三角形的外角(外角定义、定理)(人教版)(含答案)
- 格式:doc
- 大小:697.50 KB
- 文档页数:8
三角形的外角和计算在解决几何问题时,我们经常涉及到三角形。
而三角形的外角和计算是其中一个重要的概念和计算方法。
本文将介绍三角形的外角的定义、性质以及如何计算三角形的外角和。
一、三角形的外角定义和性质1. 外角定义:三角形的外角是指一个三角形内部的角与其相邻的另外两个内角的补角之和。
即外角等于其相邻两个内角的补角之和。
2. 外角性质:对于任意一个三角形ABC,其三个外角A', B'和C'的性质如下:a) 外角与内角关系:三角形的一个外角等于其不相邻两个内角的和。
即∠A' = ∠B + ∠C,∠B' = ∠A + ∠C,∠C' = ∠A + ∠B。
b) 外角和:三角形的三个外角的和等于360度。
即∠A' + ∠B' +∠C' = 360°。
二、三角形外角和的计算方法计算三角形的外角和是一个常见的计算问题,我们可以通过以下方法来求解:1. 已知两个角度,求第三个角度:如果已知一个三角形的两个内角,可以通过使用三角形内角和为180度的性质来求第三个内角。
然后,根据外角与内角的关系,可以计算出三角形的外角。
2. 已知三角形的三个边长:当已知三角形的三个边长时,可以使用余弦定理和正弦定理计算出三个内角的正弦值或余弦值。
然后根据反函数计算出内角的具体数值。
最后,利用外角与内角的关系,计算出三角形的外角。
3. 已知三角形的一个边与两个角度:如果已知三角形的一个边长和两个内角,可以使用三角形内角和为180度的性质来求解第三个内角。
然后根据外角与内角的关系,计算出外角的具体数值。
需要注意的是,计算过程中需要注意角度的单位(角度或弧度),并且应根据具体情况选择适合的计算方法和公式。
三、例题解析为了更好地理解三角形的外角和计算方法,下面将给出一个例题的解析:例题:已知三角形的两个内角分别为60°和90°,求该三角形的外角和。
三角形第2节三角形的角【知识梳理】1.三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:证法多样,主要是运用平行线知识把三个角转移成一个平角,从而得到内角和是180°.如图所示,过C作CM∥AB,将求∠A+∠B+∠ACB转化为求∠1+∠2+∠ACB,或过A点作DE∥BC,把求∠BAC+∠B+∠C转化为求∠BAC+∠DAB+∠EAC.备注:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等.2.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD就是△ABC其中的一个外角.(2)特点:①三角形的一个外角和与它同顶点的内角互为邻补角,这是内、外角联系的纽带.②一个三角形有6个外角,其中两两互为对顶角,如图所示.备注:外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.(3)外角的性质三角形的外角等于与它不相邻的两个内角的和,且大于任意一个与其不相邻的内角.如图所示:∠1=∠B+∠C(或∠B=∠1-∠C,∠C=∠1-∠B).4、三角形外角和(1)定义(规定):如图所示,在每一个顶点上取一个外角,如∠1,∠2,∠3,它们的和叫做三角形的外角和.(2)三角形外角和定理:三角形的外角和等于360°.注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.5.直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B=90°.(2)直角三角形的判定:有两个角互余的三角形是直角三角形.如图所示,在△ABC中,如果∠A+∠B=90°,那么∠C=90°,即△ABC是直角三角形.提示:由三角形的内角和定理可知,三角形的三个内角之和为180°,如果有两个角的和为90°,那么第三个角自然是直角.由直角三角形定义可知,该三角形为直角三角形.【诊断自测】1、三角形内角和性质是____________________2、三角形的一边与______________叫做三角形的外角。
三角形外角和定义(一)引言概述:在几何学中,三角形是一种基本的多边形形状。
外角和是三角形的重要性质之一,它定义了与三角形顶点相对的角度之和。
本文将详细介绍三角形外角和的定义及其相关性质。
正文:1. 外角和的定义:- 外角: 三角形的任意一个顶点的外角,是指由这个顶点的一条边向外延伸出来与另外两条边所夹成的角。
- 外角和: 三角形的三个外角之和,称为三角形的外角和。
2. 外角和的性质:- 性质1: 三角形的外角和等于360度。
- 性质2: 三角形的任意两个外角之和等于第三个外角。
- 性质3: 三角形的内角和与外角和之间的关系是180度。
3. 计算外角和的方法:- 方法1: 在已知三角形的三个内角的情况下,可以通过用180度减去内角和来得到外角和。
- 方法2: 在已知三角形的一个内角和一个外角或两个外角的情况下,可以通过计算已知内角和已知外角之和来得到外角和。
4. 外角和的应用:- 应用1: 外角和的概念可以帮助我们理解和解决关于三角形的相关问题,例如确定未知角度或解决角度相关的几何证明。
- 应用2: 外角和与其他三角形性质的结合使用,可以用于推导其他角度关系或证明其他几何定理。
5. 外角和与其他角度概念的关系:- 关系1: 外角和和内角和之间的关系是180度,这与三角形内角和的定义密切相关。
- 关系2: 外角和与内角和的概念一起使用,可以帮助我们理解和推导其他角度关系,如相邻角、同位角等。
总结:本文介绍了三角形外角和的定义、性质、计算方法,以及外角和的应用和与其他角度概念的关系。
了解和掌握三角形外角和的概念和相关性质,对于解决相关的几何问题和证明几何定理具有重要意义。
三角形内角和、外角定理(含详细解答)-CAL-FENGHAL-(YICAI)-Company One 1三角形内角和、外角和定理选择题(共10小题)(2013?泉州〉在AABC 中,Z A=20\ Z B=60\ 则△ ABC 的形状是(等边三角形 B・锐角三角形 C.直角三角形(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片.点D、E分别是边AB. AC上,将△ ABC沿着DE折叠压平,小£重合,若Z A=75\则Z 1+Z 2=()4. (2012?云南〉如图,在AABC 中,Z 6=67% Z C=33%C.105°D 75°A 40°45°B・C.50°D 55°A ABC中,Z C=70%若沿图中虚线截去ZC,则Z 1+Z 2=(5. (2012?南通)如图,250°B・C. 180" D 140°6. (2012?桶州)如图,AE是^ ABC的角平分线,AD丄BC于点D.若Z BAC=128\ Z C=36\则Z DAE的度数是1.A 钝角三角形2.A(2012?滨州〉一个三角形三个内角的度数之比为2:3:等腰三角形 B・直角三角形 C.锐角三角形7,D这个三角形一定是(钝角三角形3-AD是AABC的角平分线,则ZCAD的度数为(A 10°B・12°C・15°D 18°已知宜线 AB II CD, Z8125°,Z A=45\那么Z E的大小为(7. (2011?日照〉如图,80°C.90°D 100°& (2011?台湾〉列何者正确(如图中有四条互相不平行的直线Li、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下A Z 2=Z 4+Z 7 B・ Z 3=Z 1+Z 6 C・ Z 1+Z 4+Z 6=1 D Z 2+Z 3+Z 5=380° • 60°9.A (2011?台湾)若A ABC中,2(Z A+ZC) =3Z B,则ZB的外角度数为何(36 B・ 72 C. 108 D 14410. A (2011?台湾)若钝角三角形ABC中,Z A=27\则下列何考不可能是Z B的度数(37 B・ 57 C. 77 D 97填空题(共4小题)(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位這摆放-如果Z 3=32。
三角形的外角(习题)例题示范例1:已知:如图,点E 是直线AB ,CD 外一点,连接DE 交AB 于点F ,∠D =∠B +∠E . 求证:AB ∥CD .D CEA B F①读题标注 ②梳理思路要证AB ∥CD ,需要考虑同位角、内错角、同旁内角. 因为已知∠D =∠B +∠E ,而由外角定理得∠AFE =∠B +∠E ,故∠D =∠AFE ,所以AB ∥CD . ③过程书写 证明:如图,∵∠AFE 是△BEF 的一个外角(外角的定义)∴∠AFE =∠B+∠E (三角形的外角等于与它不相邻的两个内角的和)∵∠D =∠B +∠E (已知) ∴∠AFE =∠D (等量代换)∴AB ∥CD (同位角相等,两直线平行)巩固练习1. 如图,在△ABC 中,∠1是它的一个外角,∠1=115°,∠A =40°,∠D =35°,则∠2=________.21E F DCBADC EA BF2. 已知:如图,在△ABC 中,∠BAC =50°,∠C =60°,AD ⊥BC ,BE 是∠ABC 的平分线,AD ,BE 交于点F ,则∠AFB 的度数为____________.F BAEC Dα第2题图 第3题图3. 将一副直角三角板按如图所示的方式叠放在一起,则图中∠α的度数为( ) A .45°B .60°C .75°D .904. 如图,已知∠A =25°,∠EFB =95°,∠B =40°,则∠D 的度数为_____________.FEDCB AD CEAB第4题图 第5题图5. 如图,已知AD 是△ABC 的外角∠CAE 的平分线,∠B =30°,∠DAE =50°,则∠D =_______,∠ACB =_______.6. 如图,在△ABC 中,∠A =40°,∠ABC 的平分线BD 交AC 于点D ,∠BDC =70°,求∠C 的度数. 解:如图,∵∠BDC 是△ABD 的一个外角 (_____________________) ∴∠BDC =∠A +∠ABD(_____________________) ∵∠A =40°,∠BDC =70° (_____________________)∴∠ABD =_______-________=________-________ =________(_____________________)第4题图DCAB∵BD 平分∠ABC (_____________________)∴∠ABC =2∠ABD=_____×______ =__________ (_____________________)∴∠C =180°-∠A -∠ABC=180°-________-_______ =________(_____________________)7. 已知:如图,CE 是△ABC 的一个外角平分线,且EF ∥BC 交AB 于点F ,∠A =60°,∠E =55°,求∠B 的度数.8. 已知:如图,在△ABC 中,BD 平分∠ABC ,交AC 于点D ,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,求∠AED 的度数.EDCBAFEDC B A思考小结1.在证明过程中:(1)要证平行,找_______角、_______角、_______角.(2)要求一个角的度数:①由平行,想_______相等、________相等、__________互补;②由直角考虑互余,由平角考虑_______,由对顶角考虑____________;③若把一个角看作三角形的内角,考虑_______________________________;④若把一个角看作三角形的外角,考虑__________________________________________.2.阅读材料欧几里得公理体系几何学创建的初期,内容是繁杂和混乱的.人们进行几何推理时,总是拿自己掌握的一些“基本事实”作为大前提去进行推理,而每个人心中的“基本事实”不尽相同.这就导致很多内容无法沟通,也没有统一的标准.这时,有必要将几何的内容,用逻辑的“锁链”整理、穿连起来.第一个完成这件工作的是古希腊数学家欧几里得(Euclid).欧几里得知识渊博,数学造诣精湛,尤其擅长几何证明.当他意识到几何学有必要做出系统整理的时候,就开始着手编写自己的著作《原本》了.他的思路是这样的:首先给出一些最基本的定义,如“点是没有部分的”,“线是没有宽度的”等;接着他列出了5条公设和5条公理作为推理的基本事实,而之后所有的推理都必须建立在这5条公设和5条公理基础上来进行.5条公设是:(1)从任意点到任意点作直线是可能的.(2)把有限直线不断沿直线延长是可能的.(3)以任意点为中心和任意距离为半径作一圆是可能的.(4)所有直角彼此相等.(5)若一直线与两条直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的另一点.5条公理是:(1)跟同一件东西相等的一些东西,它们彼此也是相等的.(2)等量加等量,总量仍相等.(3)等量减等量,余量仍相等.(4)彼此重合的东西是相等的.(5)整体大于部分.其中5条公设主要对作图进行了相应的规范,而5条公理则主要从代数推理上进行规定.欧几里得基于上述这些公设和公理,推导出了平面几何中几乎所有的结论,从而构成了一个完整的几何体系,我们称之为欧氏几何.而他的著作《原本》中关于平面几何的部分,被翻译成中文叫做《几何原本》,正是我们平面几何的原型.而欧几里得这种对几何知识进行系统化、理论化的总结方法就被称之为公理法,而《原本》正是公理化体系的最好阐释.【参考答案】巩固练习1.40°2.125°3.C4.20°5.20°,70°6.∵∠BDC是△ABD的一个外角(外角的定义)∴∠BDC=∠A+∠ABD(三角形的外角等于与它不相邻的两个内角的和)∵∠A=40°,∠BDC=70°(已知)∴∠ABD=∠BDC-∠A=70°-40°=30°(等式的性质)∵BD平分∠ABC(已知)∴∠ABC=2∠ABD=2×30°=60°(角平分线的定义)∴∠C=180°-∠A-∠ABC=180°-40°-60°=80°(三角形的内角和等于180°)7.解:如图,∵EF∥BC(已知)∴∠ECD=∠E(两直线平行,内错角相等)∵∠E=55°(已知)∴∠ECD=55°(等量代换)∵CE是△ABC的一个外角平分线(已知)∴∠ACD=2∠ECD=2×55°=110°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∴∠ACD=∠A+∠B(三角形的外角等于与它不相邻的两个内角的和)∵∠A=60°(已知)∴∠B=∠ACD-∠A=110°-60°=50°(等式的性质)8.9.解:如图,∵∠BDC是△ABD的一个外角(外角的定义)∴∠BDC=∠ABD+∠A(三角形的外角等于与它不相邻的两个内角的和)∵∠A=45°,∠BDC=60°(已知)∴∠ABD=∠BDC-∠A=60°-45°=15°(等式的性质)∵BD平分∠ABC(已知)∴∠ABC=2∠ABD=2×15°=30°(角平分线的定义)∵DE∥BC(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=30°(等量代换)思考小结1.2.(1)同位、内错、同旁内.(2)①同位角、内错角、同旁内角;②互补,对顶角相等;③三角形的内角和等于180°.④三角形的外角等于与它不相邻的两个内角的和.。
三角形内角和、外角定理(含详细解答)-CAL-FENGHAI.-(YICAI)-Company One1三角形内角和、外角和定理一.选择题(共10小题)1.(2013?泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(2012?滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°4.(2012?云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°5.(2012?南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°6.(2012?梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°7.(2011?日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°8.(2011?台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°9.(2011?台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36B.72C.108D.14410.(2011?台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数()A .37B.57C.77D.97二.填空题(共4小题)11.(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________度.12.(2013?河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________.13.(2008?安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________度.14.(2003?金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=_________度.三.解答题(共16小题)15.(2014?六盘水)(1)三角形内角和等于_________.(2)请证明以上命题.16.(2001?海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.17.(2000?内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.(2011?青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系(只写结论,不需证明)结论:_________.19.(2010?玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(2013?响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.三角形内角和、外角和定理参考答案与试题解析一.选择题(共10小题)1.(2013?泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理.分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.2.(2012?滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.3.(2012?河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.(2012?云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°考点:三角形内角和定理.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解答:解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.5.(2012?南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°考点:三角形内角和定理;多边形内角与外角.分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.6.(2012?梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE ﹣∠CAD,代入数据进行计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.7.(2011?日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.8.(2011?台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.9.(2011?台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36B.72C.108D.144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角.专题:计算题.分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.10.(2011?台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数()A .37B.57C.77D.97考点:三角形内角和定理.专题:推理填空题.分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.二.填空题(共4小题)11.(2014?抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.12.(2013?河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.13.(2008?安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又a∥b,∴∠3=∠ABC=70°.点评:本题考查了平行线与三角形的相关知识.14.(2003?金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=30度.考点:三角形内角和定理;角平分线的定义.专题:压轴题.分析:因为入射角等于反射角,所以∠1=∠2=(180°﹣120°)÷2.解答:解:如图所示,作出入射光线的法线,根据“入射角等于反射角”可知∠1=∠3,∠2=∠4,∵∠1=∠2,∠AOB=120°,∴1=∠2=(180°﹣120°)÷2=30°.故答案为:30°.点评:此题由题意得出“入射角等于反射角”是关键.三.解答题(共16小题)15.(2014?六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16.(2001?海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.考点:三角形内角和定理;三角形的外角性质;等腰三角形的性质.分析:要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.解答:解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.点评:此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.17.(2000?内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.18.(2011?青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.19.(2010?玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;平行线的性质;三角形内角和定理.专题:综合题;压轴题.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.点评:本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.20.(2013?响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和定理和三角形的外角性质即可解决.解答:解:∵∠BAC=120°,∴∠2+∠3=60°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=60°,∠2=20°.∴∠DAC=120°﹣20°=100°.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,和三角形的一个外角等于与它不相邻的两个内角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC﹣∠1=4∠1+63°﹣∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°,∴∠DAC=63°﹣∠1=63°﹣39°=24°,∠ADC=∠3=78°.点评:本题考查三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;以及三角形的一个外角等于与它不相邻的两个内角的和.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.解答:解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.点评:本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.考点:三角形的外角性质;三角形内角和定理.专题:计算题.分析:先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.解答:解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°∴∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.点评:本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形的外角性质.分析:根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.解答:解:如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°.检验已量得∠BDC=150°,就判断这个零件不合格.点评:考查了三角形的外角性质,三角形的外角等于和它不相邻的两个内角的和.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗考点:三角形的外角性质.分析:连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.解答:解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=30°,∠C=20°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=30°+90°+20°,=140°,∵140°≠142°,∴这个零件不合格.点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;三角形内角和定理.分析:连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.解答:解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.点评:本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和是180°,可分别求出∠1+∠2=∠3+∠4=145°,即可求出∠1+∠2+∠3+∠4的度数和.解答:解:∵∠A=35°,在△ABC中,∠A+∠1+∠2=180°,∴∠1+∠2=180°﹣∠A=145°,同理可证∠3+∠4=145°,∴∠1+∠2+∠3+∠4=290°.点评:本题考查了三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.。
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
三角形的外角和推导与证明三角形是几何学中最基本的图形之一,它由三条边和三个角组成。
在三角形中,每个角都有一个对应的外角。
本文将探讨三角形的外角特性,并推导和证明相关定理。
一、外角定义及性质三角形的外角指的是三角形内一角的补角。
例如,对于三角形ABC,若角A为内角,则角A的外角为角A',满足角A+角A'=180度。
同理可得,角B的外角C'和角C的外角B'满足角B+角C'=180度,角C+角B'=180度。
由此可以得出三角形的一个基本定理:三角形的三个外角的度数之和等于180度。
这个定理可以通过角度之和的性质进行证明。
对于任意一个三角形ABC,我们可以将其扩展为一个平行四边形ABCD,其中BD是三角形的外角A'的延长线。
根据平行四边形的性质,AD与角B'相等,由此可得角A+角A'=180度。
同理可证角B+角C'=180度,角C+角B'=180度。
二、外角与内角的关系三角形的内角和外角具有一定的关系。
特别地,一个三角形的内角和其对应的外角相加等于180度。
例如,对于三角形ABC,角A的外角为角A',则有角A+角A'=180度。
这一定理可以通过补角关系进行证明。
三、外角推导及证明1. 外角与内角的关系推导在三角形中,我们可以针对某个角的外角进行推导。
假设角A的外角为角A',则角A和角A'的和等于180度。
由此可以推论出角A'=180度-角A。
同理可得,角B'=180度-角B,角C'=180度-角C。
2. 外角和的证明根据三角形外角和的定理,三角形的三个外角的度数之和等于180度。
我们可以通过如下的证明来验证这个定理。
假设三角形ABC的内角分别为角A、角B和角C,对应的外角分别为角A'、角B'和角C'。
我们需要证明:角A'+角B'+角C'=180度。
三角形的定义:由三条不在同一直线上的线段首尾顺次连接所组成的封闭图形叫做三角形。
其中,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
在小学和初中的教材中,所学的三角形都是平面三角形。
以下所涉及的相关性质定理也都是平面三角形的。
三角形的内角和外角:内角:(1)所有三角形的内角和都是180°。
(2)在三角形中最少有2个锐角。
(3)在三角形中至少有一个角大于等于60°,也至少有一个角小于等于60°。
(包括等边三角形)(4)在同一个三角形内,大边对大角,大角对大边。
证明三角形内角和等于180°的方法:方法1:将三角形的三个角撕下来拼在一起,可求出内角和为180°。
方法2:在三角形任意一个顶点处做辅助线,可求出内角和为180°。
例1:已知一△ABC,求证∠ABC+∠BAC+∠BCA=180°证明:做BC的延长线至点D,过点C作AB的平行线至点E ∵AB∥CE(已知)∴∠ABC=∠EC D(两直线平行,同位角相等)∠BAC=∠ACE(两直线平行,内错角相等)∵∠BCD=180°∴∠ACB+∠ACE+∠ECD=∠BCD=180°∴∠ABC+∠BAC+∠BCA=180°外角:(1)定义:三角形的一边与另一边延长线的夹角叫做三角形的外角。
(2)三角形的一个外角等于与它不相邻的两个内角之和;(3)三角形的一个外角大于与它不相邻的任一个内角;(4)三角形的外角和等于360°。
多边形的内角和外角:(1)定义:在平面内,由一些线段首尾顺次连接组成的图形叫多边形。
(2)多边形的内角和:(n-2)·180°(n代表边数,n≥3)(3)任意多边形的外角和都等于360°(4)多边形的对角线数目:23-nn)((n代表边数,n≥3)平面镶嵌:(1)符合镶嵌的条件:围绕一点拼在一起的几个多边形的内角的和等于360°(2)任意一种正三角形、正方形或正六边形都可以镶嵌平面例2:如图1,AB ∥CD ,∠1=110°,∠ECD=70°,∠E 的度数为( ) A.30° B.40° C.50° D.60°〔解析〕∵AB ∥CD ∴∠A=∠ECD=70° 又∵∠1是△AB E 的外角 ∴∠A+∠E=∠1∴∠E=∠1-∠A=110°-70°=40°〔答案〕B例3:一个三角形三个内角度数的比是1︰5︰6,则其最大内角的度数为( ) A.60° B.75° C.90° D.120°〔解析〕任意三角形的内角和都是180° 又∵此三角形三个内角度数的比是1︰5︰6 ∴最大内角的度数是:180°×6516++=90° 〔答案〕C例4:若一个正多边形的每一个外角都是30°,则这个多边形的内角和等于 度。
教案2021-2022学年度 秋季 八年级上学期 人教版数学11.2.2三角形的外角基础知识 一、选择题 1.(2013•襄阳)如图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A .60°B .70°C .80°D .90°答案:C 2.(2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( ) A .15° B .25° C .30° D .10°答案:A3.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( ) A.有两个锐角、一个钝角 B.有两个钝角、一个锐角 C.至少有两个钝角 D.三个都可能是锐角 答案:C4. (2012 江苏省南通市) 如图,△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于 ( )A .360°B .250°C .180°D .140°ACB 1 2人教版数学答案:B5.已知△ABC,(1)如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°+21∠A; (2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A; (3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-21∠A . 上述说法正确的个数是( )A .0个B .1个C .2个D .3个 答案:C6.(2012•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( ) A .45° B .60° C .75° D .90°答案:C7.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( ) A .61° B .60° C .37° D .39°答案:C8.如图,在Rt △ADB 中,∠D=90°,C 为AD 上一点,则x 可能是( ) A .10° B .20° C .30° D .40°9.如图,∠A=34°,∠B=45°,∠C=36°,则∠DFE的度数为()A.120° B.115° C.110° D.105°答案:B10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180° B.360° C.540° D.720°答案:B11.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1-∠2 B.2∠A=∠1-∠2C.3∠A=2∠1-∠2 D.3∠A=2(∠1-∠2)答案:B12.如图,则∠A+∠B+∠C+∠D+∠E=()A.90 B.180 C.200 D.360答案:B13.如图,BD、CD分别平分∠ABC和∠ACE,∠A=40°,则∠D的度数是()A.20°B.30°C.40°D.60°答案:A14.如图,等边三角形ABC,P为BC上一点,且∠1=∠2,则∠3为()A.50°B.60°C.75°D.无法确定答案:B二、填空题教案2.如图,已知ΔABC中,∠ABC和外角∠ACE的平分线相交于点D,若∠D=400,则∠BAC的度数为 .人教版数学2020-2021八年级上册教案1.如图,BP 、CP 是任意△ABC 中∠B、∠C 的角平分线,可知∠BPC=90°+21∠A,把图中的△ABC 变成图中的四边形ABCD ,BP ,CP 仍然是∠B,∠C 的平分线,猜想∠BPC 与∠A、∠D 的数量关系是 .答案:∠BPC=21(∠BAD+∠ADC).6.已知:如图,在直角坐标系中,点A ,B 分别是x 轴,y 轴上的任意两点,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的角平分线交于点C ,则∠ACB= .答案:45°三、解答题4.下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现:∠BOC=90°+21∠A(不要求证明).人教版数学2020-2021八年级上册练习题 试卷探究2:如图(2)中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的数量关系?请说明理由.探究3:如图(3)中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的数量关系?(只写结论,不需证明).结论: .解:(1)探究2结论:∠BOC=21∠A, 理由如下:∵BO 和CO 分别是∠ABC 和∠ACD 的角平分线, ∴∠1=21∠ABC,∠2=21∠ACD, 又∵∠ACD 是△ABC 的一外角, ∴∠ACD=∠A+∠ABC, ∴∠2=21(∠A+∠ABC)=21∠A+∠1, ∵∠2是△BOC 的一外角, ∴∠BOC=∠2-∠1=21∠A+∠1-∠1=21∠A; (2)探究3结论∠BOC=90°-21∠A.人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外八年级上册12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角 线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形一、知识框架:二、知识概念: 1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念: 1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定: ①有两条边相等的三角形是等腰三角形. ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边). ⑵等边三角形的判定: ①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法: ⑴做已知直线的垂线: ⑵做已知线段的垂直平分线: ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短. 第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加. ⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式: ⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷= ⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式. 5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解. 6.因式分解方法: ⑴提公因式法:找出最大公因式. ⑵公式法: ①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法 第十五章 分式 一、知识框架 :2020-2021 习教案 二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算: ⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c ±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)如图,向两边延长ABC ∆的边AB ,点P 是直线AB 上B 点右边的一动点,PE AC ∥,CO 平分ACB ∠,PM 平分APE ∠,OC 与PM 交与点M ,当点P 在直线AB 上运动时,探求M ∠与ABC ∠数量关系.【答案】12M ABC ∠=∠. 【解析】【分析】过点A 作AG PM ∥,交MO 的延长于点G ,先根据平行线的性质得出G M ∠=∠,再得出6030m n =⎧⎨=-⎩平分NAC ∠,再根据三角形内、外角平分线的交角的结论即可【详解】解:如图,过点A 作AG PM ∥,交MO 的延长于点G ,则G M ∠=∠ PE AC ∥,NAC APE ∴∠=∠,AG ∴平分NAC ∠, CO 平分ACB ∠,由三角形内、外角平分线的交角的基本图形与结论得,12G ABC ∠=∠,即12M ABC ∠=∠.【点睛】此题主要考查了角平分线的性质,三角形内角与外角的关系,三角形内角和定理,关键是根据角平分线的性质得到角之间的关系.62.如图,在ABC ∆中,ABC ∠的平分线与BAC ∠,ACB ∠的外角平分线交于点D ,DE BC ⊥的延长线于点E ,已知30∠=︒CDE ,50ABC ∠=︒,求ADB ∠、BDC ∠的度数.【答案】30ADB ∠=︒;35BDC ∠=︒.【解析】【分析】 根据三角形的内角和定理、角平分线定义得出1302∠=∠=︒ADB ACB ,1352∠=∠=︒BDC BAC 即可 【详解】解:30CDE ∠=︒,DE BC ⊥,60DCE ∴∠=︒. DC 平分ACE ∠,120∴∠=︒ACE60ACB ∠=︒∴.ADB ∠是内、外角平分线的交角,1302ADB ACB ∴∠=∠=︒. 180180506070BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒.BDC ∠是内、外角平分线的交角,1352BDC BAC ∴∠=∠=︒. 【点睛】此题主要考查了角平分线的性质,三角形内角与外角的关系,三角形内角和定理,关键是根据角平分线的性质得到角之间的关系.63.如图,已知射线OE ⊥射线OF ,B 、A 分别为OE 、OF 上一动点,ABE ∠、BAF ∠的平分线交于C 点.问B 、A 分别在OE 、OF 上运动的过程中,C ∠的度数是否改变?若不变,求出其值;若改变,说明理由.【答案】不变,45C ∠=︒.【解析】【分析】根据三角形的内角和定理、角平分线定义和三角形的外角的性质可以得到∠C=90°-12∠O . 【详解】解:∠C 的度数不会改变.∵∠ABE 、∠BAF 的平分线交于C ,∴∠CAB=12∠FAB ∠CBA=12∠EBA ∴∠C=180°-(∠CAB +∠CBA )=180°-12(∠ABE+∠BAF ) =180°-12(∠O+∠OAB+∠BAF ) =180°-12(∠O+180°) =90°-12∠O=45°. 【点睛】本题考查了三角形的内角和定理,角平分线的定义,三角形外角的性质定理,熟练掌握相关的性质是解题的关键.64.如图,在ABC ∆中,角平分线AD 、BE 、CF 相交于点O ,过点B 作BG CF ⊥于点G ,12OBG BAC ∠=∠成立吗?说明理由.【答案】12OBG BAC ∠=∠ 成立,见解析. 【解析】【分析】根据三角形内角平分线的交角的基本图形和结论和三角形外角的性质定理即可得出答案【详解】解:12OBG BAC ∠=∠成立. 理由如下:∵在ABC ∆中,角平分线AD 、BE 、CF 相交于点O ,由三角形内角平分线的交角的基本图形和结论得,1902BOC BAC ∠=︒+∠. 由三角形的外角性质得,90BOC G OBG OBG ∠=∠+∠=︒+∠,190902BAC OBG ∴︒+∠=︒+∠, 12OBG BAC ∴∠=∠ 【点睛】本题考查了三角形的内角和定理,以及三角形的角平分线的性质,熟练掌握相关的知识点是解题的关键.65.如图,BG 是ABD ∠的平分线,CH 是ACD ∠的平分线,BG 与CH 交于点O ,若150BDC ∠=︒,110BOC ∠=°,求A ∠的度数.【答案】70A ∠=︒.【解析】【分析】根据三角形的外角的性质得出燕尾角的基本图形的结论得出∠BDC 、∠BOC ,在根据角平分线的性质即可得出【详解】解:由燕尾角的基本图形与结论可得,BDC BOC OBD OCD ∠=∠+∠+∠①BOC A ABO ACO ∠=∠+∠+∠② BG 是ABD ∠的平分线,GH 是ACD ∠的平分线ABO OBD ∴∠=∠,ACO OCD ∠=∠.①-②得,270A BOC BDC ∠=∠-∠=︒.【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.66.如图,已知DE 分别交ABC ∆的边AB 、AC 于D 、E ,交BC 的延长线于F ,62B ∠=︒,76ACB ∠=︒,93ADE ∠=︒,求DEC ∠的度数.【答案】135DEC ∠=︒.【解析】【分析】根据三角形的内角和定理即可求解【详解】解:在ABC 中,=180--∠︒∠∠A B ACB =180︒-62︒-7642︒=︒,∴∠DEC=9342135A ADE ∠+∠=︒+︒=︒【点睛】本题主要考查三角形内角和定理和外角的性质,掌握三角形内角和为180°及三角形的一个外角等于不相邻两个内角的和是解题的关键.67.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP 分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需要说明理由)【答案】(1)∠DBC+∠ECB =180°+∠A,理由见解析;(2)50°;(3)∠P=90°-12∠A;(4)∠BAD+∠CDA =360°-2∠P,理由见解析【解析】【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)延长BA、CD相交于点Q,先用∠Q表示出∠P,再用(1)的结论整理即可得解.【详解】(1)∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A;(2)∵∠1+∠2=∠180°+∠C,∴130°+∠2=180°+∠C,∴∠2-∠C=50°;(3)∠DBC+∠ECB=180°+∠A,∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC+∠PCB=12(∠DBC+∠ECB)=12(180°+∠A),在△PBC中,∠P=180°-12(180°+∠A)=90°-12∠A;即∠P=90°-12∠A;故答案为:50°,∠P=90°-12∠A;(4)延长BA、CD于Q,则∠P=90°-12∠Q,∴∠Q=180°-2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°-2∠P,=360°-2∠P.【点睛】此题考查三角形的外角性质,三角形内角和定理,解题关键在于作辅助线68.如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)【答案】(1) 25°;(2) ∠E=β-α【解析】【分析】(1)由∠B=35°,∠ACB=85°,根据三角形内角和等于180°,可得∠BAC的度数,因为AD平分∠BAC,从而可得∠DAC的度数,进而求得∠ADC 的度数,由PE⊥AD,可得∠DPE的度数,从而求得∠E的度数.(2)根据第一问的推导,可以用含α、β的代数式表示∠E.【详解】(1)∵∵B=35°,∵ACB=85°,∵∵BAC=180°-∵B-∵ACB=60°.∵AD平分∵BAC,∵∵DAC=∵BAD=30°.∵∵ADC=∵B+∵BAD=65°.又∵PE∵AD,∵∵DPE=90°,∵∵E=90°-∵ADC=25°.(2)∵∵B=α,∵ACB=β,∵∵BAC=180°-α-β.∵AD平分∵BAC,∵∵DAC=∵BAD=(180°-α-β).∵∵ADE=∵B+∵BAD=90°+α-β,又∵PE∵AD,∵∵DPE=90°,∵∵E=90°-∵ADE=β-α.【点睛】本题主要考查三角形的内角和的应用,关键是可以根据题意,灵活变化,最终求出所要求的问题的答案.69.,D E 分别为ABC ∆的边,AC BC 上两点,将CDE ∆沿DE 翻折,C 点落在C '处,11,44PDC ADC PEC BEC ''''∠=∠∠=∠.(1)如图(1)若90C ∠=.求P ∠的度数.(2)如图(2)若180C P ∠+∠=,求C ∠的度数.【答案】(1)45︒;(2)120︒.【解析】【分析】(1)易得180ADC BEC ''∠+∠=︒,求出45PDC PEC ''∠+∠=︒,然后根据三角形内角和定理求出P ∠;(2)由题意得4ADC PDC ''∠=∠,4BEC PEC ''∠=∠,2ADC BEC C ''∠+∠=∠,然后根据三角形内角和定理可得P ∠11802C EDC DEC =︒-∠-∠-∠,结合180CDE CED C ∠+∠=︒-∠,可求出120C ∠=︒.【详解】解:(1)2180ADC BEC C ''∠+∠=∠=︒,又44ADC BEC PDC PEC ''''∠+∠=∠+∠,45PDC PEC ''∴∠+∠=︒,45PDE PED PDC EDC PEC C ED CDE CED ''''∠+∠=∠+∠+∠+∠=︒+∠+∠4590135=︒+︒=︒,180********P PDE PED ∠=︒-∠-∠=︒-︒=︒(2)14PDC ADC ''∠=∠ 4ADC PDC ''∴∠=∠14PEC BEC ''∠=∠∠, 4BEC PEC ''∴∠=∠2ADC BEC C ''∠+∠=∠,442PDC PEC C ''∴∠+∠=∠12PDC PEC C ''∴∠+∠=∠, 180180P PDE PED PDC EDC PEC DEC ''''∠=︒-∠-∠=︒-∠-∠-∠-∠11802C EDC DEC =︒-∠-∠-∠ 180C CDE CED ∠+∠+∠=︒180CDE CED C ∴∠+∠=︒-∠()1118018022P C C C ∴∠=︒-∠-︒-∠=∠ 又180P C ∠+∠=︒11802C C ∴∠+∠=︒, 120C ∴∠=︒【点睛】本题主要考查三角形内角和定理与外角的性质,涉及的角较多,分析起来较为复杂,结合题意求出12PDC PEC C ''∠+∠=∠是解题关键.70.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)求∠ACB的大小;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO-∠BCF=45°,求证:CF∥OB.【答案】(1)135°;(2)45°;(3)证明见解析.【解析】【分析】(1)根据角平分线的性质得到∠OAC =∠CAB,∠ABC=∠GBC,根据三角形的内角和得到∠OAB+∠ABO=90°,即可求出∠CAB+∠ABC的度数,根据三角形的内角和即可求解.(2)根据角平分线的性质得到∠GBD=∠EBD,则∠CBD=∠GBC+∠GBD=12(∠ABG+∠GBE)=90°,根据∠ACB=135°即可求出∠ADB的大小.(3)根据三角形外角的性质得到∠AGO=∠GCB+∠GBC=45°+∠GBC,∠AGO-∠BCF=45°,可得到∠GBC=∠BCF,即可证明.【详解】(1)∵AC、BC分别是∠BAO和∠ABO角的平分线,∴∠OAC =∠CAB,∠ABC=∠GBC,∵m⊥n,∴∠AOB=90°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-12(∠OAB+∠ABO)=180°-12×90° =135°.(2)∵BD是∠OBE角的平分线,∴∠GBD=∠EBD,∴∠CBD=∠GBC+∠GBD=12(∠ABG+∠GBE)=90°,又∵∠ACB=135°,∴∠DCB=45°,∴∠ADB=180°-∠CBD-∠DCB=45°点A、B在运动的过程中,∠ADB不发生变化,其值为45°.(3)∵∠AGO=∠GCB+∠GBC=45°+∠GBC,又已知:∠AGO-∠BCF=45°,∴ 45°+∠GBC-∠BCF=45°,∠GBC=∠BCF,∴CF∥OB.【点睛】考查角平分线的性质,三角形的内角和,三角形外角的性质,平行线的判定等,综合性比较强,掌握三角形的内角和定理是解题的关键.。
三角形的外角计算(一)(人教版)一、单选题(共10道,每道10分)1.下列各项中,D是BC延长线上一点,E是AC延长线上一点,其中∠1是△ABC的外角的是( )A. B.C. D.答案:C解题思路:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.根据定义,选项C中∠1是△ABC的外角.故选C.试题难度:三颗星知识点:三角形的外角2.如图,在△ABC中,点D,F在线段AB上,点E在线段AC上,H是BC延长线上一点,FE 的延长线交BH于点G,则下列说法错误的是( )A.∠ACG是△ABC的外角B.∠FGH是△ECG的外角C.∠AFE是△BFG的外角D.∠DEA是△ECG的外角答案:D解题思路:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.根据外角的定义,∠DEA不是由△ECG的一边与另一边的延长线得到的角,因此不是△ECG的外角.故选D.试题难度:三颗星知识点:三角形的外角3.如图是一失事飞机的残骸示意图,若∠B=30°,∠A=40°,则∠BCD的度数为( )A.80°B.70°C.60°D.50°答案:B解题思路:如图,根据外角的定义,∠BCD是△ABC的一个外角,由三角形的一个外角等于和它不相邻的两个内角的和,得∠BCD=∠A+∠B=70°.故选B.试题难度:三颗星知识点:三角形的外角4.如图,直线m,n分别过点A,B,若∠1=100°,∠2=70°,则m,n相交所成的锐角为( )A.20°B.30°C.70°D.80°答案:B解题思路:如图,设直线m与n交于点C,根据外角的定义,∠1是△ABC的一个外角,由三角形的一个外角等于和它不相邻的两个内角的和,得∠1=∠2+∠3,所以∠3=∠1-∠2=30°,即m,n相交所成的锐角为30°.故选B.试题难度:三颗星知识点:三角形的外角5.如图是某零件的平面示意图,点E在BD的延长线上,其中∠A=40°,∠ABC=35°,∠C=30°,则∠ADC的度数为( )A.75°B.95°C.105°D.140°答案:C解题思路:如图,根据外角的定义,∠3是△ABD的一个外角,∠4是△BCD的一个外角.由三角形的一个外角等于和它不相邻的两个内角的和,得∠3=∠1+∠A,∠4=∠2+∠C,所以∠ADC=∠3+∠4=∠1+∠A+∠2+∠C=∠A+∠ABC+∠C=105°.故选C.试题难度:三颗星知识点:三角形的外角6.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC的度数为( )A.55°B.60°C.80°D.90°答案:C解题思路:如图,根据外角的定义,∠1是△ABE的一个外角,∠BDC是△DCE的一个外角.由三角形的一个外角等于和它不相邻的两个内角的和,得∠1=∠A+∠B,∠BDC=∠1+∠C,所以∠BDC=∠1+∠C=∠A+∠B+∠C=80°.故选C.试题难度:三颗星知识点:三角形的外角7.如图,直线∥,若∠1=150°,∠2=70°,则∠3的度数为( )A.70°B.80°C.65°D.60°答案:B解题思路:如图,根据外角的定义,∠1是△ABC的一个外角.由三角形的一个外角等于和它不相邻的两个内角的和,得∠1=∠2+∠ABC,所以∠ABC=∠1-∠2=80°.因为∥,根据两直线平行,内错角相等,∠3=∠ABC=80°.故选B.试题难度:三颗星知识点:三角形的外角8.已知:如图,AB∥CD,∠B=65°,∠E=20°,则∠D的度数为( )A.45°B.55°C.65°D.85°答案:A解题思路:如图,由AB∥CD,根据两直线平行,同位角相等,∠1=∠B=65°.根据外角的定义,∠1是△DEF的一个外角.由三角形的一个外角等于和它不相邻的两个内角的和,得∠1=∠D+∠E,所以∠D=∠1-∠E=45°.故选A.试题难度:三颗星知识点:三角形的外角9.如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,若∠A=50°,∠E=55°,则∠B的度数为( )A.70°B.60°C.55°D.45°答案:B解题思路:解:如图,由EF∥BC,根据两直线平行,内错角相等,∠1=∠E=55°.因为CE平分∠ACD,所以∠ACD=2∠1=110°.根据外角的定义,∠ACD是△ABC的一个外角.由三角形的一个外角等于和它不相邻的两个内角的和,得∠ACD=∠A+∠B,所以∠B=∠ACD-∠A=60°.故选B.试题难度:三颗星知识点:三角形的外角10.如图,P为△ABC内任一点,延长CP交AB于点D,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:如图,根据外角的定义,∠1是△BDP的一个外角,∠2是△BCP的一个外角,∠3是△ACD的一个外角,由三角形的一个外角等于和它不相邻的两个内角的和,得∠1=∠3+∠ABP,∠2=∠PBC+∠PCB,∠3=∠A+∠ACD,所以∠1=∠3+∠ABP=∠A+∠ACD+∠ABP.综上,只有选项D一定正确.故选D.试题难度:三颗星知识点:三角形的外角。
三角形的外角一、教材分析:“三角形外角的内容”是在学习“三角形的内角和等于180°”之后所学习的内容,可以进一步理解“三角形内角和”和“邻补角的性质”,为进一步学习多边形的外角和打下坚实的基础;“三角形的外角和等于360°”的探索学习,建立数学模型,为探索“多边形的外角和”作好铺垫。
应用“三角形外角的性质”解决有关三角形的角的计算问题提供了更多的解题思路,综合应用已有的三角形内角和的知识解决问题,从而加深对相关知识的理解,提高学生思维能力。
二、学情分析:学生的学习状况大致分为三个层次,学习中等以上的学生占60%左右,中下层学生大约占30%,学困生占10%。
学生上课积极参与,师生合作学习,教师进行探究性学习,学生学习的积极性较高。
在平行班的教学中,存在一个较难解决的问题:如何让中下层学生学有所得,又可以提高优秀生的思维能力。
为此,在课堂教学上,必须把能力分为阶梯式进行提高,对学生进行有层次能力的培养。
三、教学思路:1、先回顾三角形的内角和;三角形的内角有关知识;然后观察图形得到三角形的外角的概念;2、利用三角形的内角和性质、邻补角等知识,探究得到三角形的外角的性质;3、设计适当的例题、练习题,对学生进行有层次的能力培养,进行变式练习,提高学生解决问题的能力;4、设计一题多解的问题,培养学生发散思维能力。
5、通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
四、教学方法:1、讲练结合法;2、合作学习和探究教学法;五、教学目标:1、探索三角形的一个外角等于与它不相邻的两个内角的和;2、探索三角形的一个外角大于与它不相邻的任何一个内角;3、能应用三角形外角的性质解决一些简单的实际问题。
六、教学重点:1、理解三角形外角的概念,2、掌握“三角形的一个外角等于与它不相邻的两个内角的和”的性质,并应用之解决简单的实际问题。
七、教学难点:1、理解“三角形的一个外角大于与它不相邻的任何一个内角”及应用;2、应用三角形外角的性质解决一些综合的实际问题。
人教版_部编版八年级数学上册第十一章第二节三角形的外角作业练习题(含答案)如图,DE⊥AB,EF⊥AC,⊥A=24°,求⊥DEF的度数.【答案】114°【解析】【分析】先根据DE⊥AB可知∠ADE=90°,再由三角形外角的性质求出∠DGC的度数,根据平行线的性质即可得出结论.【详解】∵DE⊥AB,∴∠ADE=90°,∵∠DGC是△ADG的外角,∠A=24°,∴∠DGC=∠A+∠ADG=24°+90°=114°,∵EF∥AC,∴∠DEF=∠DGC=114°.【点睛】考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.72.在等边△ABC中,点P,Q是BC边上的两个动点(不与点B、C重合),且AP=AQ.(1)如图1,已知,∠BAP=20°,求∠AQB的度数;(2)点Q关于直线AC的对称点为M,分别联结AM、PM;①当点P分别在点Q左侧和右侧时,依据题意将图2、图3补全(不写画法);②小明提出这样的猜想:点P、Q在运动的过程中,始终有PA=PM.经过小红验证,这个猜想是正确的,请你在①的点P、Q的两种位置关系中选择一种说明理由.【答案】(1)80°(2)①答案见解析②答案见解析【解析】【分析】(1)先利用三角形外角定理得到∠APQ的值,再利用等边对等角转化即可;(2)①根据题中所述步骤补全图形即可;②选择点P在点Q的左侧,QM交AC于点H,证明△AQH≌△AMH,再证明AP=AM,最后证明△APM是等边三角形即可.【详解】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠BAP=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)①如图2,3所示:②PA=PM,点P在点Q的左侧,QM交AC于点H,∵点Q关于直线AC的对称点为M,∴QH=MH,∠AHQ=∠AHM,∵AH=AH,∴△AQH≌△AMH(SAS),∴AQ=AM,∠QAH=∠MAH,∵AP=AQ,∴AP=AM,∵∠BAP=∠CAQ,∴∠QAH=∠MAH=∠BAP,∴∠PAM=∠PAQ+∠QAH+∠MAH=∠PAQ+∠QAH+∠BAP=∠BAC=60°,∴△APM是等边三角形,∴PA=PM.【点睛】本题考查的是三角形的综合运用,熟练掌握等边三角形的性质和全等三角形是解题的关键.73.如图,在△ABC中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,∠FDE=∠B,那么∠B与∠C的大小关系如何?为什么?【答案】答案见解析【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠B+∠DFB,再根据∠FDE=∠B,证明∠DFB=∠EDC,再证明三角形全等即可.【详解】解:∠B=∠C,理由如下:∵∠FDC=∠B+∠DFB(三角形的一个外角等于与它不相邻的两个内角的和),即∠FDE+∠EDC=∠B+∠DFB.又∵∠FDE =∠B (已知),∴∠DFB =∠EDC .在△DFB 和△EDC 中,FB ED DFB EDC BF CD =⎧⎪∠=∠⎨⎪=⎩∴△DFB ≌△EDC (SAS ).∴∠B =∠C .【点睛】本题主要考查了三角形外角的性质,熟练掌握三角形外角的性质,理清证明思路是写出理由与步骤的解决本题的关键.74.阅读、填空并将说理过程补充完整:如图,已知点D 、E 分别在△ABC 的边AB 、AC 上,且∠AED =∠B ,延长DE 与BC 的延长线交于点F ,∠BAC 和∠BFD 的角平分线交于点G .那么AG 与FG 的位置关系如何?为什么?解:AG ⊥FG .将AG 、DF 的交点记为点P ,延长AG 交BC 于点Q . 因为AG 、FG 分别平分∠BAC 和∠BFD (已知)所以∠BAG = , (角平分线定义)又因为∠FPQ = +∠AED , = +∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED =∠B (已知)所以∠FPQ = (等式性质)(请完成以下说理过程)【答案】∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG 【解析】【分析】根据角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和,等角对等边和等腰三角形三线合一来解题即可.【详解】解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.因为AG、FG分别平分∠BAC和∠BFD(已知)所以∠BAG=∠CAG,∠PFG=∠QFG(角平分线定义)又因为∠FPQ=∠CAG+∠AED,∠FQG=∠BAG+∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED=∠B(已知)所以∠FPQ=∠FQG(等式性质)所以FP=FQ(等角对等边)又因为∠PFG=∠QFG所以AG⊥FG(等腰三角形三线合一).故答案为:∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG.【点睛】本题考查的是三角形的综合运用,熟练掌握三角形的性质是解题的关键.75.如图,在ABC ∆中,CD 垂直AB ,垂足为D ,ABC ∠的平分线BP 交CD 于点P .(1)若20BCD ∠=︒,求PBC ∠的度数;(2)若BCD α∠=,求BPD ∠的度数.【答案】(1)35PBC ∠=︒;(2)1452BPD α∠=︒+. 【解析】【分析】(1)由CD 垂直AB ,可得直角,由BP 平分ABC ∠,可得PBC PBD ∠∠=,依据三角形内角和定理可求ABC ∠,进而求出PBC ∠;(2)方法同(1),只是角度用α表示,最后由三角形的外角等于与它不相邻的两个内角的和,表示BPD ∠即可.【详解】解:(1)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD 20∠=︒,ABC 902070∠∴=︒-︒=︒,又BP 平分ABC ∠,1PBC PBD ABC 352∠∠∠∴===︒, 答:PBC 35∠=︒;(2)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD α∠=,ABC 90α∠∴=︒-,又BP 平分ABC ∠,()11PBC PBD ABC 90α22∠∠∠∴===︒-, ()11BPD PBC PCB 90αα45α22∠∠∠∴=+=︒-+=︒+, 答:1BPD 45α2∠=︒+.【点睛】考查三角形内角和定理、角平分线意义、垂直的意义等知识,三角形的内角和定理的推论,即三角形的任何一个外角等于与它不相邻的两个内角的和,在解决问题时也经常用到,注意掌握.76.一个零件的形状如图所示,按规定∠A =90°,∠B 、∠D 分别是32°和21°,要测量这个零件是否合格,检验工人测量∠BCD 的度数,如果∠BCD =150°,就判定这个零件不合格,你知道这是为什么吗?请说明原因.【答案】这个零件合格,理由见解析.【解析】【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】如图,连接AC并延长,由三角形的外角性质,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠A+∠B+∠D=90°+32°+21°=143°,∵143°≠150°,∴这个零件合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.77.如图,直线m//n,若1130∠=,求3∠的度数?∠=,270【答案】∠3=60°.【解析】【分析】利用三角形的一个外角等于与它不相邻的两个内角的和求出∠4的度数,再根据两直线平行,内错角相等即可求解.【详解】解:如图所示,∵∠1是△ABC的外角,∴∠4=∠1-∠2=130°-70°=60°,又∵m//n,∴∠3=∠4=60°.【点睛】考查平行线的性质,三角形的外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.78.三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.(定理证明)已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.(定理推论)如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD= .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.(初步运用)如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=80°,∠DBC=150°,则∠ACB= ;(2)若∠A=80°,则∠DBC+∠ECB= .(拓展延伸)如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=80°,∠P=150°,则∠DBP+∠ECP= ;(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为;(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.【答案】[定理证明]证明见解析;[定理推论] ∠A+∠ABC;[初步运用](1)70°;(2)260°;[拓展延伸](1)230°;(2)(2)∠P=∠A+100°.(3)证明见解析.【解析】【分析】[定理证明]过点A作直线MN∥BC,根据平行线的性质和平角的定义可得结论;[定理推论]根据三角形的内角和定理和平角的定义可得结论;[初步运用](1)根据三角形的外角等于与它不相邻的两个内角的和列式可得结论;(2)根据三角形的内角和得:∠ABC+∠ACB=100°,由两个平角的和可得结论;[拓展延伸](1)连接AP,根据三角形内角和定理的推论可得等式,将两个等式相加可得结论;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,综合可得结论;(3)如图⑥,作辅助线,构建三角形PQC,根据(1)的结论得:∠DBP+∠ECP=∠A+∠BPC,和角平分线的定义,证明∠MBP=∠PQC,可得结论.【详解】[定理证明]证明:过点A作直线MN∥BC,如图所示,∴∠MAB=∠B,∠NAC=∠C,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°;[定理推论]∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠ABC,故答案为:∠A+∠ABC;[初步运用](1)∵∠DBC=∠A+∠ACB,∴∠ACB=∠DBC-∠A=150°-80°=70°,故答案为:70°;(2)∵∠A=80°,∴∠ABC+∠ACB=100°,∴∠DBC+∠ECB=360°-100°=260°,故答案为:260°;[拓展延伸](1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=80°,∠P=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=80°+130°=230°,故答案为:230°;(2)∠P=∠A+100°.理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠DBO=∠OBP=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=50°,∴∠P=∠A+100°,故答案为:∠P=∠A+100°;(3)证明:延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查的是三角形内角和的证明、三角形外角的性质的推理及运用、平行线的性质,根据题意作出辅助线,构造出三角形是解答此题的关键.三、填空题79.如图,AB∥CD,∠P=40°,∠D=100°,则∠ABP的度数是_____.【答案】140°.【分析】延长AB交DP于点E,根据平行线的性质可得:∠BEP=∠D=100°,然后利用三角形的外角的性质即可求解.【详解】延长AB交DP于点E.∵AB∥CD,∴∠BEP=∠D=100°,∴∠ABP=∠BEP+∠P=100°+40°=140°.故答案为:140°.【点睛】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是解决问题的关键.80.将Rt△ABC和Rt△DEF如图摆放,点C在EF上,AC经过点D,∠A=∠EDF=90°,∠B=45°,∠E=30°,∠CDF=20°,则∠BCE的度数为______.【答案】35°【解析】先根据Rt△DEF求出∠F的度数,再根据外角定理求出∠ECD的度数,再根据等腰直角三角形得到∠ACB的度数,即可进行求解∠BCE.【详解】∵在Rt△DEF,∠E=30°,∠∠F=90°-∠E=60°,∵∠ACE是∠DCF的一个外角,∴∠ECD=∠F+∠CDF=80°,又∠ACB=90°-∠B=45°,∴∠BCE=∠ECD-∠ACB=80°-45°=35°.【点睛】此题主要考查三角形的角度计算,解题的关键是熟知三角形的内角和与外角定理进行求解.。
与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC边上任取一点D,作DE∥AB,交AC于E,DF∥AC,交AB于点F.因为DF∥AC(已作),所以∠1=∠C(两直线平行,同位角相等),∠2=∠DEC(两直线平行,内错角相等).因为DE∥AB(已作).所以∠3=∠B,∠DEC=∠A(两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A ,得CD ∥AB ,有∠2=∠B ;在图5-2中过A 作MN ∥BC 有∠1=∠B ,∠2=∠C ,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠ECB)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C的大小保持不变.理由:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY=(90°+∠OAB)=45°+∠OAB,即∠ABE=45°+∠CAB,又∵∠ABE=∠C+∠CAB,∴∠C=45°,故∠ACB的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG.理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB.∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°.又∵∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.。
学生做题前请先回答以下问题
问题1:三角形的______________________组成的角,叫做三角形的外角.
问题2:三角形外角定理:三角形的一个外角等于__________________.
三角形的外角(外角定义、定理)(人教版)
一、单选题(共10道,每道10分)
1.下列各项中,∠1是△ABC的外角的是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:三角形的外角
2.如图,在△ABC中,点D,F在线段AB上,点E在线段AC上,H是BC延长线上一点,FE 的延长线交BH于点G,则下列说法错误的是( )
A.∠ACG是△ABC的外角
B.∠FGH是△ECG的外角
C.∠AFE是△BFG的外角
D.∠DEA是△ECG的外角
答案:D
解题思路:
试题难度:三颗星知识点:三角形的外角
3.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,连接DE,则下列说法正确的是( )
A.∠BFE是△CDF的外角
B.∠ADF是△CDF的外角
C.∠CFD是△BFE的外角
D.∠CFB是△DFE的外角
答案:B
解题思路:
试题难度:三颗星知识点:三角形的外角
4.如图,∠B=30°,∠A=40°,则∠BCD的度数为( )
A.80°
B.70°
C.60°
D.50°
答案:B
解题思路:
试题难度:三颗星知识点:三角形的外角
5.如图,直线m,n分别过点A,B,若∠1=100°,∠2=70°,则m,n相交所成的锐角为( )
A.20°
B.30°
C.70°
D.80°
答案:B
解题思路:
试题难度:三颗星知识点:三角形的外角
6.如图是某零件的平面示意图,点E在BD的延长线上,其中∠A=40°,∠ABC=35°,∠C=30°,则∠ADC的度数为( )
A.75°
B.95°
C.105°
D.140°
答案:C
解题思路:
试题难度:三颗星知识点:三角形的外角
7.如图,D是AC上一点,F是CE上一点,DF的延长线与AE的延长线交于点B,若∠A=45°,∠B=30°,∠C=40°,则∠BFC的度数为( )
A.110°
B.115°
C.120°
D.145°
答案:B
解题思路:
试题难度:三颗星知识点:三角形的外角
8.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则的度数为( )
A.75°
B.105°
C.135°
D.165°
答案:D
解题思路:
试题难度:三颗星知识点:三角形的外角
9.如图,五角星的顶点分别为A,B,C,D,E,∠A+∠B+∠C+∠D+∠E的度数为( )
A.90°
B.180°
C.270°
D.360°
答案:B
解题思路:
试题难度:三颗星知识点:三角形的外角
10.如图,P为△ABC内任意一点,延长CP交AB于点D,连接BP,则下列结论一定正确的是( )
A.∠1=∠2+∠3
B.∠1=∠2+∠A+∠ACD
C.∠2=∠A+∠ACD
D.∠3=∠A+∠ACD
答案:D
解题思路:
试题难度:三颗星知识点:三角形的外角。