回归方程预测这天该商品的销售量;(3)假定该地12月份的日最高气温2(,)XN μσ,其中μ近似取样本平均数x ,2σ近似取样本方差2s ,试求(3.813.4)P X <<.附:参考公式和有关数据1122211()()()n ni i i i i i nn i ii i x y nx y x x y y b x nx x x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑,10 3.2≈,3.2 1.8≈,若2(,)XN μσ,则()0.6826P X μσμσ-<<+=,且(22)0.9544P X μσμσ-<<+=. 20.已知圆C :22(1)8x y ++=,过(1,0)D 且与圆C 相切的动圆圆心为P .(1)求点P 的轨迹E 的方程;(2)设过点C 的直线1l 交曲线E 于Q ,S 两点,过点D的直线2l 交曲线E 于R ,T 两点,且12l l ⊥,垂足为W (Q ,R,S ,T 为不同的四个点).①设0(,)W x y ,证明:220012x y +<;②求四边形QRST 的面积的最小值.21.已知函数1()1x x tf x e x -+=-,其中e 为自然对数的底数. (1)证明:当1x >时,①1x x <,②1x ex->; (2)证明:对任意1x >,1t >-,有1()(1ln )2f x x x >+.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l 的参数方程是22422x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),圆C 的极坐标方程为2cos()4πρθ=+.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,并切线长的最小值.23.[选修4-5:不等式选讲] 设函数()2f x x a x =-+,其中0a >.(1)当2a=时,求不等式()21≥+的解集;f x x(2)若(2,)f x>,求a的取值范围.x∈-+∞时,恒有()0兰州市2018年高三诊断考试数学(理科)试题参考答案及评分参考一、选择题1-5: CDADA 6-10: DBBAB 11、12:CC二、填空题13. 2- 14. 2 15. 3π516. 10三、解答题17.(1)由题意知:()cos(2,sin2)=(3,1)mf x x x⋅+++x x m3cos2sin22sin(2)3x mπ=++,所以()f x 的最小正周期为T π=.(2)由(1)知:()2sin(2)3f x x m π=++, 当[0,]2x π∈时,42[,]333x πππ+∈. 所以当4233x ππ+=时,()f x 的最小值为3m-+.又∵()f x 的最小值为5,∴35m -+=,即53m =+.18.(1)因为AD ⊥面ABE ,所以AD AE ⊥, 又//BC AD ,所以BC AE ⊥.因为BF ⊥面ACE ,所以BF AE ⊥. 又BCBF B=,所以AE ⊥面BCF ,即AE ⊥平面BCE .(2)方法1:因为BF ⊥面ACE ,CE ⊂面ACE ,所以BF CE ⊥, 又BC BE =,所以F 为CE 中点,在DEC ∆中,22DE CE CD ===所以DF CE ⊥,BFD ∠为二面角B CE D --的平面角,222cos 2BF DF BD BFD BF DF +-∠=⋅⋅33226==⋅⋅.∴平面BCE 与平面CDE 所成角的余弦值为33.方法2:以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,则相关点的坐标为(0,0,0)E ,(2,0,0)B ,(2,0,2)C ,(0,2,2)D ,设平面BCE 的法向量1n ,平面CDE 的法向量为2n ,易知1(0,1,0)n =,令2(,,)nx y z =,则2200n EC n ED ⎧⋅=⎪⎨⋅=⎪⎩,故220220x z y z +=⎧⎨+=⎩,令1x =,得111x y z =⎧⎪=⎨⎪=-⎩,2(1,1,1)n =-,于是,12cos ,n n<>121213n n n n ⋅==⋅3=此即平面BCE 与平面CDE 所成角的余弦值. 19.(1)由题意,7x =,9y =,1ni ii x y nx y =-∑28757928=-⋅⋅=-,221ni i x nx =-∑22955750=-⋅=,280.5650b =-=-,a y bx =-9(0.56)712.92=--⋅=.所以所求回归直线方程为0.5612.92y x =-+.(2)由0.560b =-<知,y 与x 负相关.将6x =代入回归方程可得,0.56612.929.56y =-⋅+=,即可预测当日销售量为9.56kg . (3)由(1)知7x μ≈=,2 3.2S σ≈=,所以(3.813.4)P X <<(2)P X μσμσ=-<<+1()2P X μσμσ=-<<+1(22)2P X μσμσ+-<<+0.8185=.20.解:(1)设动圆半径为r ,由于D 在圆内,圆P 与圆C 内切, 则22PC r=,PD r =, 22PC PD +=2CD >=,由椭圆定义可知,点P 的轨迹E 是椭圆,2a =1c =,211b =-=,E的方程为2212x y +=.(2)①证明:由已知条件可知,垂足W 在以CD 为直径的圆周上, 则有22001xy +=,又因Q ,R ,S ,T 为不同的四个点,220012x y +<.②解:若1l 或2l 的斜率不存在,四边形QRST 的面积为2.若两条直线的斜率存在,设1l 的斜率为1k , 则1l 的方程为1(1)y k x =+,解方程组122(1)12y k x x y =+⎧⎪⎨+=⎪⎩,得222(21)4kx k x ++2220k +-=,则2212221k QS k +=+,同理得221222k RT k +=+∴12QSRTSQS RT =⋅2222(1)4(21)(2)k k k +=++2222(1)49(1)4k k +≥+169=,当且仅当22212k k +=+,即1k =±时等号成立.综上所述,当1k =±时,四边形QRST 的面积取得最小值为169. 21.解:(1)令()(1)m x x x =,则1'()22m x x x =-(1)02x x=-<,()m x 为(1,)+∞上的减函数,而(1)0m =,所以()(1)0m x x x =<,1x x <成立;令1()x n x ex-=-,则1'()10x n x e-=->,()n x 为(1,)+∞上的增函数,而(1)0n =,所以1()0x n x e x -=->,1x ex->成立.(2)1()(1ln )2f x x x >+,即11x x t e x -+-1(1ln )2x x >+(1)x x =+,由(1)1x x <,所以1x x+<(1)x x +x x x <=,所以,只需证11x x tx e x -+<-,即12()x x t e x x-+>-,由(1)1x e x ->,所以只需证2()x x t xx+>-,只需证1x t x +>-,即1t >-,上式已知成立,故原式成立,得证.22.解:(1)∵22ρθθ,∴22cos 2sin ρρθρθ=,∴圆C 的直角坐标方程为22220x y x +=,即2222()(1x y +=,∴圆心直角坐标为22(.(2)方法1:直线l 上的点向圆C 引切线长是222222()(42)12222t t -+++-2840t t ++2(4)246t =++≥∴直线l 上的点向圆C 引的切线长的最小值是26方法2:直线l 的普通方程为420x y -+=,∴圆心C 到直线l 22|422252+=,∴直线l 上的点向圆C 引的切线长的最小值是225126-=23.解:(1)当2a =时,2221x x x -+≥+, 所以21x -≥,所以3x ≥或1x ≤, 解集为(,1][3,)-∞+∞.(2)3,(),x a x af x x a x a-≥⎧=⎨+<⎩,因为0a >,∴x a ≥时,320x a a -≥>恒成立,又x a <时,当2x >-时,2x a a +>-+,∴只需20a -+≥即可,所以2a ≥.。
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
2018年高三年级学业水平学科能力第一次诊断测试理科数学(问卷)(卷面分a :150分 考试时间:120分钟)注意事项:1・本卷分为问卷(4页)和答卷(4页),答案务必书写在答卷(或答題卡)的指定位逻上. 2 •答卷前■先将答卷密封埃内(或答题卡中的相关信息)的项目填写清楚.第I 卷(选择题共60分)一•迭择J8:本大B!共12小題■每小JS 5分•在每小題给出的四个选项中■只有一项是符合10目要求的.1・设全集 C/ = R,集合 4«|%lz>I|.B=|xk 2-2x-3>0| 侧 二 A. -IIB ・ khWl}C ・ |xl -1 <xCl|D ・(xll <%<3|2.复数二的共毙复数足3.下列函数中,既趕偶函数乂在(-8 ,0)上承调递增的函数是 A.y = ? B ・厂2皿 C.y-lofcy-TD ・y“2 4•若变盘机)满足釣束条件则3爲十2丿的最大值是 3“y -4w0. A.OB.2C.5D.65. 一个直三梭柱的三视图如图所示■其中傅视图是1E A卑B"C.220山年离三邻flMhk 水平力划一次诊《J8B 试理科效学・F+« «1M ( JU JDA. 1 -iD.4正6. 函数/{x)=(e则不等式/{X )>1的解集为l-log 3(x-l) («>2)tA. (1,2) B ・(-8,却 C ・(lD. [2.令8)7. 执行如图所示的程序IS 图,则輸出S 的值为 A.4 097 B.9 217D. 20 481&甲、乙、丙、丁四位同学参加朗读比赛•其中只有一位获奖。
冇同学走访这四位同学•甲说: “是乙或丙获奖”,乙说:■甲、丙都未获奖"■丙说广我获奖了"•丁说:“是乙获奖了”。
若四 位同学中只有两人说的话是对的■则获奖的冋学是D.T10.过球面上一点P 作球的互相垂宜的三条弦/M. PB. PC •已知PA = PR"念PC J.则球的 半径为A ・lB-fC ・2D 号H ・已知抛物线/«2px(p>0)与圆F : x 2 ■芦・0■过点F 作直我2,自上而下顺次与上述两曲线交于点A,B,C,D,则下列关于MBI • ICDI 的值的说法中•正确的是 A •等于今 C.最小值为hD ・最大值为h 12•设函数/(兀)之・(2-3“3)若不等式/(x)^0有解•則实数a 的最小值为A. —-1B.2-2.C.l +2e 2201晖离三年级学•水平学科能力知一次诊醮测试理科数学•何卷®2ft(共4 JD(W ) I 耳3C.9 729B •等于4p‘D.lA.甲B ・乙C •丙第n卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,毎个试題考生都必须作答•第22题~第23题为选考题,考生根据要求作答.二、填空题:本大題共4小题.每小題5分.13.法)'的展开式中•箴数項为_______ ・(用数字填写答案)14.两条渐近线所成的说角为60。
新疆乌鲁木齐地区2018届高三第一次诊断测试数学(理)试题+Word版含答案2018年高三年级学业水平学科能力第一次诊断测试理科数学(问卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,集合A={x|x>1},B={x|x^2-2x-3<0},则A∩B的解集为(。
)。
A。
{x|x<1}B。
{x|x≤1}C。
{x|-1<x<3}D。
{x|1<x<3}2.复数-1-i的共轭复数是(。
)。
A。
1-iB。
-1+iC。
1+iD。
-1-i3.下列函数中,既是偶函数又在(-∞,0)上单调递增的函数是(。
)。
A。
y=x^2B。
y=2xXXXD。
y=sin x4.若变量x,y满足约束条件x-y≤3,3x+y≤4,则3x+2y的最大值是(。
)。
A。
0B。
2C。
5D。
65.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为(。
)。
A。
3√2B。
3C。
2D。
46.函数f(x)={e^(x-1) (x1的解集为(。
)。
A。
(1,2)B。
(1/3,2)C。
(2,∞)D。
[2,∞)7.执行如图所示的程序框图,则输出S的值为(。
)。
A。
4097B。
9217C。
9729D。
8.甲、乙、丙、XXX同学参加朗读比赛,其中只有一位获奖,有同学走访这四位同学,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”。
若四位同学中只有两人说的话是对的,则获奖的同学是(。
)。
A。
甲B。
乙C。
丙D。
丁9.已知函数f(x)=Asin(wx)+j的部分图象如图所示,若f(π/3)=√3/2,则s in(wπ/2+a)的值为(。
)。
A。
-3/4B。
-1/8C。
1/8D。
1/310.过球面上一点P作球的互相垂直的三条弦PA,PB,PC,已知PA=PB=2√2,PC=3,则球的半径为(。
2018年甘肃省第一次高考诊断考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.设全集U R =,集合{}2A x x =≥,{}06B x x =≤<,则集合()U ()A.{}02x x <<B.{}02x x <≤C.{}02x x ≤<D.{}02x x ≤≤2.在复平面内复数34iz i+=、(i 是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.向量(,1)a m =,(1,)b m =,则“1m =”是“//a b ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若实数x ,y 满足10,10,0,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则2z x y =+的最大值是()A.-1B.1C.2D.35.某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为23π,则a 的值为()A.1B.2 C.22D.326.已知{}n a 是各项均为正数的等比数列,n S 为其前n 项和,若11a =,3564a a ⋅=,则6S =()A.65B.64C.63D.627.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若7cos 225BAE ∠=,则在正方形ABCD 内随机取一点,该点恰好在正方形EFGH 内的概率为()A.2425B.45C.35D.1258.过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为()A.19B.25C.21D.5559.如图所示,若程序框图输出的所有实数对(,)x y 所对应的点都在函数2()f x ax bx c =++的图象上,则1()0f x dx =⎰()A.1011B.1112C.1312D.121110.过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点(22,0)F 作两条渐近线的垂线,垂足分别为,A B ,点O 为坐标原点,若四边形OAFB 的面积为4,则双曲线的离心率为()A.22B.2+1C.3D.211.如图,四棱锥P ABCD -的底面是边长为2的正方形,PA ⊥平面ABCD ,且4PA =,M 是PB 上的一个动点,过点M 作平面//α平面PAD ,截棱锥所得图形面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()y f x =的图象是()A.B. C.D.12.对于任意0b >,a R ∈,不等式[][]222(2)ln (1)b a b a m m --+--≥-恒成立,则实数m 的最大值为()A.eB.2 C.eD.3第Ⅱ卷(共90分)二、填空题:本题共4小题(每题5分,满分20分,将答案填在答题纸上)13.二项式62()x x-的展开式中的常数项是.(用数字作答)14.已知数列{}n a 满足115a =,12()n n a a n N n *+-=∈,则n an的最小值为.15.在某班举行的成人典礼上,甲、乙、丙三名同学中的一人获得了礼物.甲说:“礼物不在我这”;乙说:“礼物在我这”;丙说:“礼物不在乙处”.如果三人中只有一人说的是真的,请问(填“甲”、“乙”或“丙”)获得了礼物.16.抛物线2:4C y x =的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE NM NF =+,则MNF ∆的面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(Ⅰ)求角B 的大小;(Ⅱ)若6b =,求ABC ∆周长的取值范围.18.四棱台被过点11,,A C D 的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD 是边长为2的菱形,60BAD ∠=︒,1BB ⊥平面ABCD ,12BB =.(Ⅰ)求证:平面1AB C ⊥平面1BB D ;(Ⅱ)若1AA 与底面ABCD 所成角的正切值为2,求二面角11A BD C --的余弦值.19.2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量y (单位:千万立方米)与年份x (单位:年)之间的关系.并且已知y 关于x 的线性回归方程是ˆˆ6.5yx a =+,试确定ˆa 的值,并预测2018年该地区的天然气需求量;(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A 类:每车补贴1万元,B 类:每车补贴2.5万元,C 类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:类型A 类B 类C 类车辆数目102030为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列及期望.20.椭圆2222:1x y E a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 作垂直于x 轴的直线l 与椭圆E在第一象限交于点P ,若15PF =,且23a b =.(Ⅰ)求椭圆E 的方程;(Ⅱ)A ,B 是椭圆C 上位于直线l 两侧的两点.若直线AB 过点(1,1)-,且22APF BPF ∠=∠,求直线AB 的方程.21.已知函数()ln f x a x =,a R ∈.(Ⅰ)若曲线()y f x =与曲线()g x x =在公共点处有共同的切线,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,试问函数1()()12x xe F x xf x -=-+是否有零点?如果有,求出该零点;若没有,请说明理由.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线221:(3)(1)4C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,将曲线1C 绕极点逆时针旋转6π后得到的曲线记为2C .(Ⅰ)求曲线1C ,2C 的极坐标方程;(Ⅱ)射线3πθ=(0p >)与曲线1C ,2C 分别交于异于极点O 的A ,B 两点,求AB .23.选修4-5:不等式选讲已知函数()2f x m x =--,m R ∈,且(1)0f x +≥的解集为[]0,2.(Ⅰ)求m 的值;(Ⅱ)若a ,b ,c R ∈,且11123m a b c++=,求证:239a b c ++≥.2018年甘肃省第一次高考诊断理科数学考试参考答案及评分标准一、选择题1-5:CDACB 6-10:CDABD11、12:DB二、填空题13.-16014.27415.甲16.322三、解答题17.解:(Ⅰ)∵m n ⊥,则有cos (2)cos 0B a c C b ⋅++⋅=,∴cos (2sin sin )cos sin 0B AC C B ⋅++⋅=∴2cos sin (sin cos cos sin )sin()sin B A C B C B B C A =-⋅+⋅=-+=-,∴1cos 2B =-,∴23B π=.(Ⅱ)根据余弦定理可知2222cos b a c ac B =+-,∴2236a c ac =++,又∵236()a c ac =+-,∴22()36()2a c a c ac ++-=≤,∴643a c <+≤,则ABC ∆周长的取值范围是(12,643⎤+⎦.18.解:(Ⅰ)∵1BB ⊥平面ABCD ,∴1BB AC ⊥.在菱形ABCD 中,BD AC ⊥,又1BD BB B ⋂=,∴AC ⊥平面1BB D ,∵AC ⊂平面1AB C ,∴平面1AB C ⊥平面1BB D .(Ⅱ)∵1BB ⊥平面ABCD∴1AA 与底面ABCD 所成角为1A AB ∠,∴1tan 2A AB ∠=,∴111A B =设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系.则(0,1,0)B -,(0,1,0)D ,1(0,1,2)B -,(3,0,0)A .111131(,,2)222B A BA A =⇒- ,同理131(,,2)22C --,131(,,2)22BA = ,(0,2,0)BD = ,131(,,2)22BC =- .设平面1A BD 的法向量(,,)n x y z =,∴10,0,BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ 则(4,0,3)n =-,设平面1C BD 的法向量(,,)m x y z '''=,10,0,BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩则(4,0,3)m =,设二面角11A BD C --为θ,13cos 19m n m n θ⋅==.19.解:(Ⅰ)如折线图数据可知2008201020122014201620125x ++++==236246257276286260.25y ++++==代入线性回归方程ˆˆ6.5yx a =+可得ˆ12817.8a =-.将2018x =代入方程可得ˆ299.2y=千万立方米.(Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆,2辆,3辆则当A 类抽1辆,B 类抽1辆时,=3.5ξ,此时1112262( 3.5)15C C P C ξ===;当A 类抽1辆,C 类抽1辆时, 4.4ξ=,此时1113263( 4.4)15C C P C ξ===;当B 类抽1辆,C 类抽1辆时, 5.9ξ=,此时11232662( 5.9)155C C P C ξ====;当B 类抽2辆时,=5ξ,此时22261(5)15C P C ξ===;当C 类抽2辆时, 6.8ξ=,此时232631( 6.8)155C P C ξ====.所以ξ的分布列为:ξ3.54.45.956.8p2153152511515∴23211273.5 4.4 5.95 6.8151551555E ξ=⨯+⨯+⨯+⨯+⨯=(万元)20.解:(Ⅰ)由题可得223b PF a==,因为15PF =,由椭圆的定义得4a =,所以212b =,所以椭圆E 方程为2211612x y +=.(Ⅱ)易知点P 的坐标为(2,3).因为22APF BPF ∠=∠,所以直线PA ,PB 的斜率之和为0.设直线PA 的斜率为k ,则直线PB 的斜率为k -,设11(,)A x y ,22(,)B x y ,则直线PA 的方程为3(2)y k x -=-,由223(2)11612y k x x y -=-⎧⎪⎨+=⎪⎩可得222(3+4)8(32)4(32)480k x k k x k +-+--=,∴128(23)234k k x k ++=+同理直线PB 的方程为3(2)y k x -=--,可得2228(23)8(23)23434k k k k x k k---++==++,∴2122161234k x x k -+=+,1224834k x x k--=+,121212121212(2)3(2)3()412AB yy k x k x k x x k k x x x x x x --++--+-====---,∴满足条件的直线AB 的方程为11(1)2y x +=-,即为230x y --=.21.解:(Ⅰ)函数()ln f x a x =的定义域为(0)+∞,,()af x x '=,1()2g x x'=设曲线()y f x =与曲线()g x x =公共点为00(,)x y 由于在公共点处有共同的切线,所以0012a x x =,解得204x a =,0a >.由00()()f x g x =可得00ln a x x =.联立20004,ln ,x a a x x ⎧=⎪⎨=⎪⎩解得2ea =.(Ⅱ)函数1()()12xxe F x xf x -=-+是否有零点,转化为函数()()ln 2eH x xf x x x==与函数1()12xxe G x -=-在区间(0,)x ∈+∞是否有交点,()()ln 2eH x xf x x x ==,可得()ln (1ln )222eeeH x x x '=+=+,令()0H x '>,解得1(,)x e ∈+∞,此时函数()H x 单调递增;令()0H x '<,解得1(0,)x e ∈,此时函数()H x 单调递减.∴当1x e =-时,函数()H x 取得极小值即最小值,11()2H e =-.1()12xxe G x -=-可得11()(1)2xG x x e -'=-,令()0G x '>,解得01x <<,此时函数()G x 单调递增;令()0G x '<,解得1x >,此时函数()G x 单调递减.∴当1x =时,函数()G x 取得极大值即最大值,1(1)2G =-.因此两个函数无交点.即函数1()()12xxe F x xf x -=-+无零点.22.解:曲线221:(3)(1)4C x y -+-=化为极坐标方程是23cos 2sin ρθθ=+设曲线2C 上的点(,)Q ρθ绕极点顺时针旋转6π后得到(,)6P πρθ-在1C 上,代入可得2C 的极坐标方程是2cos 23sin ρθθ=+.(Ⅱ)将3πθ=(0ρ>)分别代入1C ,2C 的极坐标方程,得到123ρ=,24ρ=12423AB ρρ=-=-.23.(Ⅰ)()01011f x m x m x m≥⇒--≥⇒-≤≤+由(+1)0f x ≥的解集为[]02,可知1m =.(Ⅱ)111123a b c++=则111233223(22)()111232233b c a c a b a b c a b c a b c a a b b c c++=++++=++++++++233233692323b a c a c b a b a c b c=++++++≥+=当且仅当23a b c ==时等号成立,即3a =,32b =,1c =时等号成立.。
理科数学第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U =R ,集合{}2=£-A x x {}1,,=³-B x x 则()=ðU A BA.[]21,- B.21(,)-- C.(][)21,,-¥--+¥D.21(,)- 2.复数21iz =+在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.空气质量指数AQI 是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天空气质量指数AQI ,根据得到的数据绘制出如图所示的折线图.则下列说法错误..的是 A.该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI 持续增大D.该地区的空气质量指数AQI 与日期成负相关4.已知锐角ABC D 的三个内角分别为,,,A B C 则“sin >sin A B ”是“tan >tan A B ”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5. “更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k 的值分别为4,6,1,则输出的k 的值为 A.2 B.3 C.4 D.5 6.若关于x 的不等式2210x ax ++³在[)0+¥,上恒成立,则实数a 的取值范围为A.0+¥(,) B.[)1-+¥,222522B E分别为双曲线的左、右焦点a b433-433+433-334-3p3p11.设函数sin 23f x x p=+()(),若12x x 0,<且120f x f x +=()(),则21x x -的取值范围为A.6p¥(,+) B.3p¥(,+) C.23p +¥(,)D.43p+¥(,) 12.已知关于x 的方程e 0e ex x x++-x m =x 有三个不相等的实数根123x x x ,,,且1230x x <x <<,其中m ÎR ,e 271828=×××.为自然对数的底数则1232312111e e e x x x ---()()()x x x 的值为A.eB. 1C. 1m +D. 1m -第II 卷(非选择题,共90分)二、填空题:本大题共4道小题,每小题5分,共20分.13.52()y x +的展开式中的第三项系数为.14.若实数x y ,满足线性约束条件124+³ìï£íï-£îx y y x x y ,则2+x y 的最大值为.15.如图,在直角梯形ABDE 中,已知90ABD EDB °Ð=Ð=,C 是BD 上一点,33,15,AB ACB °=-Ð=60,ECD °Ð=45EAC °Ð=,则线段DE 的长度为.16.在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,123AD AA ==,,点Q 是正方形ABCD 所在平面内...的一个动点,且2=QC QP ,则线段BQ 的长度的最大值为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.B DAEC17.(本小题满分12分)已知等差数列{}n a 的前n 项和为Sn ,24316a S ==,,*n ÎN .(1)求数列{}n a 的通项公式;(2)设2nn n b a =,求数列{}n b 的前n 项和nT.18. (本小题满分12分)某部门为了解一企业在生产过程中的用水量情况,对每天的用水量作了记录,得到了大量的该企业的日用水量的统计数据.从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨). 若用水量不低于95(吨),则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天是用水量超标的概率; (2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数记随机变量X 为未来这3超标的天数,天中用水量超标的天数,求求X 的分布列和数学期望.19.(本小题满分12分)如图①,在边长为5的菱形ABCD 中,6AC =.现沿对角线AC 把ADC D 翻折到APC D 的位置得到四面体P ABC -,如图②所示.已知42PB =.(1)求证:平面PAC^平面ABC ;(2)若Q 是线段AP 上的点,且13AQ =AP ,求二面角Q BC A --的余弦值.图① 图②20.(本小题满分12分)已知椭圆222210x y C a b ab+=:()>>的右焦点30F (,),长半轴与短半轴之比等于2.PACBDA CB(1)求椭圆C 的标准方程;(2)设不经过点01(,)B 的直线l 与椭圆C 相交于不同的两点M N ,.若线段MN 的中点H 满足2MN =BH ,证明直线l 过定点,并求出该定点的坐标21.(本小题满分12分)已知函数e x f x =(),其中e 271828=×××.为自然对数的底数. (1)若曲线()=y f x 在点0e x P x (,)处的切线方程为y kx b =+,求k b -的最小值;(2)当常数()2,+m Î¥时,已知函数212g x x f x mx =--+()()()在0(,)+¥上有两个零点()1212x x x x ,<.证明:214ln e <-<x x m .请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为122322x t t y tì=+ïïíï=+ïî(为参数)在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4sin r q q r +=.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 的直角坐标为22(,).若直线l 与曲线C 相交于不同的两点A B ,,求MA MB ×的值.2123a S=,解得d=212232212+48833B P (,),())80),X 01 2 3P827 49 29 127ABCD 是菱形,\=PA PC ,PO AC ^.5634DC AC OC PO OB ==\===,,,,42PB =, 222PO OB PB \+=.PO OB \^.BOAC O =,\^PO 平面ABC .ÌPO 平面PAC , \平面ABC ^平面PAC . ………4分(2)AB BC BO AC =\^.,易知,,OB OC OP 两两相互垂直.以O 为坐标原点,OB OC OP ,,分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz ,如图所示.则400030004030B C P A -(,,),(,,),(,,),(,,). 设点(,,)Q x y z .由13AQ AP =, 得4023Q -(,,). ………6分4430423BC BQ \=-=--(,,),(,,).设1111x y z =(,,)n 为平面BCQ 的一个法向量. 由11111114300442003x y BC x y z BQ -+=ìì×=ïïÞíí--+×=ïïîî.=n n 解得111134415x y y z ì=ïïíïïî.= 取115z =,则13415=(,,).n ………8分取平面ABC 的一个法向量2001=(,,)n .12122221215310cos ,103415×===++n n n n n n , ………11分 \二面角--Q BC A 的余弦值为31010.………12分20.解:(1)22232a c a b c b===+,,,∴21,==a b .\椭圆的标准方程为2214x y +=.………4分(2)易知当直线l 的斜率不存在时,不合题意. 设直线l 的方程为1)y kx m m =+¹(,点1122M x y N x y (,),(,).联立2244y kx mx y =+ìí+=î,消去y 可得222418440k x kmx m +++-=(). 2212221224108414441k m km x x k m x x k ìïD =+->-ï\+=í+ïï-=ï+î.由2MN =BH ,可知点B 在以MN 为直径的圆上.BM BN \^. 0BM BN \×=. ………7分112211(,)(,)×=+-×+-BM BN x kx m x kx m2212121110k x x k m x x m =++-++-=()()()(),2222244811104141m km k k m m k k --\++-+-=++()()().整理,得25230m m --=. 解得35=-m 或1=m (舍去). ∴直线l 的方程为35y kx =-. 故直线l 经过定点经过定点,,且该定点的坐标为305-(,).………12分21.解:(1)曲线在点00e x P x (,)处的切线为0000e e e x x x y x x =-+.0000e e e x x x k b x \==-+,. 00e xk b x \-=. ………3分2ln2x>G m¢=() G m \()>22.解:(1)由122322x t y t ì=+ïïíï=+ïî,消去参数t 可得322y x =-+(). ∴直线l 的普通方程为32230x y -+-=. ………2分2222sin 4sin sin 4sin .r q q r r q r q r +=\+=,222sin ,y x y r q r ==+,故曲线C 的直角坐标方程为24x y =. ………4分 (2)将122322x t y t ì=+ïïíï=+ïî代入抛物线方程24x y =,可得21324222t t +=+()(). 即2883160t t +--=(). ………8分 设点,A B 对应的参数分别为12,t t . 则12120,+838,16,D >=-=-t t t t ∴1216MA MB t t ==. ………10分23.解:(1)由题意,得214x x -++<.i ()当2x >时,原不等式即25x <.∴522x <<; ii ()当x <-1时,原不等式即23x -<.∴312-<<-x ; iii ()当2x -1££时,原不等式即3<4.∴12x -££. 综上,原不等式的解集为3522x |x ìü-<<íýîþ,即123522x x =-=,. 121x x \+=. ………5分(2)由题意,得21x k x k -++³. 当2=x 时,即不等式k k ³3成立0.k \³ i ()当2-£x 或0³x 时,11x +³,\不等式k x k x ³++-|1||2|恒成立. ii ()当12-£<-x 时,原不等式可化为2---³x kx k k .可得241.22xk x x -£=-+++ 3.k \£().。
四川省⼴安、眉⼭2018届毕业班第⼀次诊断性考试数学(理)试卷(含答案)⾼中2018届毕业班第⼀次诊断性考试数学(理⼯类)第Ⅰ卷(共60分)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知集合}1|{>=x x A ,函数)2lg(x y -=的定义域为B ,则()A .}21|{<<=?x xB A B .R B A =?C .}1|{>=?x x B AD .}2|{<=?x x B A2.若i z +=1,则=+13zz i () A .i - B .i C .1- D .13. 执⾏如图所⽰的程序框图,若输出的2=y ,则输⼊的=x ()A .1B .2C .4D .1或44. 5))((y x y x +-的展开式中,42y x 的系数为()A .10-B .5- C. 5 D .105. 为了解某⾼校学⽣使⽤⼿机⽀付和现⾦⽀付的情况,抽取了部分学⽣作为样本,统计其喜欢的⽀付⽅式,并制作出如下等⾼条形图:根据图中的信息,下列结论中不正确的是()A .样本中的男⽣数量多于⼥⽣数量B .样本中喜欢⼿机⽀付的数量多于现⾦⽀付的数量C. 样本中多数男⽣喜欢⼿机⽀付 D .样本中多数⼥⽣喜欢现⾦⽀付6.已知ABC ?是边长为1的等边三⾓形,点D 在边BC 上,且DC BD 2=,则→→?AD AB 的值为()A .331-B .32 C. 34 D .331+ 7. 若将函数x x y 2cos 32sin +=的图象向左平移6π个单位长度,则平移后图象的对称轴⽅程为() A .)(122Z k k x ∈-=ππ B .)(22Z k k x ∈+=ππ C. )(2Z k k x ∈=π D .)(122Z k k x ∈+=ππ 8.从3,2,1,0这4个数字中选3个数字组成没有重复数字的三位数,则该三位数能被3整除的概率为()A .92B .31 C. 125 D .95 9.已知定义在R 上的函数)(x f 满⾜)()(x f x f -=,当30≤≤x 时,|2|)(-=x x f ;当3≥x 时,)2()(-=x f x f ,则函数|||ln |)(x x f y -=的零点个数是()A .1B .2 C. 4 D .610. 已知椭圆)0(1:2222>>=+b a by a x E 的左焦点为y F ,1轴上的点P 在椭圆外,且线段1PF 与椭圆E 交于点M ,若||33||||1OP MF OM ==,则E 椭圆的离⼼率为() A .21 B .23 C. 13- D .213+ 11.已知SC 是球O 的直径,B A ,是球O 球⾯上的两点,且3,1===AB CB CA ,若三棱锥ABC S -的体积为1,则球O 的表⾯积为()A .π4B .π13 C. π16 D .π5212.已知函数x e x x x f )1()(2--=,设关于x 的⽅程)(5)()(2R m ex mf x f ∈=-有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3 C. 4或6 D .3或4或6。
1秘密★启用前【考试时间: 2020年11月1日15: 00— 17: 00】四川省绵阳市高中2018级第一次诊断性考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题 答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后, 将答题卡交回。
一 、 选择题:本大题共12小题, 每小题5分,共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1. 已知A = {x |0< x <2}, B = {x |x (l −x )≥0}, 则A B =A.∅B.(−∞,1]C. [l, 2)D.(0,1]2. 下列函数中,既是奇函数又是增函数的是A.y =tan xB.y =ln xC.y =x 3D.y =x 23. 若log a b > 1, 其中a >0且a ≠1, b >1, 则A.0<a <l<bB.1<a <bC.1<b <aD.1<b <a 24. 函数ππ()sin()24f x x =+的图象的一条对称轴是A.x =−3B. x =0C.x=π2D. x=32−5. 函数2()ln ||f x x x x=+的大致图象是6. 已知命题p : 在△ABC 中,若cos A =cos B , 则A =B ;命题q : 向量a 与向量b相等的充要条件2是|a |=| b |且a //b .下列四个命题是真命题的是 A.p ∧(⌝q )B. (⌝p ) ∧(⌝q )C.(⌝p )∧qD. p ∧q7.若曲线y =(0, −1)处的切线与曲线y =ln x 在点 P 处的切线垂直,则点 P 的坐标为A.(e,1)B.(1,0)C. (2, ln2)D. 1(,ln 2)2−8. 已知菱形ABCD 的对角线 相交于点O , 点E 为AO 的中 点, 若AB =2, ∠BAD =60°,则AB DE ⋅= A.−2B. 12−C. 72−D. 129. 若a <b < 0, 则下列不等式中成立的是A. 11a b a<− B. 11a b b a+>+C.11b b a a −<−D. (1)(1)a b a b −>−10. 某城市要在广场中央的圆形地面设计 一块浮雕,彰显城市积极向上的活力.某公司设计方案如图, 等腰△PMN 的顶点P 在半径为20m 的大⊙O 上, 点M , N 在半径为10m 的小⊙O 上, 圆心O 与点P 都在弦MN 的同侧. 设弦MN 与对应劣弧所围成的弓形面积为S , △OPM 与△OPN 的面积之和为S 1,∠MON =2α, 当S 1−S 的值最大时,该设计方案最美, 则此时cos α= A. 12C.11. 数列{a n }满足21121n n n a a a ++=−,2411,59a a ==,数列{b n }的前n 项和为S n ,若b n =a n a n +1,则使不等式427n S >成立的n 的最小值为 A. 11B. 12C. 13D. 1412. 若1823,23a b +==,则以下 结论正确的有 ①b −a <1 ②112a b+> ③34ab > ④22b a > A.1个B.2个C.3个D.4个二、填空题:本大题共4小题, 每小题5分, 共20分.313. 已知向量a =(l, 0), b =(l, 1), 且a +λb 与a 垂直,则实数λ= .14. 若实数x ,y 满足0,,22,x x y x y ≥⎧⎪≤⎨⎪+≥⎩则z =2x +y 的最大值为 .15. 已知sin x +cos y =14, 则sin x −sin 2y 的最大值为 .16. 若函数f (x )=(x 2 +ax +2a )e x 在区间(−2, 1)上恰有一个极值点,则实数a 的取值范围为 .三、解答题:共70分。
2018年甘肃省第一次高考诊断考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U R =,集合{}2A x x =≥,{}06B x x =≤<,则集合()U ( )A .{}02x x << B .{}02x x <≤ C .{}02x x ≤< D .{}02x x ≤≤ 2. 在复平面内复数34iz i+=、 (i 是虚数单位)对应的点在( ) A . 第一象限 B .第二象限 C . 第三象限 D .第四象限 3. 向量(,1)a m =,(1,)b m =,则“1m =”是“//a b ”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件4. 若实数x ,y 满足10,10,0,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则2z x y =+的最大值是( )A .-1B . 1 C. 2 D .35. 某几何体挖去两个半球体后的三视图如图所示,若剩余几何体的体积为23π,则a 的值为( ) A .1 B .2 C. D6. 已知{}n a 是各项均为正数的等比数列,n S 为其前n 项和,若11a =,3564a a ⋅=,则6S =( ) A . 65 B .64 C. 63 D .627. 中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明.如图所示,在“勾股弦方图”中,以弦为边长得到的正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”.若7cos 225BAE ∠=,则在正方形ABCD 内随机取一点,该点恰好在正方形EFGH 内的概率为( )A .2425 B . 45 C. 35 D .1258. 过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为( )A .19B .25 C. 21 D .5559. 如图所示,若程序框图输出的所有实数对(,)x y 所对应的点都在函数2()f x ax bx c =++的图象上,则1()0f x dx =⎰( )A .1011 B . 1112 C. 1312 D .121110.过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点(22,0)F 作两条渐近线的垂线,垂足分别为,A B ,点O 为坐标原点,若四边形OAFB 的面积为4,则双曲线的离心率为( ) A .22 B .2+1 C. 3 D .211. 如图,四棱锥P ABCD -的底面是边长为2的正方形,PA ⊥平面ABCD ,且4PA =,M 是PB 上的一个动点,过点M 作平面//α平面PAD ,截棱锥所得图形面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()y f x =的图象是( )A .B . C.D .12.对于任意0b >,a R ∈,不等式[][]222(2)ln (1)b a b a m m --+--≥-恒成立,则实数m 的最大值为( )A .e .2 C. e D .3第Ⅱ卷(共90分)二、填空题:本题共4小题(每题5分,满分20分,将答案填在答题纸上)13.二项式62()x x-的展开式中的常数项是 .(用数字作答) 14. 已知数列{}n a 满足115a =,12()n n a a n N n *+-=∈,则n an的最小值为 . 15. 在某班举行的成人典礼上,甲、乙、丙三名同学中的一人获得了礼物. 甲说:“礼物不在我这”; 乙说:“礼物在我这”; 丙说:“礼物不在乙处”.如果三人中只有一人说的是真的,请问 (填“甲”、“乙”或“丙”)获得了礼物. 16.抛物线2:4C y x =的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE NM NF =+u u u r u u u u r u u u r,则MNF ∆的面积为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(Ⅰ)求角B 的大小;(Ⅱ)若6b =,求ABC ∆周长的取值范围.18. 四棱台被过点11,,A C D 的平面截去一部分后得到如图所示的几何体,其下底面四边形ABCD 是边长为2的菱形,60BAD ∠=︒,1BB ⊥平面ABCD ,12BB =. (Ⅰ)求证:平面1AB C ⊥平面1BB D ;(Ⅱ)若1AA 与底面ABCD 所成角的正切值为2,求二面角11A BD C --的余弦值.19.2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量y (单位:千万立方米)与年份x (单位:年)之间的关系.并且已知y 关于x 的线性回归方程是ˆˆ6.5yx a =+,试确定ˆa 的值,并预测2018年该地区的天然气需求量;(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A 类:每车补贴1万元,B 类:每车补贴2.5万元,C 类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:类型A 类B 类C 类为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列及期望.20.椭圆2222:1x y E a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 作垂直于x 轴的直线l 与椭圆E 在第一象限交于点P ,若15PF =,且23a b =. (Ⅰ)求椭圆E 的方程;(Ⅱ)A ,B 是椭圆C 上位于直线l 两侧的两点.若直线AB 过点(1,1)-,且22APF BPF ∠=∠,求直线AB 的方程.21. 已知函数()ln f x a x =,a R ∈.(Ⅰ)若曲线()y f x =与曲线()g x =a 的值;(Ⅱ)在(Ⅰ)的条件下,试问函数1()()12xxe F x xf x -=-+是否有零点?如果有,求出该零点;若没有,请说明理由.(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线221:((1)4C x y +-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,将曲线1C 绕极点逆时针旋转6π后得到的曲线记为2C . (Ⅰ)求曲线1C ,2C 的极坐标方程; (Ⅱ)射线3πθ=(0p >)与曲线1C ,2C 分别交于异于极点O 的A ,B 两点,求AB .23.选修4-5:不等式选讲已知函数()2f x m x =--,m R ∈,且(1)0f x +≥的解集为[]0,2. (Ⅰ)求m 的值; (Ⅱ)若a ,b ,c R ∈,且11123m a b c++=,求证:239a b c ++≥.2018年甘肃省第一次高考诊断理科数学考试参考答案及评分标准一、选择题1-5: CDACB 6-10: CDABD 11、12:DB二、填空题13. -160 14.27415. 甲 16.2三、解答题17.解:(Ⅰ)∵m n ⊥,则有cos (2)cos 0B a c C b ⋅++⋅=, ∴cos (2sin sin )cos sin 0B A C C B ⋅++⋅=∴2cos sin (sin cos cos sin )sin()sin B A C B C B B C A =-⋅+⋅=-+=-, ∴1cos 2B =-,∴23B π=. (Ⅱ)根据余弦定理可知2222cos b a c ac B =+-,∴2236a c ac =++,又∵236()a c ac =+-,∴22()36()2a c a c ac ++-=≤,∴6a c <+≤则ABC ∆周长的取值范围是(12,6+.18.解:(Ⅰ)∵1BB ⊥平面ABCD ,∴1BB AC ⊥. 在菱形ABCD 中,BD AC ⊥,又1BD BB B ⋂=,∴AC ⊥平面1BB D , ∵AC ⊂平面1AB C ,∴平面1AB C ⊥平面1BB D . (Ⅱ)∵1BB ⊥平面ABCD∴1AA 与底面ABCD 所成角为1A AB ∠,∴1tan 2A AB ∠=,∴111A B = 设BD ,AC 交于点O ,以O 为坐标原点,如图建立空间直角坐标系. 则(0,1,0)B -,(0,1,0)D ,1(0,1,2)B -,(3,0,0)A .111131(,,2)22B A BA A =⇒-u u u u r u u u r ,同理131(,,2)2C --, 131(,,2)2BA =u u u r ,(0,2,0)BD =u u u r ,131(,,2)22BC =-u u u u r .设平面1A BD 的法向量(,,)n x y z =,∴10,0,BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r 则(4,0,3)n =-, 设平面1C BD 的法向量(,,)m x y z '''=,10,0,BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u ur 则(4,0,3)m =, 设二面角11A BD C --为θ,13cos 19m n m n θ⋅==. 19. 解:(Ⅰ)如折线图数据可知2008201020122014201620125x ++++==236246257276286260.25y ++++==代入线性回归方程ˆˆ6.5yx a =+可得ˆ12817.8a =-. 将2018x =代入方程可得ˆ299.2y=千万立方米. (Ⅱ)根据分层抽样可知A 类,B 类,C 类抽取人数分别为1辆, 2辆,3辆则当A 类抽1辆,B 类抽1辆时,=3.5ξ,此时1112262( 3.5)15C C P C ξ===; 当A 类抽1辆,C 类抽1辆时, 4.4ξ=,此时1113263( 4.4)15C C P C ξ===; 当B 类抽1辆,C 类抽1辆时, 5.9ξ=,此时11232662( 5.9)155C C P C ξ====; 当B 类抽2辆时,=5ξ,此时22261(5)15C P C ξ===;当C 类抽2辆时, 6.8ξ=,此时232631( 6.8)155C P C ξ====.所以ξ的分布列为:∴ 3.5 4.4 5.95 6.8151551555E ξ=⨯+⨯+⨯+⨯+⨯=(万元) 20.解:(Ⅰ)由题可得223b PF a ==,因为15PF =,由椭圆的定义得4a =,所以212b =,所以椭圆E 方程为2211612x y +=. (Ⅱ)易知点P 的坐标为(2,3).因为22APF BPF ∠=∠,所以直线PA ,PB 的斜率之和为0.设直线PA 的斜率为k ,则直线PB 的斜率为k -,设11(,)A x y ,22(,)B x y ,则直线PA 的方程为3(2)y k x -=-,由223(2)11612y k x x y -=-⎧⎪⎨+=⎪⎩可得222(3+4)8(32)4(32)480k x k k x k +-+--=,∴128(23)234k k x k ++=+同理直线PB 的方程为3(2)y k x -=--,可得2228(23)8(23)23434k k k k x k k ---++==++, ∴2122161234k x x k -+=+,1224834kx x k --=+, 121212121212(2)3(2)3()412AB y y k x k x k x x k k x x x x x x --++--+-====---,∴满足条件的直线AB 的方程为11(1)2y x +=-,即为230x y --=. 21.解:(Ⅰ)函数()ln f x a x =的定义域为(0)+∞,,()af x x '=,()g x '= 设曲线()y f x =与曲线()g x =00(,)x y由于在公共点处有共同的切线,所以0a x =,解得204x a =,0a >. 由00()()f x g x =可得0ln a x =.联立2004,ln x a a x ⎧=⎪⎨=⎪⎩解得2e a =.(Ⅱ)函数1()()12x xe F x xf x -=-+是否有零点,转化为函数()()ln 2eH x xf x x x == 与函数1()12xxe G x -=-在区间(0,)x ∈+∞是否有交点, ()()ln 2e H x xf x x x ==,可得()ln (1ln )222e e eH x x x '=+=+, 令()0H x '>,解得1(,)x e ∈+∞,此时函数()H x 单调递增;令()0H x '<,解得1(0,)x e∈,此时函数()H x 单调递减.∴当1x e =-时,函数()H x 取得极小值即最小值,11()2H e =-.1()12x xe G x -=-可得11()(1)2x G x x e -'=-,令()0G x '>,解得01x <<,此时函数()G x 单调递增;令()0G x '<,解得1x >,此时函数()G x 单调递减.∴当1x =时,函数()G x 取得极大值即最大值,1(1)2G =-. 因此两个函数无交点.即函数1()()12xxe F x xf x -=-+无零点.22.解:曲线221:((1)4C x y +-=化为极坐标方程是2sin ρθθ=+设曲线2C 上的点(,)Q ρθ绕极点顺时针旋转6π后得到(,)6P πρθ-在1C 上,代入可得2C 的极坐标方程是2cos ρθθ=+.(Ⅱ)将3πθ=(0ρ>)分别代入1C ,2C 的极坐标方程,得到1ρ=24ρ=124AB ρρ=-=-23.(Ⅰ)()01011f x m x m x m ≥⇒--≥⇒-≤≤+由(+1)0f x ≥的解集为[]02,可知1m =. (Ⅱ)111123a b c++=则 111233223(22)()111232233b c a c a b a b c a b c a b c a a b b c c++=++++=++++++++ 233233692323b a c a c b a b a c b c=++++++≥+= 当且仅当23a b c ==时等号成立,即3a =,32b =,1c =时等号成立.。
山东省临沂市2018届高考一模试卷(理科数学)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅2.已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.定义min,则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.7.如图所示的程序框图,输出S的值为()A.B.C.D.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.39.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N﹣PAC与三棱锥D﹣PAC 的体积比为()A.1:2 B.1:8 C.1:6 D.1:310.已知抛物线x2=4y,直线y=k(k为常数)与抛物线交于A,B两个不同点,若在抛物线上存在一点P(不与A,B重合),满足,则实数k的取值范围为()A.k≥2 B.k≥4 C.0<k≤2 D.0<k≤4二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为_______.12.二项式的展开式中,常数项等于_______(用数字作答).13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=_______.14.若a>0,b>0,则的最小值是_______.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K 的最小值是_______.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E(ξ).18.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E为PA的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求二面角B﹣CE﹣D的余弦值.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.山东省临沂市2018届高考一模试卷(理科数学)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅【考点】交、并、补集的混合运算.【分析】求出全集中y的值确定出U,再由B利用补集的定义求出B的补集,找出A与B补集的交集即可.【解答】解:由全集U中y=log2x,x=,1,2,16,得到y=﹣1,0,1,4,即全集U={﹣1,0,1,4},∵A={﹣1,1},B={1,4},∴∁U B={﹣1,0},则A∩(∁U B)={﹣1},故选:B.2.已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小【考点】众数、中位数、平均数.【分析】根据平均数与中位数的定义,分析这组数据,即可得出正确的结论.【解答】解:根据题意得,数据x1,x2,x3,…,x50,是某班50个学生的体重,其平均数应在50公斤左右,再增加一个数据500,这51个数据的平均数一定增大,而中位数有可能不变,如:按大小顺序排列后,第25、26个数据相等时,其中位数相等.故选:B.3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.【考点】正态分布曲线的特点及曲线所表示的意义;函数的零点;古典概型及其概率计算公式.【分析】函数f(x)=x2+2x+ξ不存在零点,可得ξ>1,根据随机变量ξ服从正态分布N(1,σ2),可得曲线关于直线x=1对称,从而可得结论.【解答】解:∵函数f(x)=x2+2x+ξ不存在零点,∴△=4﹣4ξ<0,∴ξ>1∵随机变量ξ服从正态分布N(1,σ2),∴曲线关于直线x=1对称∴P(ξ>1)=故选C.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】要判断“a<1”是“|x﹣2|+|x|>a恒成立”的条件,我们可先构造函数y=|x﹣2|+|x|并求出函数的值域,然后转化为一个恒成立的判断与性质问题,最后结合充要条件的定义,进行判断.【解答】解:函数y=|x﹣2|+|x|的值域为[2,+∞)则当a<1时,|x﹣2|+|x|>a恒成立反之若,|x﹣2|+|x|>a,则说明a小于函数y=|x﹣2|+|x|的最小值2恒成立,即a<2故“a<1”是“|x﹣2|+|x|>a恒成立”的充分不必要条件故选:A.5.定义min,则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】根据题目给出的函数定义,写出分段函数f(x)=min{x2, },由图象直观看出所求面积的区域,然后直接运用定积分求解阴影部分的面积.【解答】解:由=x2,得:x=1,又当x<0时,<x2,所以,根据新定义有f(x)=min{x2, }=,图象如图,所以,由函数f(x)的图象与x轴、x=2直线所围成的封闭图形为图中阴影部分,其面积为S=x2dx+dx=|+lnx|=+ln2,故选:C.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用余弦定理可得|PF1|=2c,再由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,运用离心率公式计算即可得到所求值.【解答】解:由题意可得|PF2|=|F1F2|=2c,∠PF2F1=120°,即有|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2F1=4c2+4c2﹣2•4c2•(﹣)=12c2,即有|PF1|=2c,由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,即有c=a,可得e==.故选:A.7.如图所示的程序框图,输出S的值为()A.B.C.D.【考点】程序框图.【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求2n cosnπ的和,n从1取到100,利用等比数列求和公式即可计算得解.【解答】解:通过分析知该算法是求和2cosπ+22cos2π+23cos3π+…+2100cos100π,由于2cosπ+22cos2π+23cos3π+…+2100cos100π=﹣2+22﹣23+24﹣…+2100==.故选:C.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.3【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组,对应的平面区域如图:(阴影部分)由z=|x+2y|,平移直线y=﹣x+z,由图象可知当直线y=﹣x﹣z经过点A时,z取得最大值,此时z最大.即A(﹣2,﹣2),代入目标函数z=|x +2y |得z=2×2+2=6 故选:C .9.如图,四棱锥P ﹣ABCD 的底面ABCD 为平行四边形,NB=2PN ,则三棱锥N ﹣PAC 与三棱锥D ﹣PAC 的体积比为( )A .1:2B .1:8C .1:6D .1:3【考点】棱柱、棱锥、棱台的体积.【分析】根据两个棱锥的底面和高与棱锥P ﹣ABC 的底面与高的关系得出两棱锥的体积与棱锥P ﹣ABC 的关系,得出答案.【解答】解:∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD . ∴V D ﹣PAC =V P ﹣ACD =V P ﹣ABC .∵NB=2PN ,∴NB=PB ,∴V N ﹣ABC =V P ﹣ABC ,∴V N ﹣PAC =V P ﹣ABC ﹣V N ﹣ABC =V P ﹣ABC .∴.故选:D .10.已知抛物线x 2=4y ,直线y=k (k 为常数)与抛物线交于A ,B 两个不同点,若在抛物线上存在一点P(不与A ,B 重合),满足,则实数k 的取值范围为( ) A .k ≥2 B .k ≥4 C .0<k ≤2 D .0<k ≤4 【考点】抛物线的简单性质.【分析】由题意可得设A(2,k),B(﹣2,k),P(m,),运用向量的数量积的坐标表示,由换元法可得二次方程,由判别式大于等于0和两根非负的条件,运用韦达定理,解不等式即可得到所求范围.【解答】解:由y=k(k>0),代入抛物线x2=4y,可得x=±2,可设A(2,k),B(﹣2,k),P(m,),由,可得(2﹣m,k﹣)•(﹣2﹣m,k﹣)=0,即为(2﹣m)(﹣2﹣m)+(k﹣)2=0,化为m4+m2(1﹣)+k2﹣4k=0,可令t=m2(t≥0),则t2+t(1﹣)+k2﹣4k=0,可得△=(1﹣)2﹣(k2﹣4k)≥0,即1≥0恒成立,由韦达定理可得﹣(1﹣)≥0,k2﹣4k≥0,解得k≥4.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为i.【考点】复数代数形式的乘除运算.【分析】利用复数相等,求出m,n然后求解复数的代数形式.【解答】解:m,n∈R,且m+2i=2﹣ni,可得m=2,n=﹣2,====﹣i.它的共轭复数为i.故答案为:i.12.二项式的展开式中,常数项等于1215(用数字作答).【考点】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项【解答】解:展开式的通项公式为,由6﹣3k=0得k=2,所以常数项为,故答案为1215.13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=cosπx.【考点】正弦函数的图象.【分析】由函数的最值求出A,由函数的奇偶性求出φ的值,由周期求出ω,可得函数的解析式.【解答】解:由题意可得A=,φ=2kπ+,k∈Z,再结合0<φ<π,可得φ=,函数f(x)=sin(ωx+)=cosωx.再根据•=,可得ω=π,函数f(x)=cosπx,故答案为:cosπx.14.若a>0,b>0,则的最小值是2+3.【考点】基本不等式.【分析】化简可得=++3,从而利用基本不等式求解即可.【解答】解:=2+++1=++3≥2+3,(当且仅当=,即a=b时,等号成立);故答案为:2+3.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是.【考点】向量的线性运算性质及几何意义.【分析】y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|,再利用基本不等式的性质即可得出.【解答】解:y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=+﹣+2[λx1+(1﹣λ)x2]=,|x1﹣x2|≤|1﹣2|=1,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|≤=,由于|≤K恒成立,∴,∴K的最小值为.故答案为:.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】(1)化简f(x),根据对称轴求出ω,得出f(x)的解析式,利用周期公式计算周期;(2)由f(A)=解出A,利用余弦定理和基本不等式得出bc的最大值,代入面积公式得出面积的最大值.【解答】解:(I)f(x)=cos2ωx﹣[﹣cos(2ωx﹣)]=cos(2ωx﹣)﹣cos2ωx=﹣cos2ωx+sin2ωx=sin(2ωx﹣).令2ωx﹣=+kπ,解得x=.∴f(x)的对称轴为x=,令=π解得ω=.∵<w<1,∴当k=1时,ω=.∴f (x )=sin (x ﹣).∴f (x )的最小正周期T=.(2)∵f ()=sin (A ﹣)=,∴sin (A ﹣)=.∴A=.由余弦定理得cosA===.∴b 2+c 2=bc +1≥2bc ,∴bc ≤1.∴S △ABC ==≤.∴△ABC 面积的最大值是.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E (ξ). 【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(Ⅰ)甲、乙两人所付费用相同即为0,40,80元,求出相应的概率,利用互斥事件的概率公式,可求甲、乙两人所付租车费用相同的概率;(Ⅱ)确定变量的取值,求出相应的概率,即可求得ξ的分布列与数学期望. 【解答】解:(Ⅰ)甲、乙两人所付费用相同即为0,40,80元.…都付0元的概率为P 1==,都付40元的概率为P 2==,都付80元的概率为P 3=(1﹣)(1﹣)=,故所付费用相同的概率为P=P 1+P 2+P 3=.(Ⅱ)由题意甲、乙两人所付的滑雪费用之和ξ的可能取值为0,40,80,120,160,P (ξ=0)==,P (ξ=40)==,P (ξ=80)=+=,P (ξ=120)=+=,P (ξ=160)=(1﹣)(1﹣)=,ξ 0 40 80 120 160数学期望E (ξ)=+=80.18.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BCA=45,AP=AD=AC=2,E 为PA 的中点.(Ⅰ)设面PAB ∩面PCD=l ,求证:CD ∥l ; (Ⅱ)求二面角B ﹣CE ﹣D 的余弦值.【考点】二面角的平面角及求法;棱锥的结构特征. 【分析】(Ⅰ)根据线面平行的判定定理以及性质定理即可证明CD ∥l ;(Ⅱ)建立空间直角坐标系,求出对应平面的法向量,利用向量法进行求解即可. 【解答】证明:(Ⅰ)取CD 的中点H ,∵AC ⊥AD ,AB ⊥BC ,∠BCA=45,AP=AD=AC=2, ∴AH ⊥CD ,∠CAH=∠CAB=45°, 即∠BAH=90°,即四边形ABCH 是矩形, 则AB ∥CH ,AB ∥CD∵CD ⊄面PAB ,AB ⊂面PAB , ∴CD ∥面PAB ,∵CD ⊂面PCD ,面PAB ∩面PCD=l , ∴根据线面平行的性质得CD ∥l .(Ⅱ)∵AC=2,∴AB=BC=AH=,DH=,建立以A 为原点,AH ,AB ,AP 分别为x ,y ,z 轴的空间直角坐标系如图:则A (0,0,0),B (0,,0),C (,,0),P (0,0,2),E (0,0,1),D (,﹣,0),=(﹣,﹣,1),=(,0,0),=(0,﹣2,0)设平面BPC的一个法向量为=(x,y,z),则,则x=0,令y=,则z=2,即=(0,,2),设平面PCD的一个法向量为=(x,y,z),,则y=0,令x=,则z=2,=(,0,2),则cos<,>====,即二面角B﹣CE﹣D的余弦值是.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.【考点】数列的求和;等差数列的通项公式.【分析】(I)由,可得=T1+2=22,解得a1.利用等差数列的通项公式及其前n项和公式可得a n,S n.可得2n+1=T n+2,利用递推关系可得b n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.可得:c1=﹣12,c2=﹣2,n≥3,c n>0.n≥3,W n=c1+c2+…+c n ﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)∵,∴=T1+2=2+2=4=22,∴+1=2,解得a1=1.∴a n=1+(n﹣1)×2=2n﹣1.∴S n==n2.∴2n+1=T n+2,∴当n≥2时,2n+1﹣2n=T n+2﹣(T n+2)=b n,﹣1∴b n=2n,当n=1时也成立.∴b n=2n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.∴c1=﹣12,c2=﹣2,n≥3,c n>0.∴n≥3,W n=﹣c1﹣c2+c3+…+c n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,2Q n=1×22+3×23+…+(2n﹣3)•2n+(2n﹣1)•2n+1,∴﹣Q n=2(2+22+…+2n)﹣2﹣(2n﹣1)•2n+1=2×﹣2﹣(2n﹣1)•2n+1=(3﹣2n)•2n+1﹣6,∴Q n=(2n﹣3)•2n+1+6.∴W n=.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,运用直线斜率公式和斜率之积为﹣1,可得m,再由直线MA与椭圆求得交点P;(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,运用韦达定理,解得P的坐标;同理求得Q的坐标,运用直线的斜率公式可得PQ的斜率,由点斜式方程可得PQ的方程,再由恒过定点思想,即可得到所求定点.【解答】解:(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,可得k BH•k MA=﹣1,即有•=﹣1,可得m=,由MA的方程:y=(x+2),代入椭圆方程,可得8x2+4x﹣48=0,解得x=﹣2,或,即有P(,);(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,可得(36+m2)x2+4m2x+8m2﹣288=0,由﹣2x P=,可得x P=,y P=(x P+2)=;又MB:y=(x﹣2),代入椭圆方程,可得(4+m2)x2﹣4m2x+8m2﹣32=0,由2+x Q=,可得x Q=,y Q=(x Q﹣2)=﹣,即有直线PQ的斜率为k==,则直线PQ:y﹣=(x﹣),化简即有y=(x﹣1),由x﹣1=0,解得x=,y=0.故直线PQ恒过定点(,0).21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式求出a的范围即可;(Ⅱ)求出h(x)的导数,解关于导函数的不等式求出h(x)的单调区间,从而求出h(x)的最大值即可;(Ⅲ)构造函数f(x)=ln(1+x)﹣x,利用导数法可证得ln(1+x)≤x(当x≠0时,ln(1+x)<x),令x=,利用对数函数的运算性质及累加法求和即可证得结论成立.【解答】解:(Ⅰ)f(x)=sinx﹣ax,f′(x)=cosx﹣a,若对于x∈(0,1),f(x)>0恒成立,即a<cosx在(0,1)恒成立,故a≤0;(Ⅱ)a=1时,h(x)=lnx﹣x+1,(x>0),h′(x)=﹣1=,令h′(x)>0,解得:0<x<1,令h′(x)<0,解得:x>1,∴h(x)在(0,1)递增,在(1,+∞)递减,∴h(x)的最大值是h(1)=0;证明:(Ⅲ)构造函数g(x)=ln(1+x)﹣x,则g′(x)=﹣1=,当﹣1<x<0时,g′(x)>0,g(x)在(﹣1,0)上单调递增;当x>0时,g′(x)<0,g(x)在(0,+∞)上单调递减;所以,当x=0时,g(x)=ln(1+x)﹣x取得极大值,也是最大值,所以,g(x)≤g(0)=0,即ln(1+x)≤x,当x≠0时,ln(1+x)<x.令x=,则ln(1+)=ln(n+1)﹣lnn<,即ln(n+1)﹣lnn<,∴ln2﹣ln1<1,ln3﹣ln2<,…,lnn﹣ln(n﹣1)<,ln(n+1)﹣lnn<,以上n个不等式相加得:ln(n+1)﹣ln1<1+++…+,即.。
准考证号: 姓名:(在此卷上答题无效)2018年福州市初中毕业班质量检测数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 4.考试结束后,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)3的绝对值是(A )13 (B)13(C)3 (D)3(2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是(A)(B)(C )(D)(3)中国倡导的“一带一路"建设将促进我国与世界各国的互利合作.根据规划,“一带一路"地区覆盖总人口约为4400000000人,将4400000000用科学记数法表示,其结果是(A)44108 (B)4.4109(C)4.4108 (D )4.4101从正面看(4)如图,数轴上M ,N ,P,Q 四点中,能表示的点是(A)M (B )N (C)P(D)Q(5)下列计算正确的是(A)8aa 8 (B )(a )4a 4 (C )a 3a 2a 6(D )(ab )2a 2b 2(6)下列几何图形不.是中心对称图形的是 (A )平行四边形 (B)正方形 (C)正五边形(D)正六边形(7)如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O上两点.若AB BC CD ==,则图中阴影部分的面积是 (A )6π (B )12π (C )18π(D)24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度.A,B 在格点上,现将线段AB 向下平移m 个单位长度,再向左平移n个单位长度,得到线段A ′B ′,连接AA ′,BB ′.若四边形AA ′B ′B 是正方形,则m n的值是 (A )3 (B)4 (C)5(D )6(9)若数据x 1,x 2,…,x n的众数为a ,方差为b ,则数据x12,x 22,…,xn2的众数,方差分别是(A )a ,b (B)a ,b2 (C)a 2,b(D )a 2,b 2(10)在平面直角坐标系x Oy 中,A (0,2),B (m,m 2),则AB OB 的最小值是(A)2 (B )4 (C )2 (D)2第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分. (11)2-1.12M QN P(12)若∠40°,则∠的补角是°. (13)不等式2x 1≥3的解集是.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是白球的概率是.(15)如图,矩形A BC D中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE .若F 恰好是CD 的中点,则AD AB的值是.(16)如图,直线y 143-x与双曲线y 2k x交于A,B 两点,点C 在x轴上,连接AC ,BC .若∠A CB 90°,△ABC 的面积为10,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分8分)先化简,再求值:2212(1)11x x x x -+-÷++,其中1.(18)(本小题满分8分)如图,点B ,F ,C ,E 在一条直线上,AB∥DE ,AC ∥DF 且ACDF ,求证:A BDE .(19)(本小题满分8分)如图,在Rt △AB C中,∠C90°,∠B 54°,AD 是△ABC的角平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明D EDB.(要求:尺规作图,保留作图痕迹,不写作法)(20)(本小题满分8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x,y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是41061134x y x y +=⎧⎨+=⎩.,请你根据图2所示的算筹图,列出方程组,并求解.A CB D AE B FCD AE CBF图1 ﻩ ﻩ 图2(21)(本小题满分8分)如图,AB 是⊙O 的直径,点C在⊙O 上,过点C 的直线与AB 延长线相交于点P.若∠C OB 2∠PCB ,求证:PC是⊙O 的切线. (22)(本小题满分10分)已知y 是x的函数,自变量x 的取值范围是 3.5≤x ≤4,下表是y与x的几组对应值:x3。
泉州市2018届高中毕业班单科质量检查理科数学试题一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}210A x x =-≥,{}210B x x =-≤,则A B = (A ){}1x x ≥- (B ){}1x x ≥ (C )112x x ⎧⎫-≤≤⎨⎬⎩⎭ (D )112x x ⎧⎫≤≤⎨⎬⎩⎭【命题意图】本小题主要考查解不等式、交集等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算. 【试题简析】因为1{|}2A x x =≥,{|11}B x x =-≤≤,所以1{|1}2A B x x =≤ ,故选D. 【错选原因】错选A :误求成A B ;错选B :集合B 解错,解成{}11或B x x x =≤-≥;错选C :集合A 解错,解成1{|}2A x x =≤.【变式题源】(2015全国卷I·理1)已知集合{}1A x x =<,{}31x B x =<,则 (A ){|0}A B x x =< (B )A B =R (C ){|1}A B x x => (D )A B =∅(2)已知z 为复数z 的共轭复数,()1i 2i z -=,则z =(A )1i --(B )1i -+(C )1i - (D )1i + 【命题意图】本小题主要考查复数的运算、共轭复数等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算. 【试题简析】因为22(1)11(1)(1)i i i z i i i i +===-+--+,所以1z i =--,故选(A ). 【错选原因】错选B :求出1z i =-+,忘了求z ;错选C :错解1i z =+;错选D :错解1i z =-.【变式题源】(2015全国卷Ⅰ·文3)已知复数z 满足(z -1)i =1+i ,则z=A .-2-iB .-2+iC .2-iD .2+i(3)设等差数列{}n a 的前n 项和为n S .若212a a -=,549S S -=,则50a =(A )99 (B )101 (C ) 2500 (D )4592⨯【命题意图】本小题主要考查等差数列等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算.【试题简析】依题意得,212d a a =-=,5549a S S =-=,所以5054599a a d =+=,故选C.【错选原因】错选A :n S 的公式记忆错误,导致计算错误;错选B :n S 的公式记忆错误,导致计算错误;错选D :误认为544S S a -=.【变式题源】(2017全国卷Ⅰ·理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(4)已知点(2,1)在双曲线2222:1(0,0)x y E a b a b-=>>的渐近线上,则E 的离心率等于 (A(B(C(D【命题意图】本小题主要考查双曲线的渐近线、离心率等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想,考查数学运算.【试题简析】由题意得,点(2,1)在直线b y x a =上,则12b a =,所以e == B. 【错选原因】错选A :误认为222c a b =-导致错误;错选C :误认为双曲线的焦点在y 轴上.错选D :未判断双曲线的焦点位置. 【变式题源】(2013全国卷Ⅰ·理4)已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为(A )y =14x ± (B )y =13x ± (C )y =12x ± (D )y x =± (5)已知实数,x y 满足1,30,220,x x y x y ≥⎧⎪+-≤⎨⎪--≤⎩则z x y =-的最大值为(A )-1 (B )13(C )1 (D )3【命题意图】本小题主要考查线性规划等基础知识;考查运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,考查直观想象、数学运算等.【试题简析】由已知条件,可行域如右图阴影部分.其中阴影区域三角形的三个顶点分别为54(1,0),(1,2),(,)33,把三个点分别代入z x y =-检验得:当1,0x y ==时,z 取得最大值1,故选D.【错选原因】错选A :误把z -的最大值当成z x y =-的最大值;错选B :误把z 的最小值当成z x y =-的最大值;错选C :误把z -的最小值当成z x y =-的最大值.【变式题源】(2017全国卷Ⅰ·理14)设x ,y 满足约束条件21,21,0,x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩则32z x y =-的最小值为 .(6)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(A )16π3 (B )11π2 (C )17π3 (D ) 35π6【命题意图】本小题主要考查三视图、空间几何体的体积,等基础知识,考查空间想像能力、运算求解能力、创新意识,考查化归与转化思想、数形结合思想,考查数学抽象、直观想象等. 【试题简析】该几何体可以看成:在一个半球上叠加一个14圆锥,然后挖掉一个相同的14圆锥,所以该几何体的体积和半球的体积相等,因此321633V r ππ==,故选A. 【错选原因】错选B :把该几何体可以看成:在一个半球上叠加一个14圆锥,且未挖掉一个相同的14圆锥. 错选C :把该几何体可以看成:在一个半球上叠加一个12圆锥,且未挖掉一个相同的14圆锥. 错选D :圆锥的公式记忆错误.【变式题源】(2016全国卷Ⅰ·理6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是 (A )π17 (B )π18(C )π20 (D )π28(7)《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的d 的值为33,则输出的i 的值为(A )4 (B )5 (C )6 (D )7【命题意图】本小题主要考查程序框图,数列求和等基础知识;考查学生的运算求解能力及数据处理能力;考查化归与转化思想、分类与整合思想;考查数学抽象和数学运算等.【试题简析】解法一:0,0,1,1i S x y ====开始执行,然后11,11,2,2i S x y ==+==⋅⋅⋅ 111115,(124816)(1)33,32,2481632i S x y ==+++++++++<==,再执行一行,然后输出6i = 解法二:本题要解决的问题是数列求和的问题,11211111,2,,2(2)22n n n a a a n --=+=+⋅⋅⋅=+≥ 1233n a a a ++⋅⋅⋅+≥,解得n 的最小值为6.【错选原因】错选A :可能把2x x =误当成2x x =来算;错选B :当执行到5i =时,11113224816S =++++,学生估值失误,误以为会达到33或按四舍五入得到. 错选D :可能先执行了1i i =+后才输出.【变式题源】(2015年全国卷Ⅱ·理8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a = (A )0(B )2 (C )4 (D )14(8)下列函数中,图象关于原点对称且单调递增的是(A )()sin f x x x =-(B )()()()ln 1ln 1f x x x =--+ (C )()e e 2x xf x -+= (D )()e 1e 1x x f x -=+【命题意图】本小题主要考查函数的图象与奇偶性、单调性、定义域等基础知识;考查学生的运算求解能力;考查数形结合思想、特殊与一般思想;考查数学抽象、直观想象和数学运算等.【试题简析】A 选项:()cos 10f x x '=-≤,不符合图象上升这个条件;B 选项:定义域不关于原点对称;C 选项函数图象先减后增,在0x =时函数取得最小值;故选D【错选原因】错选A :符合图象关于原点对称这个条件;错选B :有的学生可能会通过各种方法判断函数的单调性,却忽略了定义域不关于原点对称;错选C :有的学生可能根据函数过(0,0)而错选此项.【变式题源】(2011年全国卷Ⅱ·理2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B )||1y x =+ (C )21y x =-+(D )||2x y -=(9)已知 1.50.5a -=,6log 15b =,5log 16c =,则(A )b c a << (B )c b a << (C )a b c << (D )a c b <<【命题意图】本小题主要考查指对数函数等基础知识;考查学生的推理论证能力、运算求解能力以及数据处理能力;考查化归与转化思想、函数与方程思想;考查数学运算和数据分析.【试题简析】 1.5 1.5655log 15log 15log 16220.5-<<<<=【错选原因】错选B :对数函数的换底公式不熟悉导致;错选D :对数函数的换底公式不熟悉导致;错选C :指数的运算不过关导致.【变式题源】(2013年全国卷Ⅱ·理8)设3log 6a =,5log 10b =,7log 14c =,则(A )c b a >>(B )b c a >> (C )a c b >> (D )a b c >>(10)已知1(,2)2P 是函数()sin()(0)f x A x ωϕω=+>图象的一个最高点,,B C 是与P 相邻的两个最低点.若7cos 25BPC ∠=,则()f x 的图象对称中心可以是 (A )()0,0 (B )()1,0 (C ) ()2,0 (D )()3,0【命题意图】本小题考查三角函数的图象和性质、解三角形、二倍角公式等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查数形结合思想、化归与转化思想以及函数与方程思想;考查数学抽象、直观想象和数学分析等.【试题简析】如图,取BC 的中点D ,连结PD ,则4PD =,设BD x =,则PB PC =余弦定理可得,2222(2)cos x BPC =+-∠,解得3x =,57(,2),(,2)22B C ---,,BP CP 的中点都是()f x 图象的对称中心.故选C .【错选原因】错选A :平时缺乏训练,只记得正弦函数的对称中心是(0,0)错选B :误把最高点的2当成了周期;错选D :这类同学可以求出函数的周期是6,但没注意到函数并未过原点.【变式题源】(2015年全国卷I·理8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为(A )13(,),44k k k ππ-+∈Z (B )13(2,2),44k k k ππ-+∈Z (C )13(,),44k k k -+∈Z (D )13(2,2),44kk k -+∈Z(11)已知直线l :0mx y m -+=,圆C :()224x a y -+=.若对任意[1,)a ∈+∞,存在l 被C 截得弦长为2,则实数m 的取值范围是(A)[ (B)(,)-∞+∞(C)[ (D)(,)-∞+∞【命题意图】本小题主要考查直线与圆、点到直线的距离、解三角形等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查化归与转化思想、数形结合思想、必然与或然思想;考查数学抽象、数学建模、数学运算与数据分析等.【试题简析】解法一:由题意可得,圆心C 到l的距离d === 所以223(1)3m a =+-,又因为1a ≥,所以203m<≤,0m ≤<或0m <. 解法二:由题意可得,圆心C 到l的距离d =又l :0mx y m -+=恒过定点()1,0A -,1a ≥,所以2AC ≥,另设直线l 的倾斜角为θ,所以sin (0,2AC θ=∈,所以l 的斜率tan [m θ=∈ .【错选原因】错选A :在计算223[(1)3]m a =+-时,分子误当成1来计算; 错选B :分离变量时,误把223[(1)3]m a =+-写成22[(1)3]3a m +-=; 错选D :把最后的23m ≤计算成23m ≥【变式题源】(2016年全国卷Ⅱ·理4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =(A )43-(B )34- (C (D )2(12)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是 (A )()0,1 (B )()e,+∞ (C )()()0,1e,+∞ (D )()()20,1e ,+∞ 【命题意图】本小题主要考查二次函数的图象与性质、分段函数的图象、复合函数的图象以及零点问题等知识点;考查学生的抽象概括能力、运算求解能力以及应用意识;考查数形结合思想、分类与整合、函数与方程思想;考查数学抽象、数学运算和数据分析等.【试题简析】解法一:当0x =时,2()1e 0f x =--≠,故0x =不是函数()f x 的零点.当(0,)x ∈+∞时,()0f x =等价于2e e x a x+=, 令2e e ()(0)x g x x x +=>,则22e e e ()x x x g x x--'=, 当2x <时,()0g x '<,当2x =时,()0g x '=,当2x >时,()0g x '>;所以2()[e ,)g x ∈+∞,①当01a <<时,()f x 在(,0)-∞有两个零点,故()f x 在(0,)+∞没有零点,从而2e a <,所以01a <<;②当0a ≤或1a =时,()f x 在(,0)-∞有一个零点,故()f x 在(0,)+∞有一个零点,此时不合题意;③当1a >时,()f x 在(,0)-∞有没有零点,故()f x 在(0,)+∞有两个零点,从而2e a >.综上可得01a <<或2e a >.故选D.解法二:当[0,)x ∈+∞时,2()e e x f x ax =-+-,()e x f x a '=-+,①当01a <<时,()f x 在(,0)-∞有两个零点,又当[0,)x ∈+∞时,2max ()(ln 1)e 0f x a a =--<,故()f x 在[0,)+∞没有零点,所以01a <<; ②当0a ≤或1a =时,()f x 在(,0)-∞有一个零点,又当[0,)x ∈+∞时,()e 0x f x a '=-+<,()f x 在[0,)+∞上单调递减,故2()(0)1e 0f x f ≤=--<,不合题意;③当1a >时,()f x 在(,0)-∞有没有零点,此时()f x 在[0,)+∞上必有两个零点.当[0,)x ∈+∞时,当ln x a <时,()0f x '>,当ln x a =时,()0f x '=,当ln x a >时,()0f x '<,所以2ma x ()(ln )ln ef x f a a a a ==-+-,要使()f x 在[0,)+∞上必有两个零点,只需满足2ma x ()(ln )ln e 0f x f a a a a ==-+->. 令2()ln eg t t t t =--,则'()ln g t t =,当1t >时,'()0g x >,故()g t 单调递增.又2(e )0g =,故2ln e 0a a a -+->即2()(e )g a g >,解得2e a >.综上可得01a <<或2e a >.故选D.【错选原因】错选A :只会做二次函数部分,无视另一种情况,即左右各有一个零点.错选B :用特殊值0或1代入,发现不成立,故排除了其他三个选项得到;错选C :可能根本没去做,综合了A 和B ,于是选C. 【变式题源】(2013年全国卷I·理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C )[-2,1] (D )[-2,0]二、填空题:本大题共4小题,每小题5分。
秘密 ★ 启用前 试卷类型: A2018年广州市普通高中毕业班综合测试(一)理科数学2018.3本试卷共5页,23小题, 满分150分。
考试用时120分钟。
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A )填涂在答题卡相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()21i 4i z -=,则复数z 的共轭复数z =AA .2-B .2C .2i -D .2i2.设集合301x A xx ⎧+⎫=<⎨⎬-⎩⎭,{}3B x x =-≤,则集合{}1x x =≥ DA .B AB .A B UC .)()(B C A C R RD .)()(B C A C R R 3.若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位同学不相邻的概率为BA .45B .35C .25D .154.执行如图所示的程序框图,则输出的S =DA .920B .49C .29D .9405.已知3sin 45x π⎛⎫-= ⎪⎝⎭,则cos 4x π⎛⎫+= ⎪⎝⎭ DA .45B .35C .45-D .35- 6.已知二项式212nx x ⎛⎫- ⎪⎝⎭的所有二项式系数之和等于128,那么其展开式中含1x 项的系数是AA .84-B .14-C .14D .847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表 面积为CA.4+B.14+C.10+D .48.若x ,y 满足约束条件20,210,10,x y y x -+⎧⎪-⎨⎪-⎩≥≥≤ 则222z x x y =++的最小值为DA .12B .14C .12-D .34-9.已知函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为BA .80,3⎛⎤⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦10.已知函数()322f x x ax bx a =+++在1x =处的极值为10,则数对(),a b 为CA .()3,3-B .()11,4-C .()4,11-D .()3,3-或()4,11-11.如图,在梯形ABCD 中,已知2AB CD =,25AE AC =uu u r uuu r,双曲线过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为AAB .C .3D12.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()22f x f x x +-=,当0x <时,()12f x x '+<,若()()121f a f a a +-++≤,则实数a 的最小值为A A .12- B .1-C .32-D .2-DC ABE二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2m =a ,()1,1=b ,若+=+a b a b ,则实数m = 2 .14.已知三棱锥P ABC -的底面ABC 是等腰三角形,AB AC ⊥,PA ⊥底面ABC ,1==AB PA ,则这个三棱锥内切球的半径为. 15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()()2cos 2cos 0a B b A c θθ-+++=, 则cos θ的值为 12-. 16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足()121215452nn n a a a n b bb ⎛⎫+++=-+ ⎪⎝⎭,求数列{}n b 的前n 项和n T .图②图①某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:对上表的数据作初步处理,得到下面的散点图及一些统计量的值.(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x =-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.19.(本小题满分12分)如图,四棱锥S ABCD -中,△ABD 为正三角形,︒=∠120BCD ,2CB CD CS ===,︒=∠90BSD .(1)求证:AC ⊥平面SBD ;(2)若BD SC ⊥,求二面角C SB A --的余弦值.()()()121nx x y yi i i b n x x i i =--∑=-∑=$DCBS已知圆(2216x y +=的圆心为M ,点P 是圆M上的动点,点)N,点G 在线段MP 上,且满足()()GN GP GN GP +⊥-uuu r uu u r uuu r uu u r.(1)求点G 的轨迹C 的方程;(2)过点()4,0T 作斜率不为0的直线l 与(1)中的轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.21.(本小题满分12分)已知函数()ln 1f x ax x =++. (1)讨论函数()x f 零点的个数;(2)对任意的0>x ,()2e xf x x ≤恒成立,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,1,2x m y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集;(2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.。
山东省20l5级高三第一次诊断性考试数学试题(理科)2017.09说明:本试卷满分l50分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第l 页至第3页,第II 卷为第3页至第5页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第I 卷 (共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}234005A x x xB x x A B =--<=≤≤⋃=,,则A .[)0,4B .[]0,4C .[]15-, D .(]15-,2.已知1213,3z i z i =+=+,其中i 是虚数单位,则的虚部为A .1-B 。
C .i -D .453.在602,6A B C A B C A B B C B C ∆∠===中,,,在上任取一点D,使A B D ∆为钝角三角形的概率为A. B 。
C. D 。
4.在等比数列{}na 中,13282,81nn a a a a -+=⋅=,且前n 项和121nS =,则此数列的项数n 等于A .4B .5C .6D .75.(421x x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数是A 。
1-B 。
3C 。
3- D. 16.将长方体截去一个四棱锥得到的几何体如右图所示,则该几何体的侧视图为的展开式中x 的系数是A 。
16163π-B 。
32163π- C.1683π-D 。
3283π-7.设偶函数()[)0f x +∞在,上单调递增,则使得()()21fx f x >-成立的x 的取值范围是A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭ C 。
11,33⎛⎫- ⎪⎝⎭D 。
11,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭8.下图是一个算法流程图,则输出的x 的值是A .37B .42C .59D .659.已知曲线12:2c o s ,:3s i n 2c o s 2C y x C y x x ==-,则下面结论正确的是A .把1C 各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线C 2B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移至个单位长度,得到曲线C 2C .把1C 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线C 2的D .把1C 上各点的横坐标缩短到原来倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 210.过抛物线24y x =的焦点F 的直线交抛物线于A ,B 两点,若3=A FB F =,则A .B .2C .D .11.已知函数()42x xf x m =⋅-,若存在非零实数0x ,使得()()0f x fx -=成立,则实数m 的取值范围是A .1,2⎡⎫+∞⎪⎢⎣⎭B .10,2⎛⎫⎪⎝⎭C. ()0,2 D 。
试卷类型:A 2018年广州市普通高中毕业班综合测试<一)数学<理科)2018.3本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型<A)填涂在答题卡相应位置上。
RUW9RT2d7t2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
RUW9RT2d7t3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
RUW9RT2d7t4.作答选做题时,请先用2B铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
1 / 202 / 20参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.RUW9RT2d7t 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为A .2- B .2± C . D .2 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则cb为 A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++= 4.若函数()f x =R ,则实数a 的取值范围为 A .()2,2- B .()(),22,-∞-+∞ C .(][),22,-∞-+∞D .[]2,2-5成如图1的频率分布直方图.样本数据分组为[[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽 样的方法从样本中抽取分数在[]80,100则其中分数在[]90,100范围内的样本数据有图1分数3 / 20A .5个B .6个C .8个D .10个RUW9RT2d7t 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4 D .5RUW9RT2d7t 7.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b ()0λ> D .a b8.设a ,b ,m 为整数<0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2018B .2018C .2018D .2018RUW9RT2d7t 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. <一)必做题<9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 . 10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 . 113所示,则这个四棱锥的体积是12.设αsin α⎛ ⎝侧<左)视图4 / 2013.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .<二)选做题<14~15题,考生只能从中选做一题) 14.<坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB=a 的值为 . 15.<几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.<本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,.<1)求实数a 的值;<2)设[]2()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间. 17.<本小题满分12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立.RUW9RT2d7t <1)求乙,丙两人各自能被聘用的概率;P图45 / 20<2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值<数学期望).RUW9RT2d7t 18.<本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E是棱1D D 的 中点,点F 在棱1B B 上,且满足12B F FB =.<1)求证:11EF A C ⊥;<2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求此时1C G 的长;<3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.<本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N .<1)求数列{}n a 与{}n b 的通项公式;<2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S .<注:{}min ,a b 表示a 与b 的最小值.) 20.<本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =. <1)求实数a 的值;<2)证明:直线PQ 与直线OQ 的斜率之积是定值;C1C1DA B DEF1A 1B图56 / 20<3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=,证明点H 恒在一条定直线上.RUW9RT2d7t 21.<本小题满分14分)已知函数()()221e x f x x x =-+<其中e 为自然对数的底数). <1)求函数()f x 的单调区间;<2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.RUW9RT2d7t2018年广州市普通高中毕业班综合测试<一)数学<理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.RUW9RT2d7t2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.RUW9RT2d7t3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.RUW9RT2d7t三、解答题:本大题共6小题,满分80分.16.<本小题满分1)<本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)RUW9RT2d7t 解:<1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.即02a+=. 解得a =<2)方法1:由<1)得()sin f x x x =+.所以2()[()]2g x f x =-()2sin 2x x =+-22sin cos 3cos 2x x x x =++-2cos 2x x =+122cos 22x x ⎫=+⎪⎪⎝⎭ 2sin 2cos cos 2sin 66x x ππ⎛⎫=+ ⎪⎝⎭π2sin 26x ⎛⎫=+ ⎪⎝⎭.所以()g x 的最小正周期为22π=π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z ,所以当πππ2π22π262k x k -≤+≤+()k ∈Z 时,函数()g x 单调递增, 即ππππ36k x k -≤≤+()k ∈Z 时,函数()g x 单调递增. 所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .方法2:由<1)得()sin f x x x =+2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以2()[()]2g x f x =-2π2sin 23x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ 2π4sin 23x ⎛⎫=+- ⎪⎝⎭2π2cos 23x ⎛⎫=-+ ⎪⎝⎭分所以函数()g x 的最小正周期为22π=π分 因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z ,所以当22223k x k ππ≤+≤π+π()k ∈Z 时,函数()g x 单调递增. 即ππππ36k x k -≤≤+<k ∈Z )时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .17.<本小题满分1)<本小题主要考查相互独立事件、解方程、随机变量的分布列与均值<数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)RUW9RT2d7t 解:<1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足()()()()()113232,5611,253.10P A P A P A P A P A ⎧=⎪⎪⎪--=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎪=⎪⎩解得()212P A =,()335P A =.所以乙,丙各自能被聘用的概率分别为12,35. <2)ξ的可能取值为1,3.因为()()()1231233P P A A A P A A A ξ==+()()()()()()123123111P A P A P A P A P A P A =+---⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦213312525525=⨯⨯+⨯⨯625=. 所以()()113P P ξξ==-=61912525=-=.所以ξ的分布列为所以1963713252525E ξ=⨯+⨯=. 18.<本小题满分1)<本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)RUW9RT2d7t 推理论证法:<1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111A C B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D ,所以111A C DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D , 所以11A C ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF A C ⊥. <2)解:取1C C 的中点H ,连结BH ,则BHAE .在平面11BB C C 中,过点F 作FG BH ,则FGAE .1DABCD EF 1A1B1C1DE1A1B 1CGH连结EG ,则A ,E ,G ,F 四点共面. 因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面. <3)延长EF ,DB ,设EF DB M =,连结AM , 则AM 是平面AEF 与平面ABCD 的交线.过点B 作BN AM ⊥,垂足为N ,连结FN , 因为FB AM ⊥,FB BN B =, 所以AM ⊥平面BNF .因为FN ⊂平面BNF ,所以AM ⊥FN . 所以FNB ∠为平面AEF 与平面ABCD 所成 二面角的平面角.因为123132aMB BF MD DE a ===,即23=,所以MB =.在△ABM 中,AB a =,135ABM ∠=, 所以2222cos135AM AB MB AB MB =+-⨯⨯⨯()222a a ⎛=+-⨯⨯⨯ ⎝⎭213a =.即AM =. 因为11sin13522AM BN AB MB ⨯=⨯⨯,所以sin135a AB MB BN AM⨯⨯⨯⨯===.1DAB CDE F 1A1B1CMN所以39FN a===.所以6cos7BNFNBFN∠==.故平面AEF与平面ABCD所成二面角的余弦值为67.空间向量法:<1)证明:以点D为坐标原点,DA,DC,1DD所在的直线分别为x轴,y轴,z轴,建立如图的空间直角坐标系,则(),0,0A a,()1,0,A a a,()10,,C a a,10,0,2E a⎛⎫⎪⎝⎭,1,,3F a a a⎛⎫⎪⎝⎭,所以()11,,0AC a a=-,1,,6EF a a a⎛⎫=-⎪⎝⎭.因为221100AC EF a a=-++=,所以11AC EF⊥.所以11EF A C⊥.<2)解:设()0,,G a h,因为平面11ADD A平面11BCC B,平面11ADD A平面AEGF AE=,平面11BCC B平面AEGF FG=,所以FG AE.<苏元高考吧: 广东省数学教师QQ群:179818939)所以存在实数λ,使得FG AEλ=.因为1,0,2AE a a⎛⎫=-⎪⎝⎭,1,0,3FG a h a⎛⎫=--⎪⎝⎭,所以11,0,,0,32a h a a aλ⎛⎫⎛⎫--=-⎪ ⎪⎝⎭⎝⎭.所以1λ=,56h a =.所以1C G 15166CC CG a a a =-=-=.故当1C G 16a =时,A ,E ,G ,F 四点共面.<3)解:由<1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩n n 即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 第<1)、<2)问用推理论证法,第<3)问用空间向量法: <1)、<2)给分同推理论证法.<3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则(),0,0A a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫⎪⎝⎭, 则1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫=⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 19.<本小题满分1)<本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)RUW9RT2d7t 解:<1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+.因为等比数列{}n b 的首项为1,公比为2, 所以112n n b -=⨯, 即12n n b -=.<2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立. ②假设当n k =()6k ≥时,不等式成立,即1228k k ->+. 则有()()()()122222821826218k k k k k k -=⨯>+=++++>++. 这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立. 所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+ ()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩ 则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++ 2222123n b b b b =++++024222222n -=++++1414n -=-()1413n=-.当5n >时,2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()51413=-()()()222464744n ⎡⎤+++++++⎣⎦()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦()()()()()121653414553264562n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,n S ()32141,5,3424218679, 5.33nn n n n n ⎧-≤⎪⎪=⎨⎪++->⎪⎩20.<本小题满分1)<本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)RUW9RT2d7t <1)解:设双曲线E 的半焦距为c ,由题意可得2254.c a c a ⎧=⎪⎨⎪=+⎩解得a =.<2)证明:由<1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y ,因为220PF QF =,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭. 所以()00433ty x =-.因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=--()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.<3)证法1:设点(),H x y ,且过点5,13P ⎛⎫ ⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即()2211455y x =-,()2222455y x =-. 设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩. 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥, 得2221224451x x y λλ-=⨯--. ⑦将⑤代入⑦,得443y x =-.所以点H 恒在定直线43120x y --=上. 证法2:依题意,直线l 的斜率k 存在.设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩ 消去y 得()()()22229453053255690k x k k x k k -+---+=.因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.1 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--.整理得()354150x k x --+=. ④因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.①②③<本题<3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)21.<本小题满分1)<本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)RUW9RT2d7t 解:<1)因为()()221e x f x x x =-+,<苏元高考吧: )所以2()(22)e (21)e x x f x x x x '=-+-+()21e xx =-(1)(1)e x x x =+-.当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞.当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-. <2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由<1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s ts s t t ⎧-⋅=⎨-⋅=⎩ 也就是方程2(1)e x x x -=有两个大于1的相异实根. 设2()(1)e (1)x g x x x x =-->,则2()(1)e 1x g x x '=--. 设()h x =2()(1)e 1x g x x '=--,则()()221e x h x x x '=+-.因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增.因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =.当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数; 当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数.因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->, 所以函数()g x 在区间()1,+∞上只有一个零点.这与方程2(1)e x x x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
成都市2018届高中毕业班第一次诊断性检测数学(理工类)本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦擦干净后,再选涂其它答案标号。
礼答非选择题时,必须使用。
.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第工卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合A={-2,3},B= {}x x x =,则A B= (A ){-2} (B){3} (C){-2,3} (D )∅ 2.若复数z 满足z(1-2i)=5(i 为虚数单位),则复数z 为 (A)1255i + (B)1+2i (C) 1-2i (D) 1255i -3.计算1og 124-所得的结果为(A)1 (B) 52 (C) 72(D) 4 4.在等差数列中,a 8=15,则(A) 15 (B)30 (C) 45 (D)605.已知m ,n 是两条不同的直线,α为平面,则下列命题正确的是 (A)若m ∥α,n ∥α,则m ∥n (B)若m ⊥α,n ⊥α.则m ⊥n (C)若m ⊥α,n ∥α,则m ⊥n(D)若m 与α相交,n 与α相交,则m ,n 一定不相交6.如图,在平面直角坐标系xOy 中,角的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A,B 两点,若点A,B 的坐标为和,则的值为7、世界华商大会的某分会场有A,B,C,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲,乙两人被分配到同一展台的不同分法的种数(A)12种(B)10种(C)8种(D) 6种i8一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:cm),则该几何体的体积为(A) 120 cm2 (B)80 cm2 (C)100 cm2 (D)60 cm29.如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A'B'C',其中A'B'//y' 轴,B' C'//x’轴.若A'B'=B'C'=3,设△ABC的面积为S,△A'B'C的面积为S',记S=kS',执行如图②的框图,则输出T的值(A) 12(B)10(C) 9(D) 610.已知f(x)=-2|2|x|-1|+1和是定义在R上的两个函数,则下列命题正确的是(A)关于x的方程f (z)-k=0恰有四个不相等实数根的充要条件是(B)关于x的方程f (x)=g(x)恰有四个不相等实数根的充要条件是(C)当m=1时,对成立(D)若第II卷(非选择题,共 100分)二、填空题:本大题共5小题,每小学科网题5分,共25分.11.若是定义在R上的偶函数,则实数a=___12.已知13、设是函数的两个极值点,若,则实数a的取值范围是_____14.已知的概率为_____15.设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,;④若QA>QP,则P在△ABC内部的概率为的面积).其中不正确的命题有_____(写出所有不正确命题的序号).三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量,设函数.(I)求函数f(x)的最小正周期;(II)在△ABC中,角A,B,C所对边的长分别为a,b,c,且,求A的大小.17.(本小题满分12分)已知数列的前n项和为Sn,且(I)求数列的通项公式;(II)设数满足,求数列的前n项和Tn.18.(本小题满分12分)某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟陋夔因…详选择:其中p,q均为常数且q>1.(注:x表示上市时间,f(x)表示价格,记x=0表示4月1号,x=1表示5月1号,…,以此类推,)(I)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;(II)对(I)中所选的函数f(x),若f(2)=11, f(3)=10,记,经过多年的统计发现,当函数g(x)取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?19.(本小题满分12分)如图①,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=13DC,F为EC的中点,现将△DAE沿AE翻折到△PAE的位置,如图②,且平面PAE⊥平面ABCE.(I)求证:平面PAF⊥平面PBE;(II)求直线PF与平面PBC所成角的正弦值.20.(本小题满分13分)我国采用的PM2. 5的标准为:日均值在35微克/立方米以下的空气质量为一级;在35微克/立方米一75微克/立方米之间的空气质量为二级;75微克/立方米以上的空气质量为超标.某城市环保部门随机抽取该市m天的PM2. 5的日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下图所示.请据此解答如下问题:(I)求m的值,并分别计算:频率分布直方图中的[75,95)和[95,115]这两个矩形的高;(II)通过频率分布直方图枯计这m天的PM2. 5日均值的中位数(结果保留分数形式);(皿)从这m天的PM2. 5日均值中随机抽取2天,记X表示抽到PM2. 5超标的天数,求X的分布列和数学期望.21.(本小题满分14分)已知函数(I)若a=-1,求曲线y=f(x)在x=3处的切线方程;(II)若对任意的,都有f(x)≥g(x)恒成立,求a的最小值;(III)设p(x)=f(x-1),a>0,若为曲线y=p (x)的两个不同点,满足,使得曲线y=f(x)在x0处的切线与直线AB平行,求证:。
山东省实验中学2018级第一次诊断性测试理科数学参考答案DBDD CABD CBDB13.1sin ,≥∈∃x R x 14. [)∞,2 15. )27(f <)1(f <)25(f , 16. 217解:.2.01,0,042>⇒⎪⎩⎪⎨⎧><->-=∆⇔m m m p 为真命题 …………3分.310144)]2(4[2<<⇒<⨯⨯--=∆⇔m m q 为真命题 …………6分 .,,一真一假与为假为真q p q p q p ∴∧∨ …………7分若.3,31,2,≥≥≤>m m m m q p 所以或且则假真…………9分若.21,31,2,≤<<<≤m m m q p 所以且则真假 …………11分 综上所述,m 的取值范围为}.3,21|{≥≤<m m m 或 …………12分 18.求曲线123y x y y x =+==-,围成的平面图形的面积.13013221 (1,1)2'120 (0,0)4'10313 B(3,1)6'31211)(2)33121(2036x y A y x y y x y y xx y x y x y S x dx x x dxx x x ⎧=⎧=⎪⎨⎨=+=⎪⎩⎩⎧==⎧⎪⎨⎨==⎩⎪⎩⎧==⎧⎪-⎨⎨=-⎩⎪+=⎩∴=+-+++-⎰⎰ 解:由得即 由得即O -- 由得即 =231)131312'3x =19.已知函数421,0()3,1c ccx x c f x x x c x +<<⎧=⎨+≤<⎩ 满足29()8f c =; (1)求常数c 的值; (2)解不等式()2f x <.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c = (4)(2)由(1)得211122()31x x f x x x x ⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤ (6)由()2f x <得,当102x <<时,解得102x <<, (8)当112x <≤时,2320x x +-<解得1223x <≤, (10)所以()2f x <的解集为203x x ⎧⎫<<⎨⎬⎩⎭. (12)20.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.解:(Ⅰ)由1cos ,072παα=<<,得sin α= (2)∴sin 7tan cos 1ααα===..4于是22tan tan 21tan 1ααα===--..6 (Ⅱ)由02παβ<<<,得02παβ<-<又∵()13cos 14αβ-=,∴()sin αβ-==8 由()βααβ=--得:()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-11317142=⨯+= (1)0 所以3πβ= (12)21.已知)(x f 对一切实数y x ,都有2)1(),()()(=+=+f y f x f y x f ,当x >0时,)(x f <0(1)证明)(x f 为奇函数 (2)证明)(x f 为R 上的减函数(3)解不等式)21()1(2x x f x f ----<4 (1)证明,依题意取)0(2)0(0f f y x ===有∴0)0(=f ……………………1分又取x y -=可得))(0()()()(R x f x f x f x x f ∈=-+=- 即)(0)()(R x x f x f ∈=-=∴))(()(R x x f x f ∈-=-……………………3分 由x 的任意性可知)(x f 为奇函数……………………4分(2)证明:设0),(,12121221>--+=<x x x x x x x x 其中则…………5分 ∴)]([)()()(121221x x x f x f x f x f -+-=-)()]()([)(121211x x f x x f x f x f --=-+==………………7分∵012>-x x ∴0)(12<-x x f∴)()(0)()(2121x f x f x f x f >>-即 ∴)(x f 在R 上减函数……………………8分(3)解:依题意有4)1()1()2(=+=f f f ………………9分 ∴不等式可化为),2()21()1(2f x x f x f <---- 即)2()21()1(2f x x f x f +--<-∴)23()1(2x x f x f --<-………………10分 因为)(x f 是R 上的减函数∴142312>-<-->-x x x x x 或解得………………11分 所以不等式的解集为}14{>-<x x 或………………12分)22.已知函数()()32,0f x x bx cx d =+++-∞在上是增函数,在[]0,2是减函数,且方程()0f x =有三个根,它们分别是,2,αβ。
苏州五中2017-2018学年第一学期期初调研测试高三数学(理科)一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上.........1. 命题:“”的否定是___________.【答案】【解析】【分析】根据“”的否定是“”得结果.【详解】命题:“”的否定是.【点睛】对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.2. 已知,为虚数单位,,则___________.【答案】2【解析】由复数的运算法则:,结合复数相等的充要条件有:,即,则 2.3. 已知向量,则“”是“m=1”的_________条件.【答案】必要非充分【解析】【分析】先根据向量平行坐标表示得m取值范围,再根据包含关系判定充要关系.【详解】因为,所以或,因此是“m=1”的必要非充分条件.【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.4. 已知平行直线,则与之间的距离为_______.【答案】【解析】【分析】根据两平行直线之间距离公式求结果.【详解】即所以与之间的距离为【点睛】两平行直线之间距离等于,注意运用此公式需将两直线的系数化为一样.5. 已知向量,若,则的最小值为_______.【答案】【解析】【分析】根据求最小值.【详解】因为,所以,即的最小值为.【点睛】利用向量不等式求最值,运用的条件一般已知两向量的模.6. 若的二项展开式的各项系数之和为729,则该展开式中常数项的值为________.【答案】160【解析】先根据赋值法求n,再根据二项展开式通项公式求常数项.【详解】令x=1,则所以因此常数项为【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.7. 从集合中随机选取一个数,从集合中随机选取一个数,则的概率是__________.【答案】【解析】【分析】根据古典概型概率计算公式求结果.【详解】从集合中随机选取一个数,有5种方法;从集合中随机选取一个数,有3种方法,共有5×3=15种方法,其中有1+2+3=6种方法,因此的概率是【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.8. 设正三棱锥的底面边长和侧棱长均为4,点分别为棱,,,的中点,则三棱锥的体积为___________.【答案】【解析】先求正三棱锥体积,再比较三棱锥与正三棱锥高与底面积的关系得结果.【详解】因为正三棱锥的底面边长和侧棱长均为4,所以正三棱锥体积为又三棱锥的底面积为正三棱锥底面积四分之一,三棱锥的高为正三棱锥的高二分之一,因此三棱锥的体积为【点睛】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到.9. 用数学归纳法证明“”从到左端需增乘的代数式为____________.【答案】【解析】【分析】比较与左端项的关系,确定增乘的代数式.【详解】左端等于;左端等于;所以需增乘的代数式为【点睛】本题考查数学归纳法,着重考查观察比较能力.10. 集合中,每两个相异数作乘积,将所有这些乘积的和记为,如:;;则=__________.(写出计算结果)【答案】546【解析】试题分析:由归纳得出,则,又,.考点:归纳与推理.【知识点睛】根据前几项,归纳猜想一般规律,归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.11. 设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是____________.【答案】6【解析】【分析】根据顶点分类讨论等腰三角形,结合椭圆对称性确定等腰三角形个数.【详解】若P为顶点,则P为短轴端点时满足条件,有两个,(不是等边三角形)若F1为顶点,则满足条件的也有两个,若F2为顶点,则满足条件的也有两个,因此满足条件的点P的个数是6.【点睛】本题考查椭圆几何性质,考查分类讨论思想方法.12. 在平面直角坐标xOy中,已知A(1,0),B(4,0),直线x-y+m=0上存在唯一的点P满足,则实数m的取值集合是_____________.【答案】【解析】【分析】先根据得P的轨迹为一个圆,再根据题意得此圆与直线x-y+m=0相切得结果.【详解】设P(x,y),则由得,根据题意得此圆与直线x-y+m=0相切,即即实数m的取值集合是【点睛】本题考查圆的第二定义,考查直线与圆相切位置关系.13. 已知圆与圆相交于两点,且满足,则_________.【答案】【解析】试题分析:两圆公共弦所在直线方程为,设其中一圆的圆心为.∵,∴,∴,得.考点:圆与圆的位置关系.方法点睛:本题形式上考查了圆圆的位置关系,但本质上还要转化为直线与圆的位置关系问题,考查考生利用所学知识分析问题、解决问题的能力,属于中档题.本题解答的要点有二,一是通过两圆为方程得到它们公共弦所在直线的方程,把问题转化为直线与圆的位置关系;二是对条件“”的理解和应用,考查考生数形结合的意识,实质上表达了两点到原点的距离相等,这样通过圆的性质来解答,问题就变得容易了.14. 已知函数在(0,e)上是增函数,函数=||+在[0,ln3]上的最大值M与最小值m的差为,则a=_____________.【答案】【解析】【分析】先根据单调性确定a取值范围,再根据a大小讨论最值取法,最后根据条件解出a的值.【详解】因为函数在(0,e)上是增函数,因为,所以;所以当时=||+=+,即++,不合题意,舍去;因此;由.【点睛】函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.二、解答题:本大题共6小题;共90分.解答应写出文字说明、证明过程或演算步骤.15. 在斜三棱柱中,,平面底面,点、D分别是线段、BC的中点.(1)求证:;(2)求证:AD//平面.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)利用题意证得AD⊥平面,结合线面垂直的定义可得AD⊥CC1.(2)利用题意可得EM // AD,结合题意和线面平行的判断法则即可证得结论.试题解析:证明:(1)∵AB AC,点D是线段BC的中点,∴AD⊥BC.又∵平面底面,AD平面ABC,平面底面,∴AD⊥平面.又CC1平面,∴AD⊥CC1.(2)连结B1C与BC1交于点E,连结EM,DE.在斜三棱柱中,四边形BCC1B1是平行四边∴点E为B1C的中点.∵点D是BC的中点,∴DE//B1B,DE B1B.……10分又∵点M是平行四边形BCC1B1边AA1的中点,∴AM//B1B,AM B1B.∴AM// DE,AM DE.∴四边形ADEM是平行四边形.∴EM // AD.又EM平面MBC1,AD平面MBC1,∴AD //平面MBC1.点睛:用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.16. 如图所示,在直三棱柱ABC-A1B1C1中,CA=4,CB=4,CC1=2,∠ACB=90°,点M在线段A1B1上.(1)若A1M=3MB1,求异面直线AM和A1C所成角的余弦值;(2)若直线AM与平面ABC1所成角为30°,试确定点M的位置.【答案】(1);(2)见解析【解析】试题分析:本题考查用空间向量法解决立体几何问题,最简单的方法是建立空间直角坐标系,如以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,写出各点坐标,(1)求得相应向量,异面直线AM和A1C所成角的余弦值就是cos〈,〉的绝对值;(2)先求得平面ABC1的法向量为n,因为点M在线段A1B1上,可设M(x,4-x,2),利用法向量n与向量的夹角(锐角)与直线和平面所成的角互余可得,即由|cos〈n,〉|=可求得,从而确定的位置.试题解析:方法一(坐标法)以C为坐标原点,分别以CA,CB,CC1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(4,0,0),A1(4,0,2),B1(0,4,2).(1)因为A1M=3MB1,所以M(1,3,2).所以=(4,0,2),=(-3,3,2).所以cos〈,〉==-.所以异面直线AM和A1C所成角的余弦值为.(2)由A(4,0,0),B(0,4,0),C1(0,0,2),知=(-4,4,0),=(-4,0,2).设平面ABC1的法向量为n=(a,b,c),由得令a=1,则b=1,c=,所以平面ABC1的一个法向量为n=(1,1,).因为点M在线段A1B1上,所以可设M(x,4-x,2),所以=(x -4,4-x,2).因为直线AM 与平面ABC 1所成角为30°, 所以|cos 〈n ,〉|=sin 30°=.由|n|=|n||||cos 〈n ,〉|,得|1(x -4)+1(4-x)+2|=2,解得x =2或x =6.因为点M 在线段A 1B 1上,所以x =2, 即点M(2,2,2)是线段A 1B 1的中点. 方法二 (选基底法)由题意得CC 1⊥CA ,CA ⊥CB ,CC 1⊥CB ,取,,作为一组基底,则有||=||=4,||=2,且= ==0.(1)由=3,则= = =-,∴=+=+-,且||==--,且||=2,∴=4 ∴cos 〈,〉==.即异面直线AM 与A 1C 所成角的余弦值为. (2)设A 1M =λA 1B 1,则=+λ-λ.又=-,=-,设面ABC 1的法向量为n =x +y +z ,则=8z -16x =0,=16y -16x =0,不妨取x=y=1,z=2,则n=++2且|n|=8,||=,=16,又AM与面ABC1所成的角为30°,则应有==,得λ=,即M为A1B1的中点.考点:用向量法求异面直线所成的角、直线与平面所成的角.【名师点睛】1.空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2所成的角θ满足cos θ=|cos<m1,m2>|.(2)设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α所成的角θ满足sin θ=|cos<m,n>|.(3)求二面角的大小如图①,AB,CD是二面角α-l-β的两个半平面内与棱l垂直的直线,则二面角的大小θ=<>如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos<n1,n2>或-cos<n1,n2>.17. 已知圆O:与轴负半轴的交点为A,点P在直线l:上,过点P作圆O的切线,切点为T.(1)若a=8,切点,求直线AP的方程;(2)若PA=2PT,求实数a的取值范围.【答案】(1);(2)【解析】试题分析:(1)由于,因此关键求点P坐标,这可利用方程组求解,一是由OT⊥PT得,二是根据点P在直线上,即,解得最后根据两点式求直线AP的方程;(2)由PA=2PT,可得点P的轨迹是一个圆,因此由直线与圆有交点得,解得(1)由题意,直线PT切于点T,则OT⊥PT,又切点T的坐标为,所以,,试题解析:故直线PT的方程为,即.联立直线l和PT,解得即,所以直线AP的斜率为,故直线AP的方程为,即,即.(2)设,由PA=2PT,可得,即,即满足PA=2PT的点P的轨迹是一个圆,所以问题可转化为直线与圆有公共点,所以,即,解得.考点:直线方程,直线与圆位置关系18. 某篮球运动员每次在罚球线投篮投进的概率是0.8,且各次投篮的结果互不影响.(1)假设这名运动员投篮3次,求恰有2次投进的概率(结果用分数表示);(2)假设这名运动员投篮3次,每次投进得1分,未投进得0分;在3次投篮中,若有2次连续投进,而另外一次未投进,则额外加1分;若3次全投进,则额外加3分,记为该篮球运动员投篮3次后的总分数,求的分布列及数学期望(结果用分数表示).【答案】(1)0.384;(2)见解析【解析】【分析】(1)先判断随机变量服从二项分布,再根据二项分布概率公式求结果,(2)先确定随机变量取法,再求对应概率,列表可得分布列,最后根据数学期望公式求期望.【详解】(1)设为该运动员在3次投篮中投进的次数,则. 在3次投篮中,恰有2次投进的概率;(2)由题意可知,的所有可能取值为0,1,2,3,6.,;;;.所以的分布列是.【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19. 已知函数.(1)若函数的图象在处的切线经过点,求的值;(2)是否存在负整数,使函数的极大值为正值?若存在,求出所有负整数的值;若不存在,请说明理由.【答案】(1);(2)不存在【解析】【分析】(1)先求导数,再根据导数几何意义得切线斜率,根据点斜式得切线方程,最后根据切线过点,求的值;(2)先根据导函数确定极值点范围,再根据极大值条件以及极大值为正数条件列不等式组,得,最后根据导数求最小值,得到a的取值范围,但无整数解,所以不存在负整数满足条件.【详解】(1)∵∴,∴函数在处的切线方程为:,又直线过点∴,解得:(2)若,,当时,恒成立,函数在上无极值;当时,恒成立,函数在上无极值;在上,若在处取得符合条件的极大值,则,则,由(3)得:,代入(2)得:,结合(1)可解得:,再由得:,设,则,当时,,即是增函数,所以,又,故当极大值为正数时,,从而不存在负整数满足条件.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.20. 已知矩阵,A的逆矩阵,求A的特征值.【答案】3和1【分析】先根据求a,再根据特征多项式求A的特征值.【详解】则解之得的特征多项式令,解之得的特征值为3和1【点睛】本题考查逆矩阵定义以及特征值,考查基本求解能力.21. 已知,点在变换:作用后,再绕原点逆时针旋转,得到点.若点的坐标为,求点的坐标.【答案】【解析】【分析】先根据伸缩变换以及旋转变换得,再根据对应点关系求结果.【详解】.设,则由,得.所以,即.【点睛】本题考查伸缩变换以及旋转变换,考查基本求解能力.22. 已知点P在曲线C:( 为参数)上,直线l:(t为参数),求P到直线l距离的最小值.【答案】【解析】先根据加减消元法消参数得直线l化为普通方程,再根据点到直线距离公式得P到直线l距离,最后根据三角函数有界性求最小值.【详解】将直线l化为普通方程为:x-y-6=0.则P(4cosθ,3sinθ) 到直线l的距离d==,其中tanφ=.所以当cos(θ+φ)=1时,d min=,即点P到直线l的距离的最小值为.【点睛】利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法.椭圆参数方程:,圆参数方程:,直线参数方程:.23. 若以直角坐标系的为极点,为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程是.(1)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线的参数方程为(为参数),当直线与曲线相交于两点,求线段的长.【答案】(1)见解析;(2)8【解析】试题分析:(1)将极坐标方程化简为直角坐标方程可得曲线是以原点为顶点,为焦点的抛物线;(2)利用弦长公式可得线段的长为8.试题解析:(1)曲线是以原点为顶点,为焦点的抛物线.(2),化简得,则所以。
高中2018届毕业班第一次诊断性考试数学(理工类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}1|{>=x x A ,函数)2lg(x y -=的定义域为B ,则( ) A .}21|{<<=⋃x x B A B .R B A =⋃ C .}1|{>=⋂x x B A D .}2|{<=⋂x x B A2.若i z +=1,则=+13zz i( ) A .i - B .i C .1- D .13. 执行如图所示的程序框图,若输出的2=y ,则输入的=x ( )A .1B .2C .4D .1或4 4. 5))((y x y x +-的展开式中,42y x 的系数为( ) A .10- B .5- C. 5 D .105. 为了解某高校学生使用手机支付和现金支付的情况,抽取了部分学生作为样本,统计其喜欢的支付方式,并制作出如下等高条形图:根据图中的信息,下列结论中不正确的是( )A .样本中的男生数量多于女生数量B .样本中喜欢手机支付的数量多于现金支付的数量C. 样本中多数男生喜欢手机支付 D .样本中多数女生喜欢现金支付6.已知ABC ∆是边长为1的等边三角形,点D 在边BC 上,且DC BD 2=,则→→⋅AD AB 的值为( ) A .331-B .32 C. 34 D .331+7. 若将函数x x y 2cos 32sin +=的图象向左平移6π个单位长度,则平移后图象的对称轴方程为( )A .)(122Z k k x ∈-=ππ B .)(22Z k k x ∈+=ππ C. )(2Z k k x ∈=π D .)(122Z k k x ∈+=ππ8.从3,2,1,0这4个数字中选3个数字组成没有重复数字的三位数,则该三位数能被3整除的概率为( ) A .92 B .31 C. 125 D .959.已知定义在R 上的函数)(x f 满足)()(x f x f -=,当30≤≤x 时,|2|)(-=x x f ;当3≥x 时,)2()(-=x f x f ,则函数|||ln |)(x x f y -=的零点个数是( )A .1B .2 C. 4 D .610. 已知椭圆)0(1:2222>>=+b a by a x E 的左焦点为y F ,1轴上的点P 在椭圆外,且线段1PF 与椭圆E 交于点M ,若||33||||1OP MF OM ==,则E 椭圆的离心率为( ) A .21 B .23 C. 13- D .213+ 11.已知SC 是球O 的直径,B A ,是球O 球面上的两点,且3,1===AB CB CA ,若三棱锥ABC S -的体积为1,则球O 的表面积为( ) A .π4 B .π13 C. π16 D .π52 12.已知函数xe x x xf )1()(2--=,设关于x 的方程)(5)()(2R m ex mf x f ∈=-有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3 C. 4或6 D .3或4或6第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知54)4cos(=-πα,则=+)4sin(πα . 14.已知直线2:+=kx y l 与圆022:22=--+y x y x C 相交于B A ,两点,若22||=AB ,则实数k 的值为 .15. 如图,已知B A ,是函数)16(log )(2x x f =图象上的两点,C 是函数x x g 2log )(=图象上的一点,且直线BC 垂直于x 轴,若ABC ∆是等腰直角三角形(其中A 为直角顶点),则点A 的横坐标为 .16. 如图,已知B A ,是函数)16(log )(2x x f =图象上的两点,C 是函数x x g 2log )(=图象上的一点,且直线BC 垂直于x 轴,若ABC ∆是等腰直角三角形(其中A 为直角顶点),则点A 的横坐标为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列}{n a 的前n 项和为1,1=a S n ,且)(1*1N n n a S S n n n ∈+++=+. (1)求数列}{n a 的通项公式; (2)设数列}1{na 的前n 项和为n T ,求满足不等式1019≥n T 的最小正整数n .18. 在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知ABC ∆的面积为71cos ,2,310==-A c b . (1)求a ;(2)求C B sin sin +的值.19. 全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某部门在该市20162011-年发布的全民健身指数中,其中的“运动参与”的评分值(满分100分)进行了统计,制成如图所示的散点图:(1)根据散点图,建立y 关于t 的回归方程∧∧∧+=a t b y ;(2)从该市的市民中随机抽取了容量为120的样本,其中经常参加体育锻炼的人数为40,以频率为概率,若从这120名市民中随机抽取4人,记其中“经常参加体育锻炼”的人数为X ,求X 的分布列和数学期望.附:对于一组数据),(),...,,(),,(2211n n y t y t y t ,其回归直线∧∧∧+=a t b y 的斜率和截距的最小二乘估计公式分别为:-∧-∧=-=--∧-=---=∑∑t b y a t ty y t tb ni ini i i,)())((121.20. 如图,ABCD 是棱形,AC ABC ,60=∠与BD 相交于点O ,平面⊥AEFC 平面ABCD ,且AEFC 是直角梯形,4,2,//,90====∠CF AB AE AE CF EAC .(1)求证:EF BD ⊥;(2)求二面角F DE B --的余弦值. 21. 已知函数)()1(2ln )(2R a x a x a x x f ∈-+-=. (1)当0≥a 时,求函数)(x f 的极值;(2)若函数)(x f 有两个零点21,x x ,求a 的取值范围,并证明221>+x x .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+=+=ααsin 1cos 2t y t x (t 为参数),其中2πα≠.以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为04cos 62=+-θρ.(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知曲线2C 与1C 交于两点,记点B A ,相应的参数分别为21,t t ,当021=+t t 时,求||AB 的值.23.选修4-5:不等式选讲已知不等式3|1||12|<-++x x 的解集M . (1)求M ;(2)若M n m ∈,,求证:1|1|<--mn nm .试卷答案一、选择题1-5: BBDBD 6-10:BADCC 11、12:DA二、填空题13.257 14. 1 15. 3216. 3 三、解答题17. 解:(1)由)(1*1N n n a S S n n n ∈+++=+, 有11+=-+n a a n n ,又11=a ,所以2≥n 时,112211)()()(a a a a a a a a n n n n n +-++-+-=---2)1(12)1(nn n n +=+++-+= . 当1=n 时,也满足2)1(nn a n +=,所以数列}{n a 的通项公式为2)1(nn a n +=.(2)由(1)知)111(2)1(21+-=+=n n n n a n , 所以12)111(2)]111()3121()211[(2+=+-=+-++-+-=n n n n nT 令101912≥+n n ,解得19≥n ,所以满足不等式1019≥n T 的最小正整数n 为19. 18. 解:(1)由ABC ∆的面积为310,得310sin 21=A bc .因71cos =A ,所以734sin =A , 所以31073421=⋅bc ,得35=bc , 又2=-c b , 由余弦定理得:bcc b A bc c b a 72cos 222222-+=-+=6435723522722)(22=⨯-⨯+=-+-=bc bc c b ,所以8=a .(2)法一:由(1)中35,2==-bc c b . 解得5,7==c b , 由正弦定理得:A acC A a b B sin sin ,sin sin ==, 所以736734812sin sin sin =⨯=+=+A a c b C B , 法二:由(1)有14435424)()(222=⨯+=+-=+bc c b c b , 所以12=+c b . 由正弦定理得CB c b A a sin sin sin ++=, 所以736734812sin sin sin =⨯=+=+A a c b C B . 19. 解:(1)由题,756848077737165,5.36654321=+++++==+++++=--y t , 则+--+--+--=---=-∑)7573)(5.33()7571)(5.32()7565)(5.31()()(1y y t ti ni i+--)7577)(5.34(+--)7580)(5.35(63)7584)(5.36(=--.5.17)5.36()5.35()5.34()5.33()5.32()5.31()(22222212=-+-+-+-+-+-=-∑=-ni it t.则4.625.36.375,6.35.1763=⨯-===∧∧a b .所以运动参与y 关于t 的回归方程是4.626.3+=∧t y .(2)以频率为概率,从这120名市民中随机抽取1人,经常参加体育锻炼的概率为3112040=,由题,X 的可能取值为4,3,2,1,0.则,8132)32()31()1(,8116)32()31()0(31144004======C X P C X P ,8124)32()31()2(2224===C X P ,818)32()31()3(1334===C X P811)32()31()4(0444===C X P .分布列如下:数学期望3814813812811810=⨯+⨯+⨯+⨯+⨯=EX 或334=⨯=EX .20.(1)证明:在棱形ABCD 中,可得AC DB ⊥, 因为平面⊥AEFC 平面ABCD ,且交线为AC , 所以⊥DB 平面AEFC ,因为⊂EF 平面AEFC ,所以EF BD ⊥.(2)直角梯形AEFC 中,由2,//,90===∠AB AE AE CF EAC ,得⊥EA 平面ABCD . 取EF 的中点M ,以O 为坐标原点,以OA 为x 轴,OB 为y 轴,OM 为z 轴,建立空间直角坐标系,则)4,0,1(),2,0,1(),0,3,0(),0,3,0(--F E D B . 所以)2,3,1(),0,32,0(==→→DE DB . 设平面BDE 的法向量},,{1z y x n =→,由⎪⎩⎪⎨⎧=++=⋅==⋅→→→→02303211z y x DE n y DB n ,可取)1,0,2(1-=→n由)4,3,1(-=→DF .设平面DEF 的法向量为),,(2w v u n =→, 同上得,可取)1,3,1(2-=→n . 则51551,cos 21=⨯>=<→→n n ,即二面角F DE B --的余弦值为51. 21.解:(1)由x a x a x x f )1(2ln )(2-+-=得xax x a ax x x f )1)(1(11)(+--=-+-=', 当0≥a 时,01>+ax ,若0)(,10>'<<x f x ;若<'>)(,1x f x 0,故当0≥a 时,)(x f 在1=x 处取得的极大值12)1(-=af ;函数)(x f 无极小值. (2)当0≥a 时,由(1)知)(x f 在1=x 处取得极大值12)1(-=af ,且当x 趋向于0时,)(x f 趋向于负无穷大,又)(,022ln )2(x f f <-=有两个零点,则012)1(>-=af ,解得2>a .当01<<-a 时,若0)(,10>'<<x f x ;若0)(,11<'-<<x f a x ;若0)(,1>'->x f ax ,则)(x f 在1=x 处取得极大值,在a x 1-=处取得极小值,由于012)(<-=ax f ,则)(x f 仅有一个零点.当1-=a 时,0)1()(2>-='xx x f ,则)(x f 仅有一个零点. 当1-<a 时,若0)(,10>'-<<x f a x ;若0)(,11<'<<-x f x a;若0)(,1>'>x f x ,则)(x f 在1=x 处取得极小值,在ax 1-=处取得极大值,由于0121)ln()1(<-+--=-aa a f ,则)(x f 仅有一个零点.综上,)(x f 有两个零点时,a 的取值范围是),2(+∞. 两零点分别在区间)1,0(和),1(+∞内,不妨设1,1021><<x x . 欲证221>+x x ,需证明122x x ->,又由(1)知)(x f 在),1(+∞单调递减,故只需证明0)()2(21=>-x f x f 即可.2)1(2)2ln()2)(1()2(2)2ln()2(121112111-++--=--+---=-x a x a x x a x a x x f ,又0)1(2)ln()(12111=-+-=x a x a x x f ,所以22)ln()2ln()2(1111-+--=-x x x x f ,令)10(22ln )2ln()(<<-+--=x x x x x h ,则0)2()1(22121)(2<--=+--='x x x x x x h ,则)(x h 在)1,0(上单调递减,所以0)1()(=>h x h ,即0)2(1>-x f , 所以221>+x x .22.解:(1)1C 的普通方程:1tan )2(+-=αx y ,其中2πα≠; 2C 的直角坐标方程:5)3(22=+-y x .(2)由题知直线恒过定点)1,2(P ,又021=+t t ,由参数方程的几何意义知P 是线段AB 的中点,曲线2C 是以)0,3(2C 为圆心,半径5=r 的圆,且2||22=PC .由垂径定理知:32252||2||222=-=-=PC r AB .23.解:(1)当21-<x 时,不等式即为3112<+---x x ,解得211-<<-x ; 当121≤≤-x 时,不等式即为3112<+-+x x ,解得121<≤-x ;当1>x 时,不等式即为3112<-++x x ,此时无解, 综上可知,不等式解集}11|{<<-=x x M . (2))1,1(,-∈n m , 欲证1|1|<--mn nm ,需证|1|||-<-mn n m ,即证22)1()(-<-mn n m ,即1222222+-<-+mn n m mn n m , 即证0)1)(1(22>--n m , 因为)1,1(,-∈n m ,所以0)1)(1(22>--n m 显然成立.11 所以1|1|<--mn n m 成立.。