天津市南开区2020-2021年新人教版九年级数学上周测试卷及答案(全套样卷)
- 格式:docx
- 大小:257.01 KB
- 文档页数:8
2020~2021学年度第二学期南开区九年级模拟数学试卷本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分. 考试时间100分钟.答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)计算)3()6(-÷- 的结果是(A )2 (B )-2 (C )-9 (D )-3(2)︒30cos 2的值等于(A )33(B (C )1 (D )3 (3)今年“五一”假期前三日,我市五大道文化旅游区共接待游客23.5万人次,将“23.5万”用科学计数法表示为(A )310235⨯ (B )4105.23⨯(C )51035.2⨯(D )610235.0⨯(4)下列图形中,既是轴对称图形,又是中心对称图形的是(A ) (B) (C) (D)(5)如图是由几个相同的正方体搭成的一个几何体,它的主视图是(A ) (B )(C ) (D ) (6)估计29的值在(A )2和3之间 (B )3和4之间 (C )4和5之间 (D )5和6之间(7)方程组⎩⎨⎧=-=+52332y x y x ,的解是(A )⎩⎨⎧==32y x , (B ) ⎪⎩⎪⎨⎧==212y x ,(C )⎩⎨⎧==11y x , (D )⎩⎨⎧-==11y x , (8)已知分式A =442-x ,B =xx -++2121,其中2±≠x ,则A 与B 的关系是 (A )A =B(B )A =﹣B(C )A >B(D )A <B(9)若点)2(1y ,-,)1(2y ,-,)3(3y ,在反比例函数6y x=-的图象上,则321y y y ,,的大小关系是(A )321y y y << (B )123y y y << (C )312y y y <<(D )213y y y <<(10)如图,在平面直角坐标系xOy ,四边形OABC 为正方形,若点B (1,3),则点C 的坐标为 (A ))2,1(-(B ))25,1(-(C ))2,23(- (D ))23,1(-(11)如图,在R t △ABC 中,∠C =90°,AC =6,BC =9,点D 为BC 边上的中点,将△ACD 沿AD 对折, 使点C 落在同一平面内的点C '处,连接BC ', 则BC '的长为 (A )29 (B )527 (C )23 (D )32 (12)二次函数5)1(2+--=x y ,当m ≤x ≤n 且mn <0时,y 的最小值为5m ,最大值为5n ,则m +n 的值为(A )0 (B )-1 (C )-2 (D )-32020~2021学年度第二学期南开区九年级模拟数学试卷第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔). 2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)(13)计算23)2(y -的结果是 .(14)计算)37)(37(-+的结果等于 .(15)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,则它是白球的概率为 . (16)已知函数b kx y +=(k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集 为 .(17)如图,菱形ABCD 和菱形EFGH 的面积分别为9 cm 2和64 cm 2,CD 落在EF 上, ∠A =∠E ,若△BCF 的面积为4cm 2, 则△BDH 的面积是 2cm . (18)如图,在每个小正方形的边长为1的网格中,A ,C 为格点,点B 为所在小正方形 边长的中点.(Ⅰ)BC 的长为 ;(Ⅱ)若点M 和N 在边BC 上,且∠BAM =∠MAN =∠NAC ,请在如图所示的网格中,用无刻度...的直尺作图,并简要说明点M 和N 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题8分)解不等式组组⎪⎩⎪⎨⎧-≥--+②①,>423117)1(5x x x x请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ; (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .(20)(本小题8分)某校为了解学生每周参加家务劳动的情况,随机调查了该校部分学生每周参加家务劳动的时间.根据调查结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求统计的这组每周参加家务劳动时间数据的众数、中位数和平均数; (Ⅲ)根据统计的这组每周参加家务劳动时间的样本数据,若该校共有800名学生,估计该校每周参加家务劳动的时间大于1h 的学生人数.3-032-1-12已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.(22)(本小题10分)图1是电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度,研究表明:如图2,当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角(即望向屏幕中心P的的视线EP与水平线EA的夹角)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为34cm.(I)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(II)求显示屏项端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.3,cos18°≈0.95,≈1.4,≈1.7)工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t(时),甲组加工零件的数量为y甲(个),乙组加工零件的数量为y乙(个),其函数图象如图所示.(I)根据图象信息填表:加工时间t(时) 3 4 8甲组加工零件的数量(个)a=(Ⅱ)填空:①甲组工人每小时加工零件个;②乙组工人每小时加工零件个;③甲组加工小时的时候,甲、乙两组加工零件的总数为480个;(Ⅲ)分别求出y甲、y乙与t之间的函数关系式.(24)(本小题10分)如图,将平行四边形OABC放置在平面直角坐标系xOy内,已知A(3,0),B(0,4).(I)点C的坐标是(,);(II)若将平行四边形OABC绕点O逆时针旋转90°得OFDE,DF交OC于点P,交y轴于点F,求△OPF的面积;(III )在(II )的情形下,若再将平行四边形OFDE 沿y 轴正方向平移,设平移的距离为d ,当平移后的平行四边形''''E D F O 与平行四边形OABC 重叠部分为五边形时,设其面积为S ,试求出S 关于d 的函数关系式,并直接写出d 的取值范围.(25)(本小题10分)在平面直角坐标系中,抛物线k k x k x y 25)1(222-+--=(k 为常数). (I )当k =2时,求该抛物线的解析式及顶点坐标; (II )若抛物线经过点)1(2k ,,求k 的值;(III )若抛物线经过点)2(1y k ,和点)2(2y ,,且21y y >,求k 的取值范围; (IV )若将抛物线向右平移1个单位长度得到新抛物线,当21≤≤x 时,新抛物线对应的函数有最小值23-, 求k 的值.2020~2021学年度第二学期南开区九年级阶段练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ABCADDBBDABD二、填空题(本大题共6小题,每小题3分,共18分)(13)64y (14)4 (15)21 (16)2<x (17)217(18)(I )265(II )取格点G 、H ,分别连结AG 、AH 交边BC 于 点M 、点N ,即为所求.三、解答题:本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题8分)解: (Ⅰ)3<x ; 2分(Ⅱ)2-≥x ; 4分 (Ⅲ) 6分(Ⅳ) 32<x ≤-. 8分3-032-1-1220.(本小题8分)解:(Ⅰ)40,25; 2分 (Ⅱ)观察条形统计图,∵x =5.1310158425.2102155.18145.0=++++⨯+⨯+⨯+⨯+⨯4分∴ 这40个样本数据的平均数是1.5 .∵在这组样本数据中,1.5出现了15次,出现的次数最多,∴ 这组样本数据的众数是1.5 . 5分 将这组样本数据按照由小到大的顺序排列,其中处于中间位置的两个数都是1.5,有5.125.15.1=+, ∴这组样本数据的中位数是1.5. 6分 (Ⅲ) ∵在40名学生中,每周参加家务劳动的时间大于1h 的学生比例为(37.5%+25%+7.5%)∴800×(37.5%+25%+7.5%)=800×70%=560,答:该校800名学生中每周参加家务劳动的时间大于1h 的学生有560人. 8分21.(本小题10分)(I )解:连接OB 1分 ∵P A 、PB 与圆O 相切于点A,B∴PO 平分∠APB 且∠PBO =90° 2分 ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° 3分 ∴∠BPO =90°-∠BOP =90°-56°=34°∴∠APB =2∠BPO =2×34°=68° 4分又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC =62)56180(21=-∴∠APB =68°,∠BDC=62 5分(II )连接OB ∵BC =CE∴∠CBE =∠CEB 6分 ∵∠BCP =28°∴∠CBE =76228180=- 7分∵OB =OC∴∠OBC =∠OCB =28° 8分 ∴∠EBO =∠CBE -∠OBC =76°-28°=48° 9分 ∵P A 与圆O 相切于点A ∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42° 10分22.(本小题10分)(I )由已知得:∠AEP =18°,AP =BP =AB =17, 2分 在Rt △APE 中, ∵AEAP AEP =∠sin ,∴573.01718sin sin ≈≈︒=∠=AP AEP AP AE ,答:眼睛E 与显示屏顶端A 的水平距离AE 约为57cm ; 4分 (II )如图,过点B 作BF ⊥AC 于点F , 5分 ∵∠EAB +∠BAF =90°,∠EAB +∠AEP =90°, ∴∠BAF =∠AEP =18°, 6分 在Rt △ABF 中,AF =AB •cos ∠BAF =34×cos18°≈34×0.95≈32.3,BF =AB •sin ∠BAF =34×sin18°≈34×0.3≈10.2, 8分 ∵BF ∥CD ,∴∠CBF =∠BCD =30°,∴CF =BF •tan ∠CBF =10.2×tan30°=10.2×≈5.78, 9分∴AC =AF +CF =32.3+5.78≈38.答:显示屏顶端A 与底座C 的距离AC 约为38cm . 10分(23)(本小题10分) (Ⅰ)3分(II ) ① 40; ② 120; ③ 7 6分 (III ) (1)当03t 时,t y 40=甲; 当43≤t <时,120=甲y ;当84≤t <时,140b t y +=甲加工时间t (时) 3 4 8 甲组加工零件的数量(个)120120a =280∵图象经过(4,120),则1440120b +⨯=, 解得:401-=b∴ 当84≤t <时,4040-=t y 甲.∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲 9分(2)设2b kt y +=乙把(5,0),(8,360)分别代入,得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y . 10分 24.(本小题10分)解:(Ⅰ)(﹣3,4); 2分 (Ⅱ)由旋转的性质,可得:OF =OA =3,OB =OD =4 ∵∠DFO =∠BAO =∠C , ∴∠DFO +∠BOC =90°, ∴∠FPO =90°,由sin ∠BOC =53,cos ∠BOC =54∴PF =53OF ,OP =54OF∴S△OPF=PF •OP =255435354212=⨯⨯⨯;7分(III )当1<d <413时, ∵OF ’=d+3,OO ’=d ,BF ’=d+3-4∴S =222)43(3421545321)3(545321-+⨯-⨯⨯-+⨯⨯x x d 7511275208322++-=d d .10分25.(本小题10分)解:(I )当k =2时,1254)12(222--=-+--=x x x x y , 1分 2)1(1222--=--=x x x y ,∴此抛物线顶点坐标为(1,-2); 2分(II )把)1(2k ,代入抛物线解析式,得k k k k 25)1(2122-+--=,解得:32=k 3分 (III )依题意,有k k k k k k k y 23252)1(202(2221+=-+⋅--=,8213252)1(222222+-=-+⨯--=k k k k k y 5分∵21y y >, ∴82132322+-+k k k k >, 解得:1>k 6分 (IV )∵ )12()1(25)1(2222--++-=-+--=kk x k k x k x y 将抛物线向右平移1个单位长度得到的新解析式为 )12()(2--+-=kk x y 7分 ① 当1<k 时,21≤≤x 时对应的抛物线部分位于对称轴右侧,∴当1=x 时y 有最小值,k k k k y 25121)1(22-=---=最小 ∴23252-=-k k 解得231=k (舍),12=k (舍) 8分② 当21≤≤k 时,顶点为图象最低点 ∴当k x =时y 有最小值,121--=k y 最小 ∴23121-=--k 解得:1=k 9分 ③ 当2>k 时,21≤≤x 时对应的抛物线部分位于对称轴左侧, ∴当2=x 时y 有最小值,329121)2(22+-=---=k k k k y 最小 ∴233292-=+-k k 解得231=k (舍),32=k综上,1=k 或3=k 10分。
天津市南开中学2020-2021年九年级上册期末数学试题(含答案)一、选择题1.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y <<2.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm3.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.45.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 6.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,27.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .238.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =9.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .1610.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 11.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断12.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10014.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm15.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度二、填空题16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.17.已知∠A=60°,则tan A=_____.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0)、B(0,4),则点B2020的横坐标为_____.19.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.20.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.21.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.22.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm2.23.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.24.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.25.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.26.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 27.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______;②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.32.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =4GB =,求O 的半径.33.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.34.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a2x+bx+c(a<0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,35.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,53).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.四、压轴题36.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.2.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.3.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.4.D解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.5.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.6.C解析:C【解析】【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.7.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴2EG DG DE x x ===+=,∴(CG CD DG x x =-=-=,∴()62tan312xEGACDCG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.8.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.9.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 =,【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.10.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.12.B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 15.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.二、填空题16.3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.19.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.20.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B 解析:38. 【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.23.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,∴<.k3k<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.25.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.26.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m ≥34且m≠1. 27.x1>2或x1<0. 【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y =(x+k )(x ﹣k ﹣2解析:x 1>2或x 1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P 、Q 的坐标代入解析式中,然后y 1>y 2,列出关于x 1的不等式即可求出结论.【详解】解:y =(x +k )(x ﹣k ﹣2)=(x ﹣1)2﹣1﹣2k ﹣k 2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离30.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.三、解答题31.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、2553,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x (舍去),225 23x,∴ON=25 53,∴O半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.32.(1)见解析;(2)O 的半径为4. 【解析】【分析】(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可.【详解】解:(1)证明:连接OE .∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.33.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解;②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.34.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P,12+,12). 【解析】【分析】。
九年级(上)期末数学试卷一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.109.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm211.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.14.如图所示,写出一个能判定△ABC∽△DAC的条件.15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为.x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 718.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.参考答案与试题解析一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】根据点与圆的位置关系进行判断.【解答】解:∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π【分析】根据弧长公式l=,计算即可.【解答】解:弧长==,故选:D.4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.【分析】利用列表法展示所以36种等可能的结果数,找出向上一面的两个骰子的点数相同的占6种,然后根据概率公式进行计算.【解答】解:列表如下:共有6×6=36种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种,所以向上一面的两个骰子的点数相同的概率==.故选:D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【解答】解:∵△ABC与△DEF是位似图形,相似比为2:3,∴△ABC∽△DEF,∴=,即=,解得,DE=,故选:B.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°【分析】根据垂径定理的推论,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度数,又由OC=OA,即可求得∠ACO的度数【解答】解:∵AB为⊙O的直径,C为的中点,∴OC⊥AD,∵∠BAD=20°,∴∠AOC=90°﹣∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO===55°,故选:C.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.10【分析】直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则把y=﹣4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【解答】解:根据题意得:x2+2x+k=﹣4x+1,即x2+6x+(k﹣1)=0,则△=36﹣4(k﹣1)=0,解得:k=10.故选:D.9.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【解答】解:由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;故选:A.10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm2【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH =9cm,由等边三角形的面积公式即可得出答案.【解答】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB∥GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠PAG=90°﹣60°=30°,∴PG=AG=cm,同理:QH=cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=GH2=cm2;故选:A.11.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转,旋转角为α,∴AB=AD,∠BAD=α,∴∠B==90°﹣,故选:C.12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【解答】解:∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是,故答案为.14.如图所示,写出一个能判定△ABC∽△DAC的条件AC2=DC•BC(答案不唯一).【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【解答】解:已知△ABC和△DCA中,∠ACD=∠BAC;如果△ABC∽△DAC,需满足的条件有:①∠DAC=∠B或∠ADC=∠BAC;②AC2=DC•BC;故答案为:AC2=DC•BC(答案不唯一).15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为4.【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴=,∵AD=4,∴AB=4.∴DB=AB﹣AD=4﹣4.故答案为:4﹣4.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为20cm.【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC 的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【解答】解:∵PA、PB分别切⊙O于A、B,∴PB=PA=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=PA+PB=20cm,故答案为20cm.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为﹣1 .x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 7【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.18.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为﹣1 .【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣7x﹣30=0,(x﹣10)(x+3)=0,x﹣10=0,x+3=0,x1=10,x2=﹣3.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得OD∥AC,即可求得∠CAD=∠BAD,继而求得答案;(2)首先连接OE,OD,由(1)得:OD∥AC,由点F为的中点,易得△AOF是等边三角形,继而求得答案.【解答】解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.【分析】(Ⅰ)由DE∥BC,可得,由此即可解决问题;(Ⅱ)由PB∥DC,可得,可得PA的长.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴,又∵BF=15,∴,∴;(Ⅱ)解:能.∵四边形ABCD是平行四边形,∴PB∥DC,AB=DC=8,∴,∴,∴PA=.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.【分析】(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;(2)将△ACE绕点A顺时针旋转90°至△ABH位置,证明△EAD≌△HAD转化DE、EC,使所求线段集中在Rt△BHD中利用勾股定理解决.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,,∴△EAD≌△HAD(SAS).∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,即BD2+CE2=DE2.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x 轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.。
南开区2020-2020学年度第一学期期末质量检测九年级数学试卷一选择题:每小题3分,共36分。
1.下列事件中是不可能事件的是()(A)降雨时水位上升 (B)在南极点找到东西方向(C)体育运动时消耗卡路里 (D)体育运动中肌肉拉伤2.下列图形既是轴对称图形又是中心对称图形的是( )3.若关于x的一元二次x2+2x+k=0无实数根,则k值可以是( )A.3B.1C.0D.-54.如图,在正方形网格上有两个相似三角形△ABC和△EDF,则∠BAC的度数为( )A.135°B.125°C.115°D. 105°5.如图,在⊙O中,弦AB的长为10,圆周角∠ACB=45°,则这个圆的直径为( )A.52B.102C.152D.2026.在平面直角坐标系中,反比例函数x aa y222+ -=图象的两个分支分别在( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限7.点(-1,y1)、(-2,y2)、(3,y3)均在xy6-=的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B. y2<y3<y1C.y3<y2<y1D.y3<y1<y28.将抛物线y=(x-1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是( )A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如图,AC是⊙0的直径,∠ACB=60°,连接AB,过A,B两点分别作⊙O的切线,两切线交于点P.若已知⊙0半径为1,则△PAB的周长为( )A.33 B.233 C.3 D.310.如图,以点O为位似中心,将△ABC缩小后得到△A/B/C/,已知OB=3OB/,则△A/B/C/与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:911.如图,在ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP//DF ,且与AD 相交于点P ,则图中相似三角形的组数为( )A.3B.4C.5D.612.如图在平面直角坐标系中,抛物线y=x 2+bx+c 与x 轴只有一个交点M,与平行于x 轴的直线l 交于A,B 两点.若AB=3,则点M 到直线l 的距离为( )A.25B.49 C.2 D.47第II 卷(非选择题共84分) 二 填空题:每小题3分,共18分。
九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 下面图案中是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据中心对称图形的概念判断即可.中心对称图形要寻找对称中心,旋转180度后两部分重合.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.2. 下列事件中,必然事件是()A. 昨天太阳从东方升起B. 任意三条线段可以组成一个三角形C. 打开电视机正在播放“天津新闻”D. 袋中只有5个红球,摸出一个球是白球【答案】A【解析】解:A、昨天太阳从东方升起是必然事件;B、任意三条线段可以组成一个三角形是随机事件;C、打开电视机正在播放“天津新闻”是随机事件;D、袋中只有5个红球,摸出一个球是白球是不可能事件;故选:A.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3. 将抛物线y=−x2向右平移3个单位,再向上平移2个单位后,抛物线的解析式是()A. y=−(x+3)2+2B. y=−(x−3)2+2C. y=−(x+3)2−2D.y=−(x−3)2−2【答案】B【解析】解:∵将抛物线y=−x2向右平移3个单位,再向上平移2个单位,∴平移后的抛物线的解析式为:y=−(x−3)2+2.故选:B.直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出解析式.此题主要考查了二次函数图象的平移变换,正确掌握平移规律是解题关键.4. 二次函数y=(x+1)2−2的图象大致是()A. B.C. D.【答案】C【解析】解:在y=(x+1)2−2中由a=1>0知抛物线的开口向上,故A错误;其对称轴为直线x=−1,在y轴的左侧,故B错误;由y=(x+1)2−2=x2+2x−1知抛物线与y轴的交点为(0,−1),在y轴的负半轴,故D错误;故选:C.分别根据抛物线的开口方向、对称轴的位置及抛物线与y轴的交点位置逐一判断可得.本题考查了对二次函数的图象和性质的应用,注意:数形结合思想的应用,主要考查学生的观察图象的能力和理解能力.5. 如图,在⊙O中,直径CD⊥弦AB,若∠C=30∘,则∠BOD的度数是()A. 30∘B. 40∘C. 50∘D. 60∘【答案】D【解析】解:如图,连接AO,∵∠C=30∘,∴∠AOD=60∘,∵直径CD⊥弦AB,∴A^D=B^D,∴∠AOD=∠BOD=60∘,故选D.连接AO,由圆周角定理可求得∠AOD,由垂径定理可知A^D=B^D,可知∠AOD=∠BOD,可求得答案.本题主要考查圆周角定理及垂径定理,掌握同弧所对的圆周角等于心角的一半是解题的关键.6. 从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边心距是()A. 5√2B. 10√2C. 5√3D. 10√3【答案】C【解析】解:连接OA、OB,过O作OD⊥AB于D;∵圆内接多边形是正六边形,∴∠AOB=360∘6=60∘,∵OA=OB,OD⊥AB,∴∠AOD=12∠AOB=12×60∘=30∘.∴OD=OA⋅cos30∘=10×√32=5√3.故选C.根据题意画出图形,连接OA、OB,过O作OD⊥AB于D,进而由正六边形的性质可求出∠AOB的度数;再依据等腰三角形的性质求出∠AOD的度数,则由直角三角形的性质即可求出OD的长.本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.7. 圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A. 360πcm2B. 720πcm2C. 1800πcm2D. 3600πcm2【答案】D【解析】解:圆锥的侧面积=12×80π×90=3600cm2,故选:D.根据圆锥的侧面积公式计算即可.本题考查的是圆锥的侧面积的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,圆锥的侧面积:S侧=12⋅2πr⋅l=πrl.8. 某校八年级举行拔河比赛,需要在七年级选取一名志愿者,七(1)班、七(2)班、七(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是七(1)班同学的概率是( )A. 13B. 12C. 23D. 56【答案】A【解析】解:∵共有6名同学,七(1)班有2人,∴被选中的这名同学恰好是七(1)班同学的概率是=26=13,故选:A.用七(1)班的学生数除以所有报名学生数的和即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.9. 若关于x的一元二次方程kx2−4x+3=0有实数根,则k的非负整数值是()A. 1B. 0,1C. 1,2D. 1,2,3【答案】A【解析】解:根据题意得:△=16−12k≥0,且k≠0,解得:k≤43,则k的非负整数值为1或0.∵k≠0,∴k=1.故选:A.根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10. 某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A. x(x+12)=210B. x(x−12)=210C. 2x+2(x+12)=210D. 2x+2(x−12)=210【答案】B【解析】解:设场地的长为x米,则宽为(x−12)米,根据题意得:x(x−12)=210,故选:B.根据题意设出未知数,利用矩形的面积公式列出方程即可.此题主要考查了由实际问题抽象出一元二次方程;根据矩形的面积公式得到方程是解决本题的基本思路.11. 某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=−x2+70x−800,要想获得最大利润,则销售单价为()A. 30元B. 35元C. 40元D. 45元【答案】B【解析】解:∵y=−x2+70x−800=−(x−35)2+425,∴当x=35时,y取得最大值,最大值为425,即销售单价为35元时,销售利润最大,故选:B.将函数解析式配方成顶点式后,利用二次函数的性质求解可得.本题主要考查二次函数的应用,解题的关键是熟练将二次函数的一般式化为顶点式的能力及掌握二次函数的性质.12. 已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②a−b+c<0;③4a+b+c=0;④抛物线的顶点坐标为(2,b);⑤当x<1时,y随x增大而增大.其中结论正确的是()A. ①②③B. ①④⑤C. ①③④D. ③④⑤【答案】C【解析】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),∴抛物线与x轴的另一个交点为(0,0),故①正确,当x=−1时,y=a−b+c>0,故②错误,∵−b2a =2,得4a+b=0,b=−4a,∵抛物线过点(0,0),则c=0,∴4a+b+c=0,故③正确,∴y=ax2+bx=a(x+b2a )2−b24a=a(x+−4a2a)2−(−4a)24a=a(x−2)2−4a=a(x−2)2+b,∴此函数的顶点坐标为(2,b),故④正确,当x<1时,y随x的增大而减小,故⑤错误,故选C.根据题意和二次函数的性质可以判断各个小题是否成立,从而可以解答本题.本题考查二次函数的图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(本大题共6小题,共18.0分)13. 若x=1是一元二次方程x2+3x+m=0的一个根,则m=______.【答案】−4【解析】解:把x=1代入一元二次方程x2+3x+m=0,得1+3+m=0,即m=−4.故本题答案为m=−4.一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.14. 将线段AB绕点O顺时针旋转180∘得到线段A′B′,那么A(−3,2)的对应点A′的坐标是______.【答案】(3,−2)【解析】解:将线段AB绕点O顺时针旋转180∘得到线段A′B′,对应点关于原点对称,A(−3,2)的对应点A′的坐标是(3,−2);故答案为:(3,−2)将线段AB绕点O顺时针旋转180∘得到线段A′B′,对应点关于原点对称,利用关于原点对称的性质解答即可.本题考查了旋转的性质的运用,解答时利用关于原点对称的性质解答是关键.15. 已知蚂蚁在如图所示的正方形ABCD的图案内爬行(假设蚂蚁在图案内部各点爬行的机会是均等的),蚂蚁停留在阴影部分的概率为______.【答案】12,【解析】解:由题意可得出:图中阴影部分占整个面积的12因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:1.2.故答案为:12,进而得出答案.根据正方形的性质求出阴影部分占整个面积的12本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16. 如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点D为A^C的中点,若∠B=50∘,则∠A的度数为______度.【答案】65【解析】解:连接OD、OC,∵点D为A^C的中点,∴∠AOD=∠COD,∵∠B=50∘,∴∠AOC=100∘,∴∠AOD=∠COD=50∘,∴∠A=∠ODA=65∘,故答案为:65.连接OD、OC,根据圆周角定理求出∠AOC=100∘,根据三角形内角和定理计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.17. 为了估计一个不透明的袋子中白球的数量(袋中只有白球),现将5个红球放进去(这些球除颜色外均相同)随机摸出一个球记下颜色后放回(每次摸球前先将袋中的球摇匀),通过多次重复摸球试验后,发现摸到红球的频率稳定于0.2,由此可估计袋中白球的个数大约为______.【答案】20个【解析】解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.2,口袋中有5个红球,∵假设有x个白球,=0.2,∴55+x解得:x=20,∴口袋中有白球约有20个.故答案为:20个.根据口袋中有5个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.此题主要考查了利用频率估计随机事件的概率,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.18. 如图,半圆O的直径DE=10cm,△ABC中,∠ACB=90∘,∠ABC=30∘,BC=10cm,半圆O以1cm/s的速度从右到左运动,在运动过程中,D、E点始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的右侧,OC=6cm,那么,当t为______s时,△ABC的一边所在直线与半圆O所在的圆相切.【答案】1或6或11或26【解析】解:如图,∵OC=6,DE=10,∴OD=OE=5,CD=1,EC=11,∴t=1或11s时,⊙O与直线AC相切;当⊙O′与AB相切时,设切点为M,连接O′M,在Rt△BMO′中,BO′=2MO′=10,∴OO′=6,当⊙O″与AB相切时,设切点为N,连接O′N,同法可得BO″=10,OO″=26,∴当t=6或26s时,⊙O与AB相切.故答案为1或6或11或26分四种情形分别求解即可解决问题.本题考查切线的判定,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、计算题(本大题共1小题,共10.0分)19. 如图,⊙O的直径AB为20cm,弦AC=12cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.【答案】解:∵AB是⊙O的直径,∴∠ACB=90∘,∴BC=√AB2−AC2=16(cm);∵CD是∠ACB的平分线,∴A^D=B^D,×AB=10√2(cm).∴AD=BD=√22【解析】根据圆周角定理得到∠ACB=90∘,根据勾股定理求出BC,根据圆周角定理得到AD=BD,根据勾股定理计算即可.本题考查的是圆周角定理、勾股定理,掌握直径所对的圆周角是直角是解题的关键.四、解答题(本大题共6小题,共56.0分)20. 用适当的方法解下列方程(1)x2−8x+1=0(2)x(x−3)+x−3=0.【答案】解:(1)∵x2−8x=−1,∴x2−8x+16=15,即(x−4)2=15,则x−4=±√15,∴x=4±√15;(2)∵(x−3)(x+1)=0,∴x−3=0或x+1=0,解得:x=3或x=−1.【解析】(1)配方法求解可得;(2)因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21. 如图,△ABC,∠C=90∘,将△ABC绕点B逆时针旋转90∘,点A、C旋转后的对应点为A′、C′.(1)画出旋转后的△A′BC′;(2)若AC=3,BC=4,求C′C的长;(3)求出在△ABC旋转的过程中,点A经过的路径长.(结果保留π)【答案】解:(1)如图所示,△A′BC′即为所求;(2)若AC=3、BC=4,则BC′=BC=4,∴CC′=√BC2+BC′2=√42+42=4√2;(3)∵AC=3、BC=4,∴AB=√AC2+BC2=5,∴ÂA′=90∘⋅π⋅5180∘=52π,即点A经过的路径长为52π.【解析】(1)分别作出点A、C绕点B逆时针旋转90∘所得对应点,再顺次连接可得;(2)由旋转性质知BC′=BC=4,再根据勾股定理可得;(3)根据勾股定理知AB=5,再根据弧长公式计算可得.本题主要考查作图−旋转变换,解题的关键是熟练掌握旋转变换的定义和性质及弧长公式.22. 向阳村种植的水稻2013年平均每公顷产7200kg,近几年产量不断增加,2015年平均每公顷产量达到8712kg.(1)求该村2013至2015年每公顷水稻产量的年平均增长率;(2)若年增长率保持不变,2016年该村每公顷水稻产量能否到达10000kg?【答案】解:(1)设该村2013至2015年每公顷水稻产量的年平均增长率为x,依题意得:7200(1+x)2=8712,解得x1=0.1=10%,x2=−2.1(舍去)答:该村2013至2015年每公顷水稻产量的年平均增长率为10%;(2)由题意,得8712×(1+0.1)=9583.2(kg)因为9583.2<10000,所以,2016年该村每公顷水稻产量不能到达10000kg.【解析】(1)设该村2013至2015年每公顷水稻产量的年平均增长率为x,就可以表示出2014年水稻的产量,根据2015年平均每公顷产量达到8712kg建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.23. 在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球(不放回);第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.(1)同学甲的方案公平吗?请用列表或画树状图的方法说明;(2)你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案.【答案】解:(1)同学甲的方案公平.理由如下:由树状图可以看出:共有12种可能,摸到“一红一白”有4种,摸到“一白一蓝”的概率有2种,故小刚获胜的概率为412=13,小明获胜的概率为212=16,所以这个游戏不公平.(2)拿出一个红球或放进一个蓝球,其他不变.游戏就公平了.【解析】(1)这个游戏不公平,分别求出两人获胜的概率即可判断;(2)拿出一个红球或放进一个蓝球,其他不变.此题主要考查了用列树状图的方法解决概率问题;得到两次都摸出相同颜色球的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.24. 已知△ABC的边AB是⊙O的弦.(1)如图1,若AB是⊙O的直径,AB=AC,BC交⊙O于点D,且DM⊥AC于M,请判断直线DM与⊙O的位置关系,并给出证明;(2)如图2,AC交⊙O于点E,若E恰好是A^B的中点,点E到AB的距离是8,且AB长为24,求⊙O的半径长.【答案】证明:(1)连接OD.∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD//AC,∵DM⊥AC,∴DM⊥OD,∴DM是⊙O的切线.(2)连接OA、连接OE交AB于点H,∵E是AB中点,AB=24,AB=12,∴OE⊥AB,AH=12连接OA,设OA=x,∵EH=8,可得OH=x−8,在Rt△OAH中,根据勾股定理可得(x−8)2+122=x2,解得x=13,∴⊙O的半径为13.【解析】(1)连接OD,只要证明OD//AC即可解决问题;(2)连接OA、连接OE交AB于点H,连接OA,设OA=x,在Rt△OAH中,根据勾股定理可得(x−8)2+122=x2,解方程即可;本题考查直线与圆的位置关系、切线的判定、勾股定理、平行线的判定和性质等知识,解题的关键是学会添加常用辅助线.属于中考常考题型.25. 如图1,抛物线y=−x2+mx+n交x轴于点A(−2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】解:(1)A(−2,0),C(0,2)代入抛物线的解析式y =−x 2+mx +n , 得{n =2−4−2m+n=0,解得{n =2m=−1,∴抛物线的解析式为y =−x 2−x +2.(2)由(1)知,该抛物线的解析式为y =−x 2−x +2,则易得B(1,0),设M(m,n)然后依据S △AOM =2S △BOC 列方程可得: 12⋅AO ×|n|=2×12×OB ×OC , ∴12×2×|−m 2−m +2|=2, ∴m 2+m =0或m 2+m −4=0,解得x =0或−1或−1±√172, ∴符合条件的点M 的坐标为:(0,2)或(−1,2)或(−1+√172,−2)或(−1−√172,−2).(3)设直线AC 的解析式为y =kx +b ,将A(−2,0),C(0,2)代入得到{b =2−2k+b=0,解得{b =2k=1,∴直线AC 的解析式为y =x +2,设N(x,x +2)(−2≤x ≤0),则D(x,−x 2−x +2),ND =(−x 2−x +2)−(x +2)=−x 2−2x =−(x +1)2+1,∵−1<0,∴x =−1时,ND 有最大值1.∴ND 的最大值为1.【解析】(1)把A(−2,0),C(0,2)代入抛物线的解析式求解即可;(2)由(1)知,该抛物线的解析式为y =−x 2−x +2,则易得B(1,0).然后依据S △AOM =4S △BOC 列方程求解即可;(3)设直线AC 的解析式为y =kx +t ,将A(−320),C(0,2)代入可求得直线AC 的解析式,设N 点坐标为(x,x +2),(−2≤x ≤0),则D 点坐标为(x,−x 2−x +2),然后列出ND 与x 的函数关系式,最后再利用配方法求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应了待定系数法求一次函数、二次函数的解析式,解题的关键是学会构建二次函数,利用二次函数解决最值问题,属于中考压轴题.。
2020-2021学年天津市南开区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.投掷一枚正六面体骰子,朝上一面的点数为5C.在只装了红色卡片的袋子里,摸出一张白色卡片D.明天太阳从东方升起3.对于反比例函数y=,下列判断正确的是()A.图象经过点(﹣1,3)B.图象在第二、四象限C.不论x为何值,y>0D.图象所在的第一象限内,y随x的增大而减小4.如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=25°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.25°B.40°C.90°D.50°5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A.6B.4C.2D.16.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD7.已知A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1x2<0B.x1x3<0C.x2x3<0D.x1+x2<08.若k1<0<k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.9.如图,P A切⊙O于点A,PB切⊙O于点B,PO交⊙O于点C,下列结论中不一定成立的是()A.P A=PB B.PO平分∠APB C.AB⊥OP D.∠P AB=2∠APO 10.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.011.如图,⊙O的半径为1,点O到直线a的距离为2,点P是直线a上的一个动点,P A 切⊙O于点A,则P A的最小值是()A.1B.C.2D.12.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点为B(4,0),直线y2=mx+n(m≠0)与抛物线交于A、B两点,结合图象分析下列结论:①2a+b=0;②abx>0;③方程ax2+bx+c=3有两个相等的实数根;④当1<x<4时,有y2<y1;⑤抛物线与x轴的另一个交点是(﹣1,0),其中正确的是()A.①②③B.②④C.①③④D.①③⑤二、填空题(本大题共6小题,每小题3分,共18分13.如果4a=5b,则=.14.现有4条线段,长度依次为2,4,6,7,从中任选三条,能组成三角形的概率是.15.下列y关于x的函数中,y随x的增大而增大的有.(填序号)①y=﹣2x+1,②y=,③y=(x+2)2+1(x>0),④y=﹣2(x﹣3)2﹣1(x<0).16.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为.17.如图,正六边形ABCDEF的边长为2,点B为圆心,AB长为半径,作扇形ABC,则图中阴影部分的面积为.18.如图,在由小正方形组成的网格中,△ABC的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC的高AH,并简要说明作图方法(不要求证明):.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种;(Ⅱ)求两次摸出的球的标号相同的概率;(Ⅲ)求两次摸出的球的标号的和等于4的概率.20.如图,A、B是双曲线y=上的点,点A的坐标是(1,4),B是线段AC的中点.(Ⅰ)求k的值;(Ⅱ)求△OAC的面积.21.如图,在等边三角形ABC中,点E为CB边上一点(与点C不重合),点F是AC边上一点,若AB=5,BE=2,∠AEF=60°,求AF的长度.22.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(Ⅰ)如图①,连接AD,若∠CAD=25°,求∠B的大小;(Ⅱ)如图②,若点F为的中点,⊙O的半径为2,求AB的长.23.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为Sm2,平行于墙的边为xm.若x不小于17m.(Ⅰ)求出S关于x的函数关系式;(Ⅱ)求S的最大值与最小值.24.平面直角坐标系中,四边形OABC是正方形,点A,C在坐标轴上,点B(6,6)P是射线OB上一点,将△AOP绕点A顺时针旋转90°,得△ABQ,Q是点P旋转后的对应点.(Ⅰ)如图(1)当OP=2时,求点Q的坐标;(Ⅱ)如图(2),设点P(x,y)(0<x<6),△APQ的面积为S.求S与x的函数关系式,并写出当S取最小值时,点P的坐标;(Ⅲ)当BP+BQ=8时,求点Q的坐标(直接写出结果即可).25.在平面直角坐标系中,设二次函数y=x2﹣x﹣a2﹣a,其中a>0.(Ⅰ)若函数y的图象经过点(1,﹣2),求函数y的解析式;(Ⅱ)若抛物线与x轴的两个交点分别为A,B(A点在B点的左侧),与y轴的交点为C,满足OC=2OB时,求a的值.(Ⅲ)已知点P(x0,m)和Q(1,n)在函数y的图象上,若m<n,求x0的取值范围.。
2020-2021学年度第一学期九年级数学周测练习题12.09姓名:_______________班级:_______________得分:_______________一选择题:1.下列各组线段(单位:cm)中,是成比例线段的为( )A.1,2,3,4B.1,2,2,4C.3,5,9,13D.1,2,2,32.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是( )A.5 cmB.10 cmC.15 cmD.30 cm3.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A. B. C. D.4.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( )A.25°B.30°C.35°D.50°第4题图第5题图第6题图5.如图所示,一般书本的纸张是对原纸张进行多次对折得到的,矩形ABCD沿EF对折后,再把矩形EFCD沿MN 对着,依此类推,若所得各种矩形都相似,那么等于( )A.0.618B.C.D.26.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论正确的是( )①弦AB的长等于圆内接正六边形的边长;②弦AC的长等于圆内接正十二边形的边长;③弧AC=弧AB;④∠BAC=30°;A.①②④B.①③④C.②③④D.①②③7.如图,∠ABC=∠CDB=90°,BC=3,AC=5,如果△ABC与△CDB相似,那么BD的长( )A. B. C. D.或8.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B 的横坐标是( )A. B. C. D.第8题图第9题图第10题图9.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.已知:如图,⊙O是△ABC的内切圆,下列说法错误的是( )A.点O在△ABC的三边垂直平分线上B.点O在△ABC的三个内角平分线上C.如果△ABC的面积为S,三边长为a,b,c,⊙O的半径为r,那么r=D.如果△ABC的三边长分别为5,7,8,那么以A、B、C为端点三条切线长分别为5,3,211.如图,⊙O的外切正六边形ABCDEF的边长为1,则图中阴影部分的面积为( )A.-B.-C.-D.-12.如图,AB=AC=4,P是BC上异于B,C的一点,则AP2+BP·PC的值是( )A.16B.2020C.25D.30二填空题:13.若,则的值为14.若等边三角形的边长为4 cm,则它的外接圆的面积为.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形,已知OA=10cm,=2020,则五边形ABCDE的周长与五边形的周长的比值是______16.如图,△与△是位似图形,且顶点都在格点上,则位似中心的坐标是.17.如图,中,,若=4,则= .18.如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若S△BDE:S△CDE=1:4,则S△BDE:S△ACD=______.19.如图是一个正方形及其内切圆,随机地往正方形内投一粒米,落在圆内的概率为.2020图,小亮在晚上由路灯A走向路灯B,当他走到点C时,发现身后他影子的顶部刚好接触到路灯A的底部,当他向前再步行12m到达点D时,发现身前他影子的顶部刚好接触到路灯B的底部.已知小亮的身高是1.5m,两个路灯的高度都是9m.当小亮走到路灯B时,他在路灯A下的影长是______m.三简答题:21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22.如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y=(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.23.第十五届中国“西博会”将于2020年10月底在成都召开,现有2020愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这2020随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?并说明理由.24.如图,已知AB是⊙O的直径,点C、D在⊙O上,过D点作PF∥AC交⊙O于F,交AB于点E,∠BPF=∠ADC.(1)求证:BP是⊙O的切线;(2)求证:AE•EB=DE•EF;(3)当⊙O的半径为,AC=2,BE=1时,求BP的长.25.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB、BC于点F、G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB∶OA=1∶2 时,求、AM、AF围成的阴影部分面积.26.如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明.27.阅读下面材料:上课时李老师提出这样一个问题:对于任意实数,关于的不等式恒成立,求的取值范围.小捷的思路是:原不等式等价于,设函数,,画出两个函数的图象的示意图,于是原问题转化为函数的图象在的图象上方时的取值范围.请结合小捷的思路回答:对于任意实数,关于的不等式恒成立,则的取值范围是___________.参考小捷思考问题的方法,解决问题:关于的方程在范围内有两个解,求的取值范围.参考答案1、B2、C3、B4、A5、B6、D7、D8、D9、D 10、A 11、A 12、A13、2/3 14、cm2 15、1︰2; 16、(6,0)17、12 18、1:2020 19、.20203.6 m.21、【解答】解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.22、【解答】解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.23、(1)2020有12人是女生,∴P(女生)==.(2)解法一(枚举法):任取2张,所有可能的结果23,24,25,34,35,45,共6种,其中和为偶数的结果有:“24”和“35”2种,∴P(甲参加)==,P(乙参加)=,∴游戏不公平.解法二(列表法):列表如下:2 3 4 52 (3,2) (4,2) (5,2)3 (2,3) (4,3) (5,3)4 (2,4) (3,4) (5,4)5 (2,5) (3,5) (4,5)∴P(甲参加)==,P(乙参加)=,∴游戏不公平.解法三(树状图法):画树状图如下:∴P(甲参加)==,P(乙参加)=,∴游戏不公平.24、【解答】(1)证明:连结BC,∵AB是ʘO的直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,又∵∠ABC=∠ADC,∠ADC=∠BPF,∵PF∥AC,∴∠CAB=∠PEB,∴∠PEB+∠BPF=90°,∴PB⊥AB,∴PB是ʘO的切线;(2)连结AF、BD.在△AEF和△DEB中,∠AEF=∠DEB.∠AFE=∠DBE,∴△AEF∽△DEB,∴=,即AE•EB=DE•EF;(3)在Rt△ABC中,BC2=(2)2﹣22∴BC=4,在Rt△ABC和Rt△EPB中,∠ABC=∠ADC=∠BPF,∴△ABC∽△EPB,∴=,∴BP==2.25、(1)略;(2)26、(1)证明:连接OA,∵PA为⊙O的切线,∴∠PAO=90°.∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA.在△PBO和△PAO中,,∴△PBO≌△PAO,∴∠PBO=∠PAO=90°,∴PB为⊙O的切线.(2)AB2=2AD•PC.证明:∵∠OBP=∠BCO=90°,∴△OCB∽△BCP,∴,即BC2=OC•PC.∵OC=AD,BC=AB,∴=AD•PC,∴AB2=2AD•PC.27、的顶点坐标为(1,-2),函数的图象在=a的图象上方,所以;解决问题:将原方程转化为·设函数,,记函数在内的图象为G,于是原问题转化为与G有两个交点时的取值范围,结合图象可知的取值范围是:.。
2020-2021学年天津市南开区九年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列美丽的图案中,不是轴对称图形的是()A. B.C. D.2.近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式使用人数支付0<x≤500500<x≤1000x>1000金额(元)仅使用A支付18人9人3人仅使用B支付10人14人1人下面有四个推断:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;③估计全校仅使用B支付的学生人数为200人;④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.其中合理推断的序号是()A. ①②B. ①③C. ①④D. ②③3. 如图,AB⏜是半圆,O为AB中点,C、D两点在AB⏜上,且AD//OC,连接BC、BD.若CD⏜=63°,则AD⏜的度数是()A. 54°B. 57°C. 60°D. 63°4. 对于二次函数y=kx2−(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=−1.A. ①②③B. ①②④C. ②③④D. ①③④5. 若两个相似三角形的相似比是1:4,则它们的周长比是()A. 1:2B. 1:4C. 1:16D. 1:56. 如图,是小飞同学的答卷,他的得分应该是()A. 40分B. 60分C. 80分D. 100分的7. 如图,已知点(m,y1)、(m−3,y2)、(m−4,y3)在反比例函数y=m−1x图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y2>y1>y3C. y1>y3>y2D. y3>y2>y18. 如图,已知直线y1=ax+b与双曲线y2=3相交于A、B两点,且A(1,m),B(−3,n),则下列结x论:①a=1,b=2;②若y1<y2,则对应的x取值范围是x<−3或0<x<1;③S△AOB=4;其中正确的结论是()A. ①②B. ①③C. ②③D. ①②③9. 如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A(10,0),sin∠COA =45.若反比例函数y =kx(k >0,x >0)经过点C ,则k 的值等于( )A. 10B. 24C. 48D. 5010. 如图,在网格中,小正方形边长为1,将△ABC 的三边分别扩大一倍得到△A 1B 1C 1(顶点均在格点上),若它们是以P 点为位似中心的位似图形,则P 点的坐标是( )A. (−3,−4)B. (−3,−3)C. (−4,−4)D. (−4,−3)11. 如图,⊙O 的外切正八边形ABCDEFGH 的边长2,则⊙O 的半径为( )A. 2B. 1+√2C. 3D. 2+√212. 数=ax2+1与y =ax a ≠0在同平面直角坐标中的图象可能是)A. B.C. D.二、填空题(本大题共6小题,共18.0分)13. 将二次函数y=−(x−1)2−3(x−1)化成y=ax2+bx+c的形式为______.14. 从1到9这九个自然数中任取一个,是偶数的概率是______ .(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增15. 已知反比例函数y=kx大而增大,那么这个反比例函数的解析式是______(只需写一个).16. 如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为______.17. 直线y=x+4分别与x轴、y轴交于点M、N,边长为2的正方形OABC一个顶点O在坐标原点,直线AN与MC相交于点P,若正方形OABC绕着点O旋转一周,点P的位置也发生变化,则点P到点(0,2)距离的最小值为______.18. 在△ABC中,已知AB=15cm,AC=13cm,BC边上的高AD=12cm,则S△ABC=______cm2.三、计算题(本大题共1小题,共10.0分)19. 在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量(个)与销售单价(元/个)之间的对应关系如图所示:(1)观察图象判断与之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润(元)与销售单价(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.四、解答题(本大题共6小题,共56.0分)20. 某初中为了提高学生综合素质,决定开设以下校本课程:A.软笔书法,B.经典诵读,C.钢笔画,D.花样跳绳,为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共______人;(2)请将条形统计补充完整;(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率.21. 如图,在平面直角坐标系xOy中,反比例函数y=k的图象与一次函数y=−x+2的图象的一个x交点为A(−2,m).(1)求m的值并写出这个反比例函数的表达式;(2)如果一次函数y=−x+2的图象与x轴交于点B(n,0),请确定当x<n时,对应的反比例函数y=kx 的函数值的范围.22. 概念考察.(1)公理:______的两个三角形全等,(简称______,字母表示______)(2)公理:______的两个三角形全等,(简称______,字母表示______)(3)公理:______的两个三角形全等,(简称______,字母表示______)(4)判定:______的两个三角形全等.(字母表示:AAS)(5)简述“三线合一”:______.(6)勾股定理的内容是:______.(7)线段垂直平分线上的点到这条线段两个端点的距离______.(8)角平分线上的点到角两边的距离______.23. 如图,在△ABC中,∠ACB=90°,AC=8,CB=6,点D在线段CB的延长线上,且BD=2,点P从点D出发沿着DC向终点C以每秒1个单位的速度运动,同时点Q从点C出发沿着折线C−B−A往终点A以每秒2个单位的速度运动.以PQ为直径构造⊙O,设运动的时间为t(t≥0)秒.(1)当0≤t<3时,用含t的代数式表示BQ的长度.(2)当点Q在线段CB上时,求⊙O和线段AB相切时t的值.(3)在整个运动过程中,①点O是否会出现在△ABC的内角平分线上?若存在,求t的值;若不存在,说明理由.②直接写出点O运动路径的长度.24. 如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴的负半轴25. 如图1,抛物线y=14交于点C,OC=OB=10.(1)求抛物线的解析式;(2)点P、Q在第四象限内抛物线上,点P在点Q下方,连接CP,CQ,∠OCP+∠OCQ=180°,设点Q的横坐标为m,点P的横坐标为n,求m与n的函数关系式;(3)如图2,在(2)条件下,连接AP交CO于点D,过点Q作QE⊥AB于E,连接BQ,DE,是否存在点P,使∠AED=2∠EQB,若存在,求出点P的坐标;若不存在,请说明理由.参考答案及解析1.答案:C解析:根据轴对称图形的概念判断.本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.解:A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.2.答案:B=0.3,故解析:解:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率估计为18+9+3100①正确,=0.4,②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为100−5−55100故②错误,=200人,故③正确,③估计全校仅使用B支付的学生人数为=800×25100④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数无法确定,故④错误,故选:B.利用样本估计总体的思想一一判断即可解决问题.本题考查利用频率估计概率,样本估计总体等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.3.答案:A解析:解:以AB为直径作圆,作直径CE,连接AC,∵AD//OC,∴∠DAC=∠ACE,∴AE⏜=CD⏜=63°,∴AD⏜的度数是180°−63°−63°=54°;故选:A.以AB为直径作圆,作直径CE,连接AC,根据平行线求出∠DAC=∠ACE,得出AE⏜=CD⏜=63°,即可求出答案.本题考查了圆周角定理,用到的知识点是平行线的性质、圆周角定理等,关键是根据题意画出图形,求出弧AE的度数.4.答案:A解析:解:∵y=kx2−(4k+1)x+3k+3=[kx−(k+1)](x−3)=[k(x−1)−1](x−3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2−(4k+1)x+3k+3的对称轴是直线x=−−(4k+1)2k =2+12k,∴若k<0,则2+12k<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2−(4k+1)x+3k+3=[kx−(k+1)](x−3)=[k(x−1)−1](x−3),∴当y=0时,x1=1k+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.根据题目中的函数解析式和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.5.答案:B解析:解:∵两个相似三角形的相似比为1:4,∴它们对应周长的比为1:4.故选B.根据相似三角形周长的比等于相似比进行解答即可.本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比.6.答案:A解析:解:①在同圆或等圆中相等圆心角所对的弧相等,所以小飞答对;②平分弦(不能是直径)的直径垂直于这条弦,才是正确的,所以小飞答错;③能够完全重合的弧才是等弧,才是正确的,所以小飞答错;④半圆是弧,但弧不一定是半圆,才是正确的,所以小飞答错;⑤三角形的外心是各边垂直平分线的交点,它到三角形各顶点的距离相等,所以小飞答对.由以上分析可知小飞共答对2道题,所以得分为40分.故选:A.根据垂径定理、圆心角、弧、弦的关系、等弧的定义以及三角形外心的性质解答即可.本题考查了三角形外接圆与外心的性质、垂径定理的运用以及圆心角、弧、弦的关系,熟记和圆有关的性质定理是解题的关键.7.答案:C解析:本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.根据反比例函数图象的性质,比例系数m−1>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.解:如图,∵反比例函数图象位于第一、三象限,且在每一个象限内y随x的增大而减小,∴m−1>0,∴m>1,∴点(m,y1)在第一象限,∴y1>0,∵由图可知,当x=1时,0<y<1,∴0<m−1<1,∴1<m<2,∴0>m−3>m−4.∴y2<y3<0,∴综上得到:y2<y3<y1.故选:C.8.答案:D上,解析:解:(1)∵A(1,m),B(−3,n)在双曲线y2=3x∴m=−3n=3,∴m=3,n=−1,∴A(1,3),B(−3,−1),把A(1,3),B(−3,−1)代入y 1=ax +b 得{a +b =3−3a +b =−1, 解得{a =1b =2,故①正确; 由图象可知,当y 1<y 2时,则对应的x 取值范围是x <−3或0<x <1,故②正确;∵直线y 1=x +2,∴直线与y 轴的交点为(0,2),∴S △AOB =12×2×3+12×2×1=4,故③正确;故选:D .求得A 、B 的坐标,然后根据待定系数法即可求得a 、b 即可判断①;根据图象即可判断②;利用三角形面积公式即可判断③.此题考查了反比例函数与一次函数的交点问题、待定系数法求函数的解析式,求三角形面积.注意掌握数形结合思想的应用. 9.答案:C 解析:解:如图,过点C 作CE ⊥OA 于点E ,∵菱形OABC 的边OA 在x 轴上,点A(10,0),∴OC =OA =10,∵sin∠COA =45=CE OC .∴CE =8,∴OE =√CO 2−CE 2=6∴点C 坐标(6,8)∵若反比例函数y =kx (k >0,x >0)经过点C ,∴k =6×8=48故选:C .由菱形的性质和锐角三角函数可求点C(6,8),将点C 坐标代入解析式可求k 的值.本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.10.答案:D解析:本题考查位似变换,利用位似图形的性质求位似中心.根据位似图形的性质,对应点的坐标相交于一点,连接AA1,BB11,CC1,交点即是P点,根据图形写出点P坐标即可.解:∵△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),它们是以P点为位似中心的位似图形,根据位似图形的性质,对应点的坐标相交于一点,连接AA1,BB1,CC1,交点即是P点坐标,∴如图所示,P点的坐标为:(−4,−3).故选D.11.答案:B解析:解:设DE与⊙O相切于点N,连接OD、OE、ON,作DM⊥OE于M,如图所示:=45°,则ON⊥DE,DE=2,OD=OE,∠DOE=360°8∵DM⊥OE,∴△ODM是等腰直角三角形,∴DM=OM,OE=OD=√2DM,设OM=DM=x,则OD=OE=√2x,EM=OE−OM=(√2−1)x,在Rt△DEM中,由勾股定理得:x2+(√2−1)2x2=22,解得:x2=2+√2,∵△ODE的面积=12DE×ON=12OE×DM,∴ON=OE×DMDE =√2x22=√2(2+√2)2=√2+1,即⊙O的半径为:1+√2;故选:B.DE与⊙O相切于点N,连接OD、OE、ON,作DM⊥OE于M,则ON⊥DE,DE=2,OD=OE,∠DOE= 45°,证出△ODM是等腰直角三角形,得出DM=OM,OE=OD=√2DM,设OM=DM=x,则OD= OE=√2x,EM=OE−OM=(√2−1)x,在Rt△DEM中,由勾股定理得出方程,求出x2=2+√2,再由三角形面积关系求出ON即可.此题主要考查了正多边形和圆的有关计算、等腰直角三角形的判定与性质、勾股定理以及三角形面积等知识;熟练掌握正八边形的性质和勾股定理是解题的关键.12.答案:B解析:解:a>0时y=ax2+1开口向,顶点坐为01),a<0时,y=ax2开向下,顶点标为(0,),y=ax第一三象限,没有选项图象符合,故选:分a>0和<0两种况二次函数和反例函数图象所在的象限,然择答案即.本题考二函数图象与反比例数图象,熟练掌数与函数图象的关系是题关键.13.答案:y=−x2−x+2解析:解:y=−(x−1)2−3(x−1)=−(x2−2x+1)−3x+3=−x2+2x−1−3x+3=−x2−x+2.故答案为:y=−x2−x+2.直接利用乘法公式化简,再去括号合并同类项,进而得出二次函数一般式.此题主要考查了二次函数的三种形式,正确运用乘法公式化简是解题关键.14.答案:49解析:解:∵从1到9这九个自然数中任取一个,是偶数的有4种情况,∴从1到9这九个自然数中任取一个,是偶数的概率是:4.9故答案为:4.9由从1到9这九个自然数中任取一个,是偶数的有4种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.(答案不唯一)15.答案:y=−2x解析:,当k>0时,在每一个象限此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=kx内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大解:∵反比例函数y=kx而增大,∴k<0,∴y=−2,x(答案不唯一).故答案为y=−2x16.答案:(−1,√3)解析:解:作BC⊥x轴于C,如图,∵△OAB是边长为2的等边三角形∴OA=OB=2,AC=OC=1,∠BOA=60°,∴A点坐标为(−2,0),O点坐标为(0,0),在Rt△BOC中,BC=√22−12=√3,∴B点坐标为(−1,√3);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(−1,√3),故答案为(−1,√3).作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=2,AC=OC=1,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=√3,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.本题考查了坐标与图形变化−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.答案:2√2−2解析:解:在△MOC和△NOA中,{OA=OC∠MOC=∠AON OM=ON,∴△MOC≌△NOA,∴∠CMO=∠ANO,∵∠CMO+∠MCO=90°,∠MCO=∠NCP,∴∠NCP+∠CNP=90°,∴∠MPN=90°∴MP⊥NP,在正方形旋转的过程中,同理可证,∴∠CMO=∠ANO,可得∠MPN=90°,MP⊥NP,∴P在以MN为直径的圆上,∵M(−4,0),N(0,4),∴圆心G为(−2,2),半径为2√2,∵PG−GC≤PC,∴当圆心G,点P,C(0,2)三点共线时,PC最小,∵GN=GM,CN=CO=2,∴GC=12OM=2,这个最小值为GP−GC=2√2−2.故答案为:2√2−2.首先证明△MOC≌△NOA,推出∠MPN=90°,推出P在以MN为直径的圆上,所以当圆心G,点P,C(0,2)三点共线时,P到C(0,2)的最小值.求出此时的PC即可.本题考查一次函数与几何变换、正方形的性质、圆的有关知识,解题的关键是发现点P在以MN为直径的圆上,确定点P的位置是解题的关键,属于中考常考题型.18.答案:84或24解析:解:如图(1),AB=15,AD=12,AD⊥BC,∴BD=√AB2−AD2=9,同理DC=5cm,∴BC=14cm,∴S△ABC=84(cm2);如图(2),由(1)得BD=9cm,CD=5cm,∴BC=4cm.∴S△ABC=24cm2故答案为:84或24.分高在内部和高在外部两种情况,根据勾股定理、三角形的面积公式计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.答案:(1)(2)(3)15元时,最大利润是1350元解析:解析:试题分析:(1)由图象知:y是x的一次函数设1分图象过点(10,300),(12,240)2分3分当时,;当时,即点(14,180),(16,120)均在函数的图象上与之间的函数关系式为:4分(不把另两对点代入验证不扣分)(2)6分即W与x之间的函数关系式为:8分(3)由题意得6(−30x+600)≤900解之得:x≥159分而10分−30<0W随x的增大而减小又∵x≥15∴当x=15时,W最大=1350即以15元/个的价格销售这批许愿瓶可获得最大利润,最大利润是1350元考点:二次函数的应用,一次函数解析式点评:二次函数的解析式有三种,(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).根据不同的题目类型选择不同的解析式20.答案:60解析:解:(1)这次被调查的学生共24÷40%=60(人),故答案为:60;(2)补全条形统计图如下:(3)画树状图如下:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴恰好同时选中甲、乙两位同学的概率为26=13.(1)由D课程的人数及其所占百分比即可求得这次被调查的学生总人数;(2)由(1),可求得B的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:(1)把A(−2,m)代入一次函数y=−x+2,得m=−(−2)+2=4,∵点A(−2,m)也在反比例函数y=k的图象上,x∴k=−2m=−2×4=−8,∴这个反比例函数的表达式是:y=−8;x(2)令−x+2=0,则x=2,即B(2,0).=−4当x=0时,y=−82由图象知,当x<n即x<2时,对应的反比例函数y=k的函数值的范围是:y<−4或y>0.x解析:(1)将A坐标代入一次函数解析式中求出m的值,确定出A的坐标,代入反比例解析式中即可求出k的值;(2)由一次函数解析式求得点B的坐标,结合函数图象可以直接得到答案.本题考查了反比例函数与一次函数的交点,解题时,利用了待定系数法求得反比例函数解析式,由“数形结合”的数学思想求得(2)题.22.答案:(1)两边和它们的夹角对应相等;边角边;SAS;(2)三边对应相等;边边边;SSS;(3)两角和它们的夹边对应相等;角边角;ASA;(4)两角和其中一角的对边对应相等;(5)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;(6)直角三角形的两条直角边长的平方和等于斜边的平方;(7)相等;(8)相等.解析:解:(1)两边和它们的夹角对应相等的两个三角形全等,简称:边角边或SAS;故答案为:两边和它们的夹角对应相等,边角边,SAS;(2)三边对应相等的两个三角形全等,边边边,SSS;故答案为:三边对应相等,简称:边边边或SSS(3)两角和它们的夹边对应相等的两个三角形全等,简称:角边角或ASA;故答案为:两角和它们的夹边对应相等,角边角,ASA(4)两角和其中一角的对边对应相等的两个三角形全等,简称:角角边或AAS;故答案为:两角和其中一角的对边对应相等,角角边,AAS;(5)三线合一:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;故答案为:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合;(6)勾股定理:直角三角形的两条直角边长的平方和等于斜边的平方;故答案为:直角三角形的两条直角边长的平方和等于斜边的平方;(7)线段垂直平分线上的点到这条线段两个端点的距离相等;故答案为:相等;(8)角平分线上的点到角两边的距离相等;故答案为:相等.根据三角形全等的判定方法、等腰三角形的性质、勾股定理、线段垂直平分线的性质以及角平分线的性质即可得出结果.此题考查了全等三角形的判定方法、勾股定理、等腰三角形的性质、线段垂直平分线的性质、角平分线的性质;熟记各个判定定理和性质定理是解决问题的关键.23.答案:解:(1)由题意BQ=BC−CQ=6−2t,故答案为6−2t.(2)分两种情况讨论:①当P,Q还未相遇时,如图1,CQ=2t,DP=t,QP=8−3t,OE=12QP=8−3t2,OB=BP+OP=8−3t2+2(t−2)2=4−t2,∵⊙O与AB相切,∴OE⊥AB,∵sin∠ABC=OEOB =ACAB,∴8−3t24−t2=45,解得t=2411.②当P,Q相遇后,如图2,BQ=6−2t,PQ=BP−BQ=(t−2)−(6−2t)=3t−8,OE=12QP=3t−82,OB=OQ+BQ=4−t2,∵⊙O与AB相切,∴OE⊥AB,∵sin∠ABC=OEOB =ACAB,∴3t−824−t2=45,解得t=5619.综上所述,满足条件的t的值有t=2411s或5619s.(3)①i)当点O在∠B的角平分线上时,如图3,可得BQ=BP,即2t−6=t−2,解得t=4.ii)当点O在∠C的角平分线上时,如图4,作QG⊥AC于G,OF⊥AC于F,QH⊥BC于H.则GQ=AQ⋅sin∠BAC=35AQ=3(16−2t)5,同理可得GC=QH=45BQ=4(2t−6)5,在梯形CPQG中,OF是中位线,则OF=12(GQ+CP)=12[3(16−2t)5+(8−t)]=88−11t10,∵点O在∠C的角平分线上,∴CF=OF.88−11t 10=2(2t−6)5,解得t=11219.iii)当点O在∠A的角平分线上时,如图5,作∠A的角平分线交BC于点H,过点H做HI⊥AB于I,则HI =CH .∵sin∠ABC =HI HB =AC AB ,则HI HB =45, ∴CH =HI =83,∴tan∠CAH =13, 由ii)中得OF =(GQ +CP)=88−11t 10, CF =2(2t−6)5,AF =AC −CF =52−4t 5,∴tan∠CAH =OF AF =88−11t1052−4t5=13,解得t =325. 综上所述,当t =4s 或11219s 或325s 时,点O 会出现在△ABC 的内角平分线上.②由题意点O 的运动路径为(6−4−12)+√(112)2+42=3+√1852.解析:本题考查圆综合题、解直角三角形、锐角三角函数、角平分线的性质、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,学会用分类讨论的思想思考问题,属于中考压轴题.(1)由题意BQ =BC −CQ =6−2t ;(2)分两种情况讨论:①当P ,Q 还未相遇时,如图1,②当P ,Q 相遇后,如图2,分别构建方程即可; (3)①分三种情形讨论i)当点O 在∠B 的角平分线上时,如图3.ii)当点O 在∠C 的角平分线上时,如图4,作QG ⊥AC 于G ,OF ⊥AC 于F ,QH ⊥BC 于H.iii)当点O 在∠A 的角平分线上时,如图5,作∠A 的角平分线交BC 于点H ,过点H 做HI ⊥AB 于I.分别构建方程即可.②由题意点O 的运动路径为(6−4−12)+√(112)2+42=3+√1852.24.答案:解:在此图中存在两个全等的三角形,即△CDF≌△CBE.理由如下: ∵点F 在正方形ABCD 的边AD 的延长线上,∴∠CDF =∠CDA =90°;在△CDF 和△CBE 中,{CD=CB ∠CDF=∠CBE=90°DF=BE ,∴△CDF≌△CBE(SAS),∴∠FCD=∠ECB(全等三角形的对应角相等),CF=CE(全等三角形的对应边相等),∴∠FCE=∠FCD+∠DCE=∠ECB+∠DCE=∠DCB=90°,∴△CDF是由△CBE绕点C沿顺时针方向旋转90°得到的.解析:在△CDF和△CBE中,根据正方形的性质知DC=BC、已知条件DF=BE可以证得△CDF≌△CBE.本题综合考查了正方形的性质、全等三角形的判定与性质以及旋转的性质.本题中通过全等三角形(△CDF≌△CBE)的对应角∠FCD与∠ECB相等是解答△CDF由△CBE所旋转的方向与角度的关键.25.答案:解:(1)∵OC=OB=10,∴C(0,−10),B(10,0),把C,B两点坐标代入y=14x2+bx+c,得到{c=−1025+10b+c=0,解得{b=−32c=−10,∴抛物线的解析式为y=14x2−32x−10.(2)如图1中,过点Q作QN⊥OC于N,过点P作PM⊥OC于M.∵∠OCP+∠OCQ=180°,∠OCP+∠PCM=180°,∴∠QCN=∠PCM,∵∠QNC=∠PMC=90°,∴△QNC∽△PMC,∴QNPM =CNCM,∴mn =14m2−32m−10−(−10)−10−(14n2−32n−10),整理得m=12−n.(3)如图2中,作ET平分∠OED,交OD于T,过点T作TR⊥DE于R.由题意A(−4,0),P(n,14n2−32n−10),∴直线PA的解析式为y=14(n−10)x+n−10,∴D(0,n−10),∴m=12−n,∴D(0,2−m),∴OD=m−2,∵∠TEQ=∠TER,∠EOT=∠ERT=90°,ET=ET,∴△EOT≌△ERT(AAS),∴OT=TR,EO=ER=m,设OT=TR=x,在Rt△DTR中,∵DT2=TR2+DR2,∴(m−2−x)2=x2+(√m2+(m−2)2−m)2,∴x=m⋅√m2+(m−2)2−m2m−2,∵∠OED=2∠EQB,∠OET=∠TED,∴∠OET=∠EQB,∵∠EOQ=∠QEB=90°,∴△OET∽△EQB,∴OTOE =EBEQ,∴m⋅√m2+(m−2)2−m2m−2m=10−m−(14m2−32m−10),解得,m=8或−6(舍弃),∵m=12−n,∴n=4,∴P(4,−9),解析:(1)利用待定系数法解决问题即可.(2)如图1中,过点Q作QN⊥OC于N,过点P作PM⊥OC于M.利用相似三角形的性质构建关系式即可.(3)如图2中,作ET平分∠OED,交OD于T,过点T作TR⊥DE于R.证明△EOT≌△ERT(AAS),推出OT= TR,EO=ER=m,设OT=TR=x,在Rt△DTR中,根据DT2=TR2+DR2,构建方程求出x,再利用相似三角形的性质,构建方程求出m的值即可.本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
2020-2021学年天津市南开区九年级(上)第一次月考数学试卷1.抛物线y=(x−1)2+2的顶点坐标是()A. (1,2)B. (1,−2)C. (−1,2)D. (−1,−2)2.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A. y=(x+3)2−1B. y=(x+3)2+3C. y=(x−3)2−1D. y=(x−3)2+33.二次函数y=x2−2x+1与x轴的交点个数是()A. 0B. 1C. 2D. 34.若A(34,y1),B(−54,y2),C(14,y3)为二次函数y=x2−4x−5的图象上的三点,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y1<y3<y25.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B.C. D.6.若关于x的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A. x轴的上方B. x轴的下方C. x轴上D. y轴上7.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是()A. 无实数根B. 有两个相等实数根C. 有两个异号实数根D. 有两个同号不等实数根8.已知抛物线y=−16x2+32x+6与x轴交于点A,B,与y轴交于点C,若点D是AB的中点,则CD的长是()A. 154B. 92C. 132D. 1529.y=x2+(1−a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是()A. a≤−5B. a≥5C. a=3D. a≥310.二次函数y=x2−x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a−1时,函数值()A. y<0B. 0<y<mC. y>mD. y=m11.当−2≤x≤1时,二次函数y=−(x−m)2+m2+1有最大值4,则实数m的值为()A. −74B. √3或−√3 C. 2或−√3 D. 2或√3或−7412.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>−1;④14c−a<0;⑤关于x的方程ax2+bx+c=0(a≠0)有一个根为−1a.其中正确的结论个数有()A. 1个B. 2个C. 3个D. 4个13.已知函数y=(m−1)x m2+1+3x,当m=______ 时,它是二次函数.14.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…−4−3−2−10…y…3−2−5−6−5…则y<−2时,x的取值范围是______.15.已知抛物线y=ax2−2ax+c与x轴一个交点的坐标为(−1,0),则一元二次方程ax2−2ax+c=0的根为_____________.x2平移得到抛物线m,抛物线16.如图,把抛物线y=12m经过点A(−6,0)和原点O(0,0),它的顶点为P,它x2交于点Q,则图中阴影部的对称轴与抛物线y=12分的面积为______.17.二次函数y=ax2−12ax+36a−5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为______18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(1)S△ABC=______;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为底边的等腰△ABP,使该三角形的面积等于△ABC的面积,并简要说明点P的位置是如何找到的(不要求证明)______.x2+x+4.19.已知二次函数y=12(1)确定抛物线的开口方向、顶点坐标和对称轴方程;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?20.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.(1)求图象与两坐标轴的交点坐标;(2)直接写出当x取何值时,y>0?(3)直接写出当−4<x<0时,求y的取值范围.22.已知抛物线y=x2+bx+c经过A(0,−1),B(3,2)两点.(1)求这个函数的解析式;(2)函数图象有最低点,当x=1时,y有最______值是______;(3)抛物线上是否存在点C,使△AOC的面积等于2?若存在,求出C点的坐标;若不存在,请说明理由.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式;(2)每件文具的售价定为多少元时,月销售利润为2520元?(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:y=(x−1)2+2的顶点坐标为(1,2).故选:A.根据抛物线的顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.2.【答案】C【解析】解:由题意得原抛物线的顶点为(0,1),∴平移后抛物线的顶点为(3,−1),∴新抛物线解析式为y=(x−3)2−1,故选:C.易得原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;得多新抛物线的顶点是解决本题的突破点.3.【答案】B【解析】【分析】本题考查二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,是基础题.根据b2−4ac与零的关系即可判断出二次函数y=x2−2x+1的图象与x轴交点的个数.【解答】解:∵△=b2−4ac=(−2)2−4×1×1=0,∴二次函数y=x2−2x+1的图象与x轴有一个交点.故选:B.4.【答案】D【解析】解:∵二次函数y=x2−4x−5=(x−2)2−9,∴当x>2时,y随x的增大而增大,当x≤2时,y随x的增大而减小,∵2>34>14>−54,∴y1<y3<y2,故选:D.求出抛物线的对称轴,根据二次函数的增减性,结合A、B、C三点横坐标的大小判断其纵坐标的大小即可.本题考查二次函数图象上点的坐标特征,二次函数的图形和性质,掌握二次函数的增减性是正确解答的关键.5.【答案】A【解析】解:A、由抛物线可知,a>0,x=−b2a>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=−b2a>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.6.【答案】A【解析】解:∵关于x的方程x2+px+q=0没有实数根,∴△=p2−4q<0;而对于函数y=x2−px+q,∵△=(−p)2−4q=p2−4q<0,∴函数y=x2−px+q的图象的顶点一定在x轴的上方,故选:A.根据所给的方程没有实数根,得到p2−4q<0,由此判断出抛物线的判别式Δ<0,即可解决问题.该题主要考查了抛物线与x轴交点的判断问题;解题的关键是准确判断出抛物线的判别式△的符号.7.【答案】D【解析】解:∵y=ax2+bx+c的图象与x轴有两个交点,顶点坐标的纵坐标是−3,∵方程ax2+bx+c+2=0,∴ax2+bx+c=−2时,即是y=−2求x的值,由图象可知:有两个同号不等实数根.故选D.根据抛物线的顶点坐标的纵坐标为−3,判断方程ax2+bx+c+2=0的根的情况即是判断y=−2时x的值.考查方程ax2+bx+c+2=0的根的情况,先看函数y=ax2+bx+c的图象的顶点坐标纵坐标,再通过图象可得到答案.8.【答案】D【解析】【分析】令y=0,则−16x2+32x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键.【解答】解:令y=0,则−16x2+32x+6=0,解得:x1=12,x2=−3∴A、B两点坐标分别为(12,0)(−3,0)∵D为AB的中点,∴D(4.5,0),∴OD =4.5,当x =0时,y =6,∴OC =6,∴CD =√4.52+62=152.故选:D . 9.【答案】B【解析】解:第一种情况:当二次函数的对称轴不在1≤x ≤3内时,此时,对称轴一定在1≤x ≤3的右边,函数方能在这个区域取得最大值,x =a−12≥3,即a ≥7,第二种情况:当对称轴在1≤x ≤3内时,对称轴一定是在区间1≤x ≤3的中点的右边,因为如果在中点的左边的话,就是在x =3的地方取得最大值,即:x =a−12≥1+32,即a ≥5(此处若a 取5的话,函数就在1和3的地方都取得最大值)综合上所述a ≥5.故选:B .由于二次函数的顶点坐标不能确定,故应分对称轴不在[1,3]和对称轴在[1,3]内两种情况进行解答.本题考查了二次函数的最值确定与自变量x 的取值范围的关系,难度较大.10.【答案】C【解析】解:∵对称轴是x =12,0<x 1<12故由对称性12<x 2<1当x =a 时,y <0,则a 的范围是x 1<a <x 2,所以a −1<0,当x <12时y 随x 的增大而减小,当x =0时函数值是m .因而当x=a−1<0时,函数值y一定大于m.故选:C.是y随x的根据对称轴及函数值判断a的取值范围,从而得出a−1<0,因为当x<12增大而减小,所以当x=a−1<0时,函数值y一定大于m.本题主要考查了二次函数的对称轴,以及增减性.11.【答案】C【解析】解:二次函数的对称轴为直线x=m,①m<−2时,x=−2时二次函数有最大值,此时−(−2−m)2+m2+1=4,,与m<−2矛盾,故m值不存在;解得m=−74②当−2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=−√3,m=√3(舍去);③当m>1时,x=1时二次函数有最大值,此时,−(1−m)2+m2+1=4,解得m=2,综上所述,m的值为2或−√3.故选:C.根据对称轴的位置,分三种情况讨论求解即可.本题考查了二次函数的最值问题,难点在于分情况讨论.12.【答案】C【解析】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴为直线x=2,>0,∴−b2a∴b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即−c<1,∴c>−1,故③正确;∵对称轴为直线x=2,∴−b2a=2,即b=−4a,由图可知:x=1时y>0,∴a+b+c>0,∴b+c>−a>0,∴−4a+c>0,即14c−a>0,故④错误;∵OA=OC=−c,∴A(−c,0),代入y=ax2+bx+c得:0=ac2−bc+c,两边同除以ac得:c−ba +1a=0,即1a−ba+c=0,∴a⋅(−1a )2+b⋅(−1a)+c=0,∴ax2+bx+c=0(a≠0)有一个根为−1a,故⑤正确;综上可知正确的结论有①③⑤,故选:C.由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC,且OA<1,可判断③;由对称轴为直线x=2,得b=−4a,而a+b+c>0,即得b+c>−a>0,即可判断④;将A(−c,0)代入y=ax2+bx+c,变形可得a⋅(−1a )2+b⋅(−1a)+c=0,即可判断⑤正确.本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.13.【答案】−1【解析】解:∵y=(m−1)x m2+1是二次函数,∴m2+1=2,∴m=−1或m=1(舍去此时m−1=0).故答案为:−1.根据二次函数的定义列出关于m的方程,求出m的值即可.此题考查了二次函数的定义,关键是根据定义列出方程,在解题时要注意m−1≠0.14.【答案】−3<x<1【解析】解:从表格得到x=0与x=−2所对应的y值相同,∴函数的对称轴为直线x=−1,∴当x=−1时,函数有最小值,∴函数开口向上,∵y=−2,x=−3,由对称性可得x=1时,y=−2,∴y<−2时,−3<x<1,故答案为−3<x<1.观察表格可得函数的对称轴为直线x=−1,并且函数有最小值,再由对称性确定x=−3与x=1对应的函数值y=−2即可求解.本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质、能从表格中确定函数的对称轴与开口方向是解题的关键.15.【答案】x1=−1,x2=3.【解析】【分析】本题主要考查的是抛物线与x轴的交点,求得a与c的关系是解题的关键.将x=−1,y=0代入抛物线的解析式可得到c=−3a,然后将c=−3a代入方程,最后利用因式分解法求解即可.【解答】将x=−1,y=0代入y=ax2−2ax+c得:a+2a+c=0.解得:c=−3a.将c=−3a代入方程得:ax2−2ax−3a=0.∴a(x2−2x−3)=0.∴a(x+1)(x−3)=0.∴x1=−1,x2=3.故答案为:x1=−1,x2=3.16.【答案】272【解析】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(−6,0),∴平移后的抛物线对称轴为x=−3,得出二次函数解析式为:y=12(x+3)2+ℎ,将(−6,0)代入得出:0=12(−6+3)2+ℎ,解得:ℎ=−92,∴点P的坐标是(−3,−92),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|−3|×|−92|=272.故答案为:272.根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P的坐标,过点P 作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于矩形NPMO的面积,然后求解即可.本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.17.【答案】54【解析】解:∵抛物线的对称轴为直线x=−−12a2a=6,∴x=4和x=8对应的函数值相等,∵在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,∴抛物线与x轴的交点坐标为(4,0),(8,0),把(4,0)代入y=ax2−12ax+36a−5得16a−48a+36a−5=0,解得a=54.故答案为54.先求出抛物线的对称轴为直线x=6,利用抛物线的对称性得到x=4和x=8对应的函数值相等,则可判断抛物线与x轴的交点坐标为(4,0),(8,0),然后把(4,0)代入解析式可求出a的值.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.18.【答案】(1)3;(2)如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.【解析】解:(1)S△ABC=12⋅BC⋅AC=12⋅2⋅3=3,故答案为3.(2)如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.故答案为:如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.(1)直接利用三角形的面积公式计算即可;(2)如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.本题考查作图−应用与设计,三角形的面积等知识,解题的关键是灵活应用线段的垂直平分线的性质,平行线的判定和性质解决问题.19.【答案】解:(1)∵a=12>0,∴抛物线开口向上,∵−b2a =−12x(−12)=−1,∴抛物线的对称轴为直线x=−1,∵当x=−1时,y=72∴顶点坐标为(−1,72);(2)∵抛物线开口向上且对称轴为x=−1,∴当x<−1时,y随x的增大而减小,当x≥−1时,y随x的增大而增大.【解析】(1))由a=12>0,则抛物线开口向上,则抛物线的对称轴为直线x=−1,顶点坐标为(−1,72);(2)因为抛物线开口向上且对称轴为x=−1,根据函数的性质可得:当x<−1时,y随x 的增大而增小,当x≥−1时,y随x的增大而增大.本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质是解题的关键.20.【答案】解:由抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,可设抛物线为:y=a(x−2)2+4,把(1,2)代入得:2=a+4,解得:a=−2,所以抛物线为:y=−2(x−2)2+4,即y=−2x2+8x−4,【解析】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.先设为顶点式,再把顶点坐标和经过的点(1,2)代入即可解决,21.【答案】解:(1)y=2x2+4x−6,与y轴交于(0,−6),令y=0得2x2+4x−6=0.解得:x1=−3,x2=1,∴抛物线与x轴交点为(−3,0),(1,0);(2)∵抛物线与x轴交点为(−3,0),(1,0),抛物线的开口方向向上,∴当x<−3或x>1时,y>0;(3)当x=−4时,y最大值=2×16−4×4−6=10.当x=−1时,y最小值=2−4−6=−8.所以−8<y<10.【解析】(1)分别把x=0和y=0代入函数的解析式中即可求解;(2)根据抛物线的开口方向和抛物线与x轴的交点坐标解答;(3)分别令x=−4和x=−1时求得函数值后即可确定y的取值范围.本题主要考查了抛物线与x轴的交点,二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是掌握抛物线的开口方向、二次函数的增减性以及抛物线的轴对称性质.22.【答案】小−2【解析】解:(1)∵y=x2+bx+c过(0,−1),(3,2),∴{c=−12=9+3b+c,∴{b=−2c=−1,∴二次函数的关系式为:y=x2−2x−1;(2)y=x2−2x−1=(x−1)2−2,∴抛物线的顶点坐标为(1,−2),又∵a>0,∴当x=1时,y最小值=−2,故答案为:小,−2;(3)∵A(0,−1),∴AO=1,∵S△AOC=2=1OA⋅ℎ,2∴ℎ=4,即:|x c |=4,当x =4时,y =16−8−1=7,当x =−4时,y =16+8−1=23,∴C(4,7)或(−4,23).(1)将(0,−1),(3,2)代入y =x 2+bx +c 中,求出b 、c 的值即可求出函数关系式;(2)求出抛物线的顶点坐标即可;(3)根据三角形的面积可求出点C 横坐标,再代入二次函数的关系式求出纵坐标即可. 本题考查待定系数法求二次函数的关系式,二次函数的图象和性质以及二次函数的最值,掌握待定系数法求二次函数关系式是解决问题的前提,求出抛物线的顶点坐标是正确判断的关键.23.【答案】解:(1)∵二次函数的图象与x 轴有两个交点,∴△=22+4m >0∴m >−1;(2)∵二次函数的图象过点A(3,0),∴0=−9+6+m∴m =3,∴二次函数的解析式为:y =−x 2+2x +3,令x =0,则y =3,∴B(0,3),设直线AB 的解析式为:y =kx +b ,∴{3k +b =0b =3,解得:{k =−1b =3, ∴直线AB 的解析式为:y =−x +3,∵抛物线y =−x 2+2x +3,的对称轴为:x =1,∴把x =1代入y =−x +3得y =2,∴P(1,2).(3)根据函数图象可知:x <0或x >3.【解析】本题主要考查的是二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.(1)二次函数的图象与x 轴有两个交点,则△>0,从而可求得m 的取值范围;(2)由点B、点A的坐标求得直线AB的解析式,然后求得抛物线的对称轴方程为x=1,然后将x=1代入直线的解析式,从而可求得点P的坐标;(3)一次函数值大于二次函数值即直线位于抛物线的上方部分x的取值范围.24.【答案】解:(1)根据题意得:y=(30+x−20)(230−10x)=−10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得−10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件文具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=−10x2+130x+2300=−10(x−6.5)2+2722.5,∵a=−10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件文具的利润为(30+x−20)元,月销售量为(230−10x),然后根据月销售利润=一件文具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=−10x2+130x+2300中,求出x的值即可.(3)把y=−10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0< x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.25.【答案】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=−2,故点A、B的坐标分别为(−2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=−b2a≥0,而b=2a+1,即:−2a+12a ≥0,解得:a≥−12,故:a的取值范围为:−12≤a<0;(3)当a=−1时,二次函数表达式为:y=−x2−x+2,过点P作直线l//AB,作PQ//y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=12×AB×PH=12×2√2×PQ×√22=1,则y P−y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P−y Q|=1,设点P(x,−x2−x+2),则点Q(x,x+2),即:−x2−x+2−x−2=±1,解得:x=−1或−1±√2,故点P(−1,2)或(−1+√2,√2)或(−1−√2,−√2).【解析】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.(1)求出点A、B的坐标,即可求解;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=−b2a ≥0,而b=2a+1,即:−2a+12a≥0,即可求解;(3)过点P作直线l//AB,作PQ//y轴交BA于点Q,作PH⊥AB于点H,S△PAB=1 2×AB×PH=12×2√2×PQ×√22=1,则|y P−y Q|=1,即可求解.第21页,共21页。
2020-2021学年天津市南开区九年级第一学期期末数学试卷一、选择题(共12小题).1.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.投掷一枚正六面体骰子,朝上一面的点数为5C.在只装了红色卡片的袋子里,摸出一张白色卡片D.明天太阳从东方升起3.对于反比例函数y=,下列判断正确的是()A.图象经过点(﹣1,3)B.图象在第二、四象限C.不论x为何值,y>0D.图象所在的第一象限内,y随x的增大而减小4.如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=25°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.25°B.40°C.90°D.50°5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A.2B.4C.6D.86.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD7.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<08.已知k1<0<k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.9.如图,PA切⊙O于点A,PB切⊙O于点B,PO交⊙O于点C,下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.AB⊥OP D.∠PAB=2∠APO 10.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.011.如图,⊙O的半径为1,点O到直线m的距离为2,点P是直线m上的一个动点,PB 切⊙O于点B,则PB的最小值是()A.1B.C.2D.12.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点为B(4,0),直线y2=mx+n(m≠0)与抛物线交于A、B两点,结合图象分析下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④当1<x<4时,有y2<y1;⑤抛物线与x轴的另一个交点是(﹣1,0).其中正确的是()A.①②③B.②④C.①③④D.①③⑤二、填空题(共6小题).13.如果4a=5b,则=.14.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是.15.下列y关于x的函数中,y随x的增大而增大的有.(填序号)①y=﹣2x+1,②y=,③y=(x+2)2+1(x>0),④y=﹣2(x﹣3)2﹣1(x<0)16.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为.17.如图,正六边形ABCDEF的边长为2,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为(结果保留根号和π).18.如图,在由小正方形组成的网格中,△ABC的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC的高AH,并简要说明作图方法(不要求证明):.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种.(2)求两次摸出的球的标号相同的概率.(3)求两次摸出的球的标号的和等于4的概率.20.(8分)如图,A、B是双曲线y=上的点,点A的坐标是(1,4),B是线段AC的中点.(1)求k的值;(2)求△OAC的面积.21.(10分)如图,在等边三角形ABC中,点E为CB边上一点(与点C不重合),点F 是AC边上一点,若AB=5,BE=2,∠AEF=60°,求AF的长度.22.(10分)在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC 相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.23.(10分)如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.24.(10分)平面直角坐标系中,四边形OABC是正方形,点A,C在坐标轴上,点B(6,6),P是射线OB上一点,将△AOP绕点A顺时针旋转90°,得△ABQ,Q是点P旋转后的对应点.(1)如图(1)当OP=2时,求点Q的坐标;(2)如图(2),设点P(x,y)(0<x<6),△APQ的面积为S.求S与x的函数关系式,并写出当S取最小值时,点P的坐标;(3)当BP+BQ=8时,求点Q的坐标(直接写出结果即可).25.(10分)在平面直角坐标系中,设二次函数y=x2﹣x﹣a2﹣a,其中a>0.(1)若函数y的图象经过点(1,﹣2),求函数y的解析式;(2)若抛物线与x轴的两交点坐标为A,B(A点在B点的左侧),与y轴的交点为C,满足OC=2OB时,求a的值.(3)已知点P(x0,m)和Q(1,n)在函数y的图象上,若m<n,求x0的取值范围.参考答案一、选择题(共12小题).1.下面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.2.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.投掷一枚正六面体骰子,朝上一面的点数为5C.在只装了红色卡片的袋子里,摸出一张白色卡片D.明天太阳从东方升起解:A、画一个三角形,其内角和是180°,是必然事件;B、投掷一枚正六面体骰子,朝上一面的点数为5,是随机事件;C、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件;D、明天太阳从东方升起,是必然事件;故选:B.3.对于反比例函数y=,下列判断正确的是()A.图象经过点(﹣1,3)B.图象在第二、四象限C.不论x为何值,y>0D.图象所在的第一象限内,y随x的增大而减小解:A、图象经过点(﹣1,3),说法错误;B、图象在第二、四象限,说法错误;C、不论x为何值,y>0,说法错误;D、图象所在的第一象限内,y随x的增大而减小,说法正确;故选:D.4.如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=25°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.25°B.40°C.90°D.50°解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠B=∠D=90°由旋转不变性可知:AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=25°,∴∠EAF=90°﹣25°﹣25°=40°,∴旋转角为40°,故选:B.5.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为()A.2B.4C.6D.8解:∵DE∥BC,∴,即,解得:EC=2,∴AC=AE+EC=4+2=6;故选:C.6.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.7.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<0解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.8.已知k1<0<k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.解:∵k1<0<k2,∴函数y=k1x的经过第二、四象限,反比例和y=的图象分布在第一、三象限.故选:B.9.如图,PA切⊙O于点A,PB切⊙O于点B,PO交⊙O于点C,下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.AB⊥OP D.∠PAB=2∠APO 解:连接OA、OB,如图,∵PA切⊙O于点A,PB切⊙O于点B,∴PA=PB,PO平分∠APB,∵OA=OB,PA=PB,∴OP垂直平分AB,故选:D.10.已知二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,则m的值一定不是()A.2B.6C.﹣2D.0解:∵二次函数y=x2﹣(m﹣2)x+4=(x﹣)2﹣+4,∴该函数的顶点坐标为(,﹣+4),∵二次函数y=x2﹣(m﹣2)x+4图象的顶点在坐标轴上,∴=0或﹣+4=0,解得m=2或m1=﹣2,m2=6,故选:D.11.如图,⊙O的半径为1,点O到直线m的距离为2,点P是直线m上的一个动点,PB 切⊙O于点B,则PB的最小值是()A.1B.C.2D.解:作OP⊥m于P点,则OP=2,∵OB为定值,是1,∴此时PB的值最小,根据题意,在Rt△OPB中,PB===,即PB的最小值是,故选:B.12.如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点为B(4,0),直线y2=mx+n(m≠0)与抛物线交于A、B两点,结合图象分析下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④当1<x<4时,有y2<y1;⑤抛物线与x轴的另一个交点是(﹣1,0).其中正确的是()A.①②③B.②④C.①③④D.①③⑤解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0),∴当1<x<4时,y2<y1,所以④正确.∵抛物线与x轴的一个交点为(4,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以⑤错误;故选:C.二、填空题(本大题共6小题,每小题3分,共18分13.如果4a=5b,则=.解:∵4a=5b,∴=.故答案为:.14.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是.解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;能组成三角形的结果有2个(2、6、7,4、6、7,),则能构成三角形的概率为=.故答案为:.15.下列y关于x的函数中,y随x的增大而增大的有③④.(填序号)①y=﹣2x+1,②y=,③y=(x+2)2+1(x>0),④y=﹣2(x﹣3)2﹣1(x<0)解:y随x的增大而增大的函数有③④,故答案为③④.16.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为32.解:∵C(3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为3+5=8,故B的坐标为:(8,4),将点B的坐标代入y=得,4=,解得:k=32.故答案为:32.17.如图,正六边形ABCDEF的边长为2,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为6﹣π(结果保留根号和π).解:设正六边形的中心为点O,连接OD、OE,作OH⊥DE于H,如图所示:∠DOE==60°,∴OD=OE=DE=2,∴OH=,∴正六边形ABCDEF的面积=×2××6=6,∠A==120°,∴扇形ABF的面积==π,∴图中阴影部分的面积=6﹣π,故答案为:6﹣π.18.如图,在由小正方形组成的网格中,△ABC的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC的高AH,并简要说明作图方法(不要求证明):取格点M,N,分别连接BM,CN,BM,CN交于点E,连接AE并延长交BC于点H,则AH 即为所求.解:如图,取格点M,N,分别连接BM,CN,BM,CN交于点E,连接AE并延长交BC于点H,则AH即为所求.∵BM⊥AC,CN⊥AB,∴AH⊥BC.故答案为:取格点M,N,分别连接BM,CN,BM,CN交于点E,连接AE并延长交BC 于点H,则AH即为所求.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种.(2)求两次摸出的球的标号相同的概率.(3)求两次摸出的球的标号的和等于4的概率.解:(1)画树状图如下:两次摸球出现的所有可能结果共有16种;(2)两次摸出的球的标号相同有4种,所以,P(两次摸出的球的标号相同)==;(3)两次摸出的球的标号的和等于4有3次,所以,P(两次摸出的球的标号的和等于4)=.20.(8分)如图,A、B是双曲线y=上的点,点A的坐标是(1,4),B是线段AC的中点.(1)求k的值;(2)求△OAC的面积.解:(1)∵A是双曲线y=上的点,点A的坐标是(1,4),∴把x=1,y=4代入y=,得k=1×4=4;(2)作AD⊥x轴于点D,BE⊥x轴于点E,∵A(1,4),∴AD=4,OD=1.又∵B为AC的中点,∴BE=AD=2,且CE=DE,∴B点的纵坐标为2,则有B点坐标为(2,2).∴DE=CE=2﹣1=1,即OC=3,∴S△OAC=•AD•OC=×4×3=6.21.(10分)如图,在等边三角形ABC中,点E为CB边上一点(与点C不重合),点F 是AC边上一点,若AB=5,BE=2,∠AEF=60°,求AF的长度.解:∵△ABC为等边三角形,∴∠B=∠C=60°,AC=BC=AB=5,∵BE=2,∴CE=3,∵∠AEC=∠BAE+∠B,即∠AEF+∠CEF=∠BAE+∠B,而∠AEF=60°,∠B=60°,∴∠BAE=∠CEF,∵∠B=∠C,∴△ABE∽△ECF,∴=,即=,∴CF=,∴AF=AC﹣CF=5﹣=.22.(10分)在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC 相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.23.(10分)如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.解:(1)平行于墙的边为xm,矩形菜园的面积为ym2.则垂直于墙的一面长为(45﹣x)m,根据题意得:S=x(45﹣x)=﹣x2+x(17≤x≤27);(2)∵S=﹣x2+x=﹣(x2﹣45x)=﹣(x﹣)2+(17≤x≤27),∵17≤x≤27,a=﹣<0,∴当x=m时,S取得最大值,此时S=m2,∵|27﹣|<|17﹣|,∴x=17m时,S取得最小值,此时S=m2,答:s的最大值是m2,最小值是m2.24.(10分)平面直角坐标系中,四边形OABC是正方形,点A,C在坐标轴上,点B(6,6),P是射线OB上一点,将△AOP绕点A顺时针旋转90°,得△ABQ,Q是点P旋转后的对应点.(1)如图(1)当OP=2时,求点Q的坐标;(2)如图(2),设点P(x,y)(0<x<6),△APQ的面积为S.求S与x的函数关系式,并写出当S取最小值时,点P的坐标;(3)当BP+BQ=8时,求点Q的坐标(直接写出结果即可).解:(1)如图(1),过P点作PG⊥x轴,垂足为G,过Q点作QH⊥x轴,垂足为H.∵四边形OABC是正方形,∴∠AOB=45°.∵B(6,6),∴OA=6.在Rt△OPG中,,∴OG=PG=2.∴AG=OA﹣OG=4.∵△AOP绕点A顺时针旋转90°,得△ABQ,∴AQ=AP,BQ=OP.∴Rt△AQH≌Rt△APG.∴AH=PG=2,QH=AG=4.∴Q(8,4);(2)如图(2),过P点作PG⊥x轴,垂足为G.∵△AOP绕点A顺时针旋转90°,得△ABQ,∴AP=AQ,∠PAQ=90°.∵P(x,y),∠POG=45°,∴OG=PG=x,∴AG=6﹣x.在Rt△APG中,根据勾股定理,AP2=AG2+PG2=(6﹣x)2+x2,整理得AP2=2x2﹣12x+36.∵S△APQ=AP•AQ,∴S=x2﹣6x+18=(x﹣3)2+9.∴当S取最小值时,有x=3,∴P(3,3);(3)Q(13,﹣1).理由如下:如图(3),∵△AOP绕点A旋转得到△ABQ,∴OP=BQ.∵BP+BQ=,∴BP+OP=.∵OB=,∴点P在OB的延长线上.∴OP﹣BP=OB=.由解得:OP=,BP=.∴,∴AG=OG﹣OA=1,同(1):Rt△AQH≌Rt△APG,∴AH=PG=7,QH=AG=1,∴OH=OA+AH=6+7=13,∴Q(13,﹣1).25.(10分)在平面直角坐标系中,设二次函数y=x2﹣x﹣a2﹣a,其中a>0.(1)若函数y的图象经过点(1,﹣2),求函数y的解析式;(2)若抛物线与x轴的两交点坐标为A,B(A点在B点的左侧),与y轴的交点为C,满足OC=2OB时,求a的值.(3)已知点P(x0,m)和Q(1,n)在函数y的图象上,若m<n,求x0的取值范围.解:(1)函数y1的图象经过点(1,﹣2),得﹣a2﹣a=﹣2,整理,得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣a2﹣a=0整理,得(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y的图象与x轴的交点是A(﹣a,0),B(a+1,0),当x=0时,y=﹣a2﹣a.即C(0,﹣a2﹣a)∵OC=2OB,∴|﹣a2﹣a|=2|a+1|.∵a>0,∴a2+a=2a+2,整理,得a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a1=2,a2=﹣1(舍去).(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,所求x0的取值范围0<x0<1.。
2020-2021学年天津市南开区九年级上学期数学期末试卷及答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查轴对称图形与中心对称图形的识别,理解基本定义是解题关键.2. 下列事件中,是随机事件的是()A. 画一个三角形,其内角和是180°B. 投掷一枚正六面体骰子,朝上一面的点数为5C. 在只装了红色卡片的袋子里,摸出一张白色卡片D. 明天太阳从东方升起【答案】B【解析】【分析】在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.【详解】解:、画一个三角形,其内角和是,是必然事件;A180、投掷一枚正六面体骰子,朝上一面的点数为5,属于随机事件;B、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件;C 、明天太阳从东方升起,是必然事件;D 故选:B .【点睛】本题主要考查随机事件的概念:随机事件是可能发生,也可能不发生的事件.3. 对于反比例函数y=,下列判断正确的是( ) 3xA. 图象经过点(-1,3)B. 图象在第二、四象限C. 不论x 为何值,y>0D. 图象所在的第一象限内,y 随x 的增大而减小【答案】D【解析】【分析】根据反比例函数的性质:当k >0,双曲线的两支分别位于第一、第三象限,k y x=在每一象限内y 随x 的增大而减小,以及凡是反比例函数经过的点横纵坐标之积进行分k =析即可.【详解】A 、,该选项错误;133k -⨯=-≠B 、∵,∴图象在第一、三象限,该选项错误;30k =>C 、∵,∴当时,,该选项错误;30k =>0x >0y >D 、∵,∴图象所在的第一象限内,y 随x 的增大而减小,该选项正确; 30k =>故选:D .【点睛】本题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)k y x=反比例函数的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.4. 如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE=25°,若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( )A. 25°B. 40°C. 90°D. 50° 【答案】B【解析】【分析】证明Rt△ABE≌Rt△ADF(HL ),可得∠BAE=∠DAF=25°,求出∠EAF 即可解决问题.【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=∠B=∠D=90°由旋转不变性可知:AE =AF ,在Rt△ABE 和Rt△ADF 中,, AB AD AE AF =⎧⎨=⎩∴Rt△ABE≌Rt△ADF(HL ),∴∠BAE=∠DAF=25°,∴∠EAF=90°﹣25°﹣25°=40°,∴旋转角为40°,故选:B .【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE 和Rt△ADF 全等是解题的关键,也是本题的难点.5. 如图,在△ABC 中,DE∥BC,AD =6,DB =3,AE =4,则AC 的长为( )A. 2B. 4C. 6D. 8【答案】C【解析】 【分析】根据平行线分线段成比例定理,可得,解比例方程可求出EC ,最后即AD AE DB EC=可求出AC . 【详解】∵DE∥BC, ∴,即, AD AE DB EC =643EC=解得:EC =2,∴AC=AE+EC =4+2=6;故选C .【点睛】此题考查的是平行线分线段成比例定理,掌握平行线分线段成比例定理及推论和比例的基本性质是解决此题的关键.6. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD【答案】D【解析】 【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D .【点睛】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.7. 已知是反比例函数上的三点,若,()()()112233,,,,,A x y B x y C x y 2y x=123x x x <<,则下列关系式不正确的是 ( )213y y y <<A. B. C. D. 120x x <130x x <230x x <120x x +<【答案】A【解析】【分析】根据反比例函数和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 2y x=在第一象限,得出x 1<x 2<0<x 3,再选择即可.【详解】解:∵反比例函数中,2>0, 2y x=∴在每一象限内,y 随x 的增大而减小,∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限,∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.8. 已知k 1<0<k 2,则函数y=k 1x 和的图像大致是( ) 2k y x =A. B. C. D.【答案】D【解析】【详解】∵k 1<0<k 2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D .9. 如图,切于点切于点交于点,下列结论中不一定成PA O ,A PB O B PO ,O C 立的是( )A. B. 平分PA PB =PO APB ∠C.D.AB OP ⊥2PAB APO ∠=∠【答案】D【解析】 【分析】利用切线长定理证明△PAG≌△PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:∠APO=∠BPO,PA =PB ,又∵PG=PG,∴△PAG≌△PBG,从而AB⊥OP.因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答.10. 已知二次函数y =x 2﹣(m﹣2)x +4图象的顶点在坐标轴上,则m 的值一定不是( )A. 2B. 6C. ﹣2D. 0【答案】D【解析】【分析】先把二次函数的解析式化为顶点式,再利用该函数图象的顶点在坐标轴上,可以得到关于 的方程,解方程从而可得答案. m 【详解】解:∵二次函数 ()()22222244,24m m y x m x x --⎛⎫=--+=--+ ⎪⎝⎭∴该函数的顶点坐标为 ()222,4,22m m ⎡⎤---+⎢⎥⎢⎥⎣⎦∵二次函数图象的顶点在坐标轴上, ()224y x m x =--+∴或, 202-=m ()22404m --+=当时, 202-=m 2,m =当时, ()22404m --+=()2216,m -=或24m ∴-=24,m -=-或6m ∴=2,m =-综上:或或2m =6m = 2.m =-故选:D .【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标在坐标轴上的坐标特点是解题的关键.11. 如图,⊙O 的半径为1,点 O 到直线 的距离为2,点 P 是直线上的一个动点,PA 切⊙O a a 于点 A ,则 PA 的最小值是( )A. 1 C. 2【答案】B【解析】 【分析】因为PA 为切线,所以△OPA 是直角三角形.又OA 为半径为定值,所以当OP 最小时,PA 最小.根据垂线段最短,知OP=2时PA 最小.运用勾股定理求解.【详解】解:作OP⊥a 于P 点,则OP=2.根据题意,在Rt△OPA 中,故选:B .【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA 最小时点P 的位置是解题的关键,难度中等偏上.12. 如图是抛物线y 1=ax 2+bx +c (a≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m≠0)与抛物线交于A 、B 两点,结合图象分析下列结论:①2a+b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④当1<x <4时,有y 2<y 1;⑤抛物线与x 轴的另一个交点是(﹣1,0).其中正确的是( )A. ①②③B. ②④C. ①③④D. ①③⑤【答案】C【解析】 【分析】根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a <0,由对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c >0,于是可对②进行判断;根据顶点坐标对③进行判断;根据函数图象得当1<x <4时,一次函数图象在抛物线下方,则可对④进行判断;根据抛物线的对称性对⑤进行判断.【详解】∵抛物线的顶点坐标A (1,3),∴抛物线的对称轴为直线x ==1, 2b a∴2a+b =0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A (1,3),∴x=1时,二次函数有最大值,∴方程ax 2+bx +c =3有两个相等的实数根,所以③正确;∵抛物线y 1=ax 2+bx +c 与直线y 2=mx +n (m≠0)交于A (1,3),B 点(4,0), ∴当1<x <4时,y 2<y 1,所以④正确.∵抛物线与x 轴的一个交点为(4,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣2,0),所以⑤错误;故选:C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识,考查知识点较多,解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题.二、填空题(本大题共6小题,每小题3分,共18分13. 已知,则________. 45a b =a b=【答案】 54【解析】【分析】由分式的基本性质进行化简,即可得到答案. 【详解】解:由,得. 45a b =54a b =故答案为:. 54【点睛】本题考查了分式的性质,解题的关键是掌握分式的性质进行解题.14. 现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是__________.【答案】.12【解析】【分析】找出所有的可能情况组合以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;能组成三角形的结果有2个(2、6、7,4、6、7,), ∴能构成三角形的概率为 2142=故答案为.12【点睛】本题考查了树状图法以及三角形的三边关系;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. m n 15. 下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y=﹣2x+1,②y ,③y=(x+2)2+1(x >0),④y=﹣2(x﹣3)2﹣1(x <0) 1x =【答案】③④【解析】【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y 随x 的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.16. 如图,菱形的顶点C 的坐标为,顶点A 在x 轴的正半轴上.反比例函数OABC (3,4)的图象经过顶点B ,则k 的值为__. (0)k y x x=>【答案】32【解析】【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值.【详解】∵C(3,4),,∴CB=OC=5,则点B 的横坐标为3+5=8,故B 的坐标为:(8,4),将点B 的坐标代入y=得, k x 4=, k 8解得:k=32.故答案为32.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B 的坐标.17. 如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为_____(结果保留根号和π).【答案】π 43【解析】 【分析】设正六边形的中心为点O ,连接OD 、OE ,作OH⊥DE 于H ,根据正多边形的中心角公式求出∠DOE,求出OH 和正六边形ABCDEF 的面积,再求出∠A,利用扇形面积公式求出扇形ABF 的面积,即可得出结果.【详解】解:设正六边形的中心为点O ,连接OD 、OE ,作OH⊥DE 于H ,如图所示:∠DOE==60°, 3606∴OD=OE =DE =2,∴正六边形ABCDEF 的面积==, 12∠A=, ()621801206-⨯︒=︒∴扇形ABF 的面积, 2120243603ππ⨯==∴图中阴影部分的面积, 43π=-故答案为:. 43π【点睛】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.18. 如图,在由小正方形组成的网格中,△ABC 的顶点都在格点上,请借助网格,仅用无刻度的直尺在网格中作出△ABC 的高AH ,并简要说明作图方法(不要求证明):_____.【答案】取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.【解析】【分析】取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,根据三角形的三条高线交于一点可得AH 即为所求.【详解】如图,取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.∵BM⊥AC,CN⊥AB,∴AH⊥BC.故答案为:取格点M ,N ,分别连接BM ,CN ,BM ,CN 交于点E ,连接AE 并延长交BC 于点H ,则AH 即为所求.【点睛】本题考查了作图—基本作图,解题关键是掌握三角形的三条高线交于一点.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19. 有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果,并回答两次摸球出现的所有可能结果共有几种.(2)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率.【答案】(1)树状图见解析,两次摸球出现的所有可能结果共有16种;(2);(3) 14316【解析】【分析】(1)画出树状图,然后统计一下所有情况即可;(2)根据树状图,统计出两次摸出的球的标号相同种数,利用概率公式列式计算即可得解;(3)根据树状图两次摸出的球的标号的和等于4有3次,根据概率公式列式进行计算即可得解.【详解】解:(1)画树状图如下:两次摸球出现的所有可能结果共有16种;(2)两次摸出的球的标号相同有4种, 所以,(两次摸出的球的标号相同); P 41164==(3)两次摸出的球的标号的和等于4有3次, 所以,(两次摸出的球的标号的和等于4). P 316=【点睛】本题考查画树状图,求概率问题,掌握树状图的画法,审清抽出后是否放回,会用树状图统计总体情况,与需要的具体情况,会用概率公式求出现的机会.20. 如图,A 、B 是双曲线上的点,点A 的坐标是(1,4),B 是线段AC 的中点. k y x=(1)求k 的值;(2)求△OAC 的面积.【答案】(1)4;(2)6.【解析】【分析】(1)将点A 的坐标代入求出k 的值;(2)根据中点得出点B 的纵坐标为2,然后求出横坐标,得出点B 和点C 的坐标求出三角形的面积.【详解】解:(1)将A (1,4)代入 得 k=4; k y x=(2)作AD⊥x 轴于点D ,BE⊥x 轴于点E ,∴AD//BE,∵A(1,4),∴AD=4,OD=1.又∵B 为AC 的中点,∴E 为DC 的中点,∴,CE=DE 122BE AD ==∴B 点的纵坐标为2,则有B 点坐标为(2,2).∴DE=CE=2-1=1,即OC=3,∴C(3,0)∴△OAC 的面积是 =6. 1342⨯⨯【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,难度适中.准确作出辅助线是解题的关键.21. 如图,在等边三角形ABC 中,点E 为CB 边上一点(与点C 不重合),点F 是AC 边上一点,若AB =5,BE =2,∠AEF=60°,求AF 的长度.【答案】 195【解析】【分析】先利用等边三角形的性质得∠B=∠C=60°,AC =BC =AB =5,再利用三角形外角性质得∠BAE=∠CEF,则可判断△ABE∽△ECF,于是可利用相似比计算出CF 的长,然后计算AC﹣CF 即可.【详解】∵△ABC 为等边三角形,∴∠B=∠C=60°,AC =BC =AB =5,∵BE=2,∴CE=3,∵∠AEC=∠BAE+∠B,即∠AEF+∠CEF=∠BAE+∠B,而∠AEF=60°,∠B=60°,∴∠BAE=∠CEF,∵∠B=∠C,∴△ABE∽△ECF, ∴=,即=, BE CF AB EC 2CF 53∴CF=, 65∴AF=AC﹣CF=5﹣=. 65195【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、相似比、线段的和差等知识,解答本题的关键是通过已知条件找到△ABE∽△ECF.22. 在△ABC 中,,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,90︒∠=C 分别交AB ,AC 于点E ,F(I )如图①,连接AD ,若,求∠B 的大小;25CAD ︒∠=(Ⅱ)如图②,若点F 为的中点,的半径为2,求AB 的长. AD O【答案】(1)∠B=40°;(2)AB= 6.【解析】【分析】(1)连接OD ,由在△ABC 中, ∠C=90°,BC 是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD 得∠OFA=∠FOD ,由点F 为弧AD 的中点,易得△AOF 是等边三角形,继而求得答案.【详解】解:(1)如解图①,连接OD,∵BC 切⊙O 于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.23. 如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.【答案】(1)S =﹣x 2+x (17≤x≤27);(2)最大值是m 2,最小值是238m 2 1245220258【解析】 【分析】(1)由于平行于墙的边为xm ,则垂直于墙的一面长为(45﹣x)m ,由面积公式12写出S 与x 的函数关系式,进而求出x 的取值范围;(2)根据二次函数的性质,即可求得当x 取何值时,这个花园的面积有最大值,最大值是多少,根据|27﹣|<|17﹣|,得到x =17时,S 最小,把x =17代入解析式求出最小452452值.【详解】解:(1)平行于墙的边为xm ,矩形菜园的面积为ym 2.则垂直于墙的一面长为(45﹣x)m ,12根据题意得:S =x (45﹣x)=﹣x 2+x (17≤x≤27); 1212452(2)∵S=﹣x 2+x =﹣(x 2﹣45)=﹣(x﹣)2+(17≤x≤27), 12452121245220258∵17≤x≤27,a =﹣<0,12∴当x =m 时,S 取得最大值,此时S =m 2, 45220258∵|27﹣|<|17﹣|, 452452∴x=17m 时,S 取得最小值,此时S =238m 2, 答:S 的最大值是m 2,最小值是238m 2. 20258【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的二次函数解析式,利用二次函数的性质和数形结合的思想解答.24. 平面直角坐标系中,四边形OABC 是正方形,点A ,C 在坐标轴上,点B (,),P 是66射线OB 上一点,将绕点A 顺时针旋转90°,得,Q 是点P 旋转后的对应点.AOP ABQ(1)如图(1)当OP = 时,求点Q 的坐标;(2)如图(2),设点P (,)(),的面积为S. 求S 与的函数关系x y 06x <<APQ △x 式,并写出当S 取最小值时,点P 的坐标;(3)当BP+BQ = 时,求点Q 的坐标(直接写出结果即可)【答案】(1);(2),;(3).(8,4)Q 2618S x x =-+(3,3)P (13,1)Q -【解析】【分析】(1)先根据正方形的性质、解直角三角形可得,,再根据2OG PG ==4AG =三角形全等的判定定理与性质可得,从而可得,由此2,4AH PG QH AG ====8OH =即可得出答案;(2)先根据正方形的性质得出,,再根据旋转的性质、勾股定理可得OG PG x ==x y =,,然后根据直角三角形的面积公式可得S 与2221236AP x x =-+,90AP AQ PAQ =∠=︒x 的函数关系式,最后利用二次函数的解析式即可得点P 的坐标;(3)先根据旋转的性质、正方形的性质得出,,从而得出点P BP OP +=OB =在OB 的延长线上,再根据线段的和差可得,然后同(1)的方法可得OP BP ==,,最后根据三角形全等的性质、线段的和差可得7OG PG ===APG QAH ≅ ,由此即可得出答案.1,13QH OH ==【详解】(1)如图1,过P 点作轴于点G ,过Q 点作轴于点HPG x ⊥QHx ⊥∵四边形OABC 是正方形∴45AOB ∠=︒∵(6,6)B ∴6OA =在中,, Rt OPG sin 452PG OP =⋅︒==2OG PG ==∴4AG OA OG =-=∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴, ,AQ AP BQ OP ==PAG BAQ ∠=∠90APG PAG QAH BAQ ∠+∠=∠+∠=︒APG QAH ∴∠=∠在和中,APG QAH 90AGP QHA APG QAH AP QA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()APG QAH AAS ≅ ∴2,4AH PG QH AG ====∴628OH OA AH =+=+=则点Q 的坐标为;(8,4)Q (2)如图2,过P 点作轴于点GPG x ⊥∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴,90AP AQ PAQ =∠=︒∵(,),45P x y POG ∠=︒∴,OG PG x ==x y =∴6AG OA OG x =-=-在中,由勾股定理得:Rt APG △22222(6)AP AG PG x x =+=-+整理得:2221236AP x x =-+∴ 226181122AP AQ A x P S x =⋅==-+整理得:2(3)9S x =-+06x << 由二次函数的性质可知,当时,S 随x 的增大而减小;当时,S 随x 的∴03x <≤36x <<增大而增大则当时,S 取得最小值,最小值为93x =此时3==y x 故点P 的坐标为;(3,3)P (3)∵绕点A 顺时针旋转得到AOP 90︒ABQ ∴OP BQ =∵BP BQ +=∴BP OP +=∵四边形OABC 是正方形,且边长6OA AB ==对角线∴OB ==<∴点P 在OB 的延长线上∴2BP OP OP OB OP OP +=-+=-=解得OP =BP OP OB ∴=-=如图3,过P 点作轴于点G ,过Q 点作轴于点H PG x ⊥QHx ⊥同(1)可得:, 7OG PG ===APG QAH ≅ ,761QH AG OG OA ∴==-=-=7AH PG ==6713OH OA AH ∴=+=+=则点Q 的坐标为.(13,1)Q -【点睛】 本题考查了正方形的性质、旋转的性质、解直角三角形、三角形全等的判定定理与性质、二次函数的性质等知识点,较难的是题(3),正确得出点P 的位置是解题关键.25. 在平面直角坐标系中,设二次函数,其中;22y x x a a =---0a >(1)若函数y 的图象经过点(1,﹣2),求函数y 的解析式;(2)若抛物线与x 轴的两交点坐标为A ,B (A 点在B 点的左侧),与y 轴的交点为C ,满足OC =2OB 时,求的值.a (3)已知点和在函数y 的图象上,若m <n ,求的取值范围.0(,)P x m (1,)Q n 0x 【答案】(1);(2);(3);2y x x 2=--2a =001x <<【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)由二次函数图象上点的坐标特征,得点A 、B 、C 的坐标,根据OC =2OB ,求的值;a (3)根据二次函数的性质,可得答案.【详解】(1)函数 的图象经过点(1,﹣2),得 22y x x a a =---22a a --=-整理得:,∴ 得:或;(2)(1)0a a +-=2a =-1a =又由题知,,∴ ;0a >1a =∴ 函数y 的解析式:;2y x x 2=--(2)当时,整理得:;0y =220x x a a ---=()(1)0x a x a +--=解得:或;1x a =-21x a =+图象与x 轴的交点是A ,B ,(,0)a -(1,0)a +当时,,即C ;0x =2y a a =--2(0,)a a --∵OC=2OB , ∴;221a a a --=+∵,0a >∴,22(1)a a a +=+整理得:,∴ ,220a a --=(2)(1)0a a -+=解得:或(舍去);2a =1a =-∴;2a =(3)当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n )与(0,n )关于对称轴对称,由m <n ,得: 0<≤;0x 12当时P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得<<1,120x 综上所述:当m <n 时,的取值范围:0<<1;0x 0x ∴ 的取值范围:0<<1.0x 0x 【点睛】本题主要考查二次函数的解析式及基本性质,重点理解对称轴的应用及对应一元二次方程的求解.。
2020-2021学年天津XX中学九年级(上)期末数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为( )A.8 B.﹣8 C.﹣7 D.52.关于对位似图形的表述,下列命题正确的有( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′.A.①②③④ B.②③④C.②③ D.②④3.下列事件中,必然发生的是( )A.某射击运动射击一次,命中靶心B.抛一枚硬币,落地后正面朝上C.掷一次骰子,向上的一面是6点D.通常加热到100℃时,水沸腾4.已知=,则代数式的值为( )A.B.C.D.5.若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过( )A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1 B.2 C.3 D.47.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为( )A.5πcm B.6πcm C.9πcm D.8πcm8.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A.B.C.D.9.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )A.1条B.2条C.3条D.4条10.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )A.(,0) B.(1,0) C.(,0) D.(,0)二、填空题(本大题共8小题,每小题3分,共24分)11.若y=(a+2)x2﹣3x+2是二次函数,则a的取值范围是.12.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为.13.一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别.从口袋中随机取出一个球,取出这个球是红球的概率为.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.15.若△ADE∽△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E= .17.从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于x,y的二元一次方程组有整数解,且使以x为自变量的一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.18.如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画,连结AF,CF,则图中阴影部分面积为.三、解答题(本大题共5小题,共36分)19.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?2020图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.21.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.22.如图,甲、乙分别是4等分、3等分的两个圆转盘,指针固定,转盘转动停止后,指针指向某一数字.(1)直接写出转动甲盘停止后指针指向数字“1”的概率;(2)小华和小明利用这两个转盘做游戏,两人分别同时转动甲、乙两个转盘,停止后,指针各指向一个数字,若两数字之积为非负数则小华胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.23.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.四、综合题(本大题共1小题,共10分)24.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.2020-2021学年天津XX中学九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为( )A.8 B.﹣8 C.﹣7 D.5【考点】反比例函数图象上点的坐标特征.【分析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=﹣3a=4×(﹣6),然后解关于a的方程即可.【解答】解:设反比例函数解析式为y=,根据题意得k═﹣3a=4×(﹣6),解得a=8.故选A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.关于对位似图形的表述,下列命题正确的有( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′.A.①②③④ B.②③④C.②③ D.②④【考点】位似变换.【分析】由位似图形的定义可知:如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;故位似图形一定有位似中心;且位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′.继而可得位似图形一定是相似图形,但是相似图形不一定是位似图形.【解答】解:①位似图形一定是相似图形,但是相似图形不一定是位似图形;故错误;②位似图形一定有位似中心;正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;正确;④位似图形上任意一组对应点P,P′与位似中心O的距离满足OP=k•OP′;正确.故选B.【点评】此题考查了位似图形的性质与定义.注意准确理解位似图形的性质是解此题的关键.3.下列事件中,必然发生的是( )A.某射击运动射击一次,命中靶心B.抛一枚硬币,落地后正面朝上C.掷一次骰子,向上的一面是6点D.通常加热到100℃时,水沸腾【考点】随机事件.【分析】根据“必然事件是指在一定条件下一定发生的事件”可判断.【解答】解:A、某射击运动射击一次,命中靶心,随机事件;B、抛一枚硬币,落地后正面朝上,随机事件;C、掷一次骰子,向上的一面是6点,随机事件;D、通常加热到100℃时,水沸腾,是必然事件.故选D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.已知=,则代数式的值为( )A.B.C.D.【考点】比例的性质.【分析】用b表示出a,然后代入比例式进行计算即可得解.【解答】解:由=得到:a=b,则==.故选:B.【点评】本题考查了比例的性质,用b表示出a是解题的关键.5.若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过( )A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】待定系数法求反比例函数解析式;反比例函数的性质.【专题】计算题;压轴题.【分析】由反比例函数的图象经过点(m,3m),其中m≠0,将x=m,y=3m代入反比例解析式中表示出k,根据m不为0,得到k恒大于0,利用反比例函数图象的性质得到此反比例函数图象在第一、三象限.【解答】解:∵反比例函数的图象经过点(m,3m),m≠0,∴将x=m,y=3m代入反比例解析式得:3m=,∴k=3m2>0,则反比例y=图象过第一、三象限.故选A【点评】此题考查了利用待定系数法求反比例函数解析式,以及反比例函数的性质,熟练掌握待定系数法是解本题的关键.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为( )A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.7.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为( )A.5πcm B.6πcm C.9πcm D.8πcm【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.【点评】本题考查了圆心角、弧、弦的关系,等边三角形的判定.该题利用“有一内角是60度的等腰三角形为等边三角形”证得△AOD是等边三角形.8.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A.B.C.D.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少即可.【解答】解:抬头看信号灯时,是黄灯的概率为:5÷(30+25+5)=5÷60=故选:A.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A 的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.9.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )A.1条B.2条C.3条D.4条【考点】相似三角形的判定.【分析】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【解答】解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:C.【点评】本题主要考查三角形相似判定定理及其运用.解题时,运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.10.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )A.(,0) B.(1,0) C.(,0) D.(,0)【考点】反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系.【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.二、填空题(本大题共8小题,每小题3分,共24分)11.若y=(a+2)x2﹣3x+2是二次函数,则a的取值范围是a≠﹣2 .【考点】二次函数的定义.【分析】根据二次函数的定义即可解决问题.【解答】解:∵y=(a+2)x2﹣3x+2是二次函数,∴a+2≠0,∴a≠﹣2,故答案为a≠﹣2.【点评】本题考查二次函数的定义,记住形如y=ax2+bx+c,(a≠0)的函数是二次函数,属于基础题.12.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为﹣3 .【考点】反比例函数系数k的几何意义.【分析】根据已知条件得到四边形ABCD是平行四边形,于是得到四边形AEOB的面积=AB•OE,由于=AB•CD=3,得到四边形AEOB的面积=3,即可得到结论.S平行四边形ABCD【解答】解:∵AB⊥y轴,∴AB∥CD,∵BC∥AD,∴四边形ABCD是平行四边形,∴四边形AEOB的面积=AB•OE,=AB•CD=3,∵S平行四边形ABCD∴四边形AEOB的面积=3,∴|k|=3,∵<0,∴k=﹣3,故答案为:﹣3.【点评】本题考查了反比例函数系数k的几何意义,明确四边形AEOB的面积=S是解题的平行四边形ABCD关键.13.一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别.从口袋中随机取出一个球,取出这个球是红球的概率为.【考点】概率公式.【分析】由一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别,直接利用概率公式求解即可求得答案.【解答】解:∵一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别,∴从口袋中随机取出一个球,取出这个球是红球的概率为: =.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为24 个.【考点】概率公式.【分析】首先设黄球的个数为x个,根据题意得: =,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: =,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故答案为:24;【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.若△ADE∽△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.【考点】相似三角形的性质.【分析】根据题意求出△ADE与△ACB的相似比,根据相似三角形面积的比等于相似比的平方计算即可.【解答】解:∵△ADE∽△ACB,且=,∴△ADE与△ACB的面积比为:,∴△ADE与四边形BCED的面积比为:,又四边形BCED的面积是2,∴△ADE的面积是,故答案为:.【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E= 210°.【考点】圆周角定理.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=30°,∴∠B+∠E=180°+30°=210°.故答案为:210°.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.17.从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于x,y的二元一次方程组有整数解,且使以x为自变量的一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.【考点】概率公式;一元一次不等式组的整数解;一次函数图象与系数的关系.【分析】首先由题意可求得满足条件的m值,然后直接利用概率公式求解即可求得答案.【解答】解:∵关于x,y的二元一次方程组有整数解,∴,∴m的值为:﹣1,0,1;∵一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,∴,解得:﹣1<m≤1,∴m的值为:0,1;综上满足条件的m值为:0,1;∴取到满足条件的m值的概率为: =.故答案为:.【点评】此题考查了概率公式的应用、二元一次方程组的正整数解以及一次函数的性质.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画,连结AF,CF,则图中阴影部分面积为4π.【考点】正方形的性质;整式的混合运算.【专题】压轴题.【分析】设正方形EFGB的边长为a,表示出CE、AG,然后根据阴影部分的面积=S扇形ABC +S正方形EFGB+S△CEF ﹣S△AGF,列式计算即可得解.【解答】解:设正方形EFGB的边长为a,则CE=4﹣a,AG=4+a,阴影部分的面积=S扇形ABC +S正方形EFGB+S△CEF﹣S△AGF=+a2+a(4﹣a)﹣a(4+a)=4π+a2+2a﹣a2﹣2a﹣a2=4π.故答案为:4π.【点评】本题考查了正方形的性质,整式的混合运算,扇形的面积计算,引入小正方形的边长这一中间量是解题的关键.三、解答题(本大题共5小题,共36分)19.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?【考点】反比例函数的应用;一次函数的应用.【专题】应用题;压轴题.【分析】(1)根据图象可以得到函数关系式,y=k 1x+b(k 1≠0),再由图象所经过点的坐标(0,4),(7,46)求出k 1与b 的值,然后得出函数式y=6x+4,从而求出自变量x 的取值范围.再由图象知(k 2≠0)过点(7,46),求出k 2的值,再由函数式求出自变量x 的取值范围.(2)结合以上关系式,当y=34时,由y=6x+4得x=5,从而求出撤离的最长时间,再由v=速度.(3)由关系式y=知,y=4时,x=80.5,矿工至少在爆炸后80.5﹣7=73.5(小时)才能下井. 【解答】解:(1)因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b(k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则,解得,则y=6x+4,此时自变量x 的取值范围是0≤x ≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y 与x 的函数关系式为(k 2≠0).由图象知过点(7,46), ∴, ∴k 2=322,∴,此时自变量x的取值范围是x>7.(2)当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h).(3)当y=4时,由y=得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.2020图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即: =,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即: =,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.21.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.【考点】垂径定理;勾股定理;三角形中位线定理;圆周角定理.【专题】计算题.【分析】由OD⊥AB,根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO 中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得 x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理.22.如图,甲、乙分别是4等分、3等分的两个圆转盘,指针固定,转盘转动停止后,指针指向某一数字.(1)直接写出转动甲盘停止后指针指向数字“1”的概率;(2)小华和小明利用这两个转盘做游戏,两人分别同时转动甲、乙两个转盘,停止后,指针各指向一个数字,若两数字之积为非负数则小华胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)由题意可知转盘中共有四个数,其中“1”只有一种,进而求出其概率;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小华、小明获胜的情况,继而求得小华、小明获胜的概率,比较概率大小,即可知这个游戏是否公平.【解答】解:(1)甲盘停止后指针指向数字“1”的概率=;(2)列表得:﹣1 0 2 1转盘A两个数字之积转盘B1 ﹣1 02 1﹣2 2 0 ﹣4 ﹣2﹣1 1 0 ﹣2 ﹣1∵由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P(小华获胜)=,P(小明获胜)=.∴这个游戏对双方不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.【考点】切线的判定.【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.【点评】此题考查了切线的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及勾股定理.注意准确作出辅助线,证得△ABD∽△ACB是解此题的关键.四、综合题(本大题共1小题,共10分)24.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)A、B关于对称轴对称,连接BC,则BC与对称轴的交点即为所求的点P,此时PA+PC=BC,四边形PAOC的周长最小值为:OC+OA+BC;根据勾股定理求得BC,即可求得;(3)分两种情况分别讨论,即可求得.【解答】解:(1)根据题意设抛物线的解析式为y=a(x﹣1)(x﹣4),代入C(0,3)得3=4a,解得a=,y=(x﹣1)(x﹣4)=x2﹣x+3,所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,∴△MQB∽△COB,∴=,即=,解得b=,代入y=﹣x+3得, =﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5﹣m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴=,解得m=,作MN∥OB,∴==,即==,∴MN=,CN=,∴ON=OC﹣CN=3﹣=,∴M(,),综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为(,)或(,).【点评】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称﹣最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.。
南开区2020-2021学年度第一学期期末质量检测九年级数学试卷一 选择题:每小题3分,共36分。
1.下列事件中是不可能事件的是( )(A)降雨时水位上升 (B)在南极点找到东西方向(C)体育运动时消耗卡路里 (D)体育运动中肌肉拉伤2.下列图形既是轴对称图形又是中心对称图形的是( )3.若关于x 的一元二次x 2+2x+k=0无实数根,则k 值可以是( )A.3B.1C.0D.-54.如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )A.135°B.125°C.115°D. 105°5.如图,在⊙O 中,弦AB 的长为10,圆周角∠ACB=45°,则这个圆的直径为( ) A.52 B.102 C.152 D.2026.在平面直角坐标系中,反比例函数xa a y 222+-=图象的两个分支分别在( ) A.第一、二象限 B.第三、四象限 C.第一、三象限 D.第二、四象限7.点(-1,y 1)、(-2,y 2)、(3,y 3)均在xy 6-=的图象上,则y 1、y 2、y 3的大小关系是( ) A.y 1<y 2<y 3 B. y 2<y 3<y 1 C.y 3<y 2<y 1 D.y 3<y 1<y 28.将抛物线y=(x-1)2+3向左平移1个单位,得到的抛物线与y 轴的交点坐标是( )A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如图,AC 是⊙0的直径,∠ACB=60°,连接AB ,过A ,B 两点分别作⊙O 的切线,两切线交于点P.若已知 ⊙0半径为1,则△PAB 的周长为( ) A.33 B. 233 C. 3 D.310.如图,以点O 为位似中心,将△ABC 缩小后得到△A /B /C /,已知OB=3OB /,则△A /B /C /与△ABC 的面积 比为( )A.1:3B.1:4C.1:5D.1:911.如图,在ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP//DF ,且与AD 相交于点P , 则图中相似三角形的组数为( )A.3B.4C.5D.612.如图在平面直角坐标系中,抛物线y=x 2+bx+c 与x 轴只有一个交点M,与平行于x 轴的直线l 交于A,B 两点. 若AB=3,则点M 到直线l 的距离为( )A.25B.49C.2D.47第II 卷(非选择题共84分)二 填空题:每小题3分,共18分。
2016-2017 学年度第一学期九年级数学一选择题:姓名:_周末测试题11.25班级:_得分:_1.下列图形中既是轴对称,又是中心对称的是()A. B. C. D.2.如图,A、D 是⊙O 上的两个点,BC 是直径,若∠ D=35°,则∠OAC 的度数是()A.35°B.55°C.65°D.70°第2 题图第3 题图第 4 题图 3.如图,四边形ABCD 是⊙O 的内接四边形,若∠B=30°,则∠ADC 的度数是( )A.60°B.80°C.90°D.100°4.如图,已知AB 是⊙O 的切线,点A 为切点,连接OB 交⊙O 于点C,∠B=38°,点D 是⊙O 上一点,连接CD,AD.则∠D 等于()A.76°B.38°C.30°D.26°5.将抛物线C:y=x2+3x﹣10,将抛物线C 平移到C’.若两条抛物线C,C′关于直线x=1 对称,则下列平移方法中正确的是()A.将抛物线C 向右平移5个单位 B.将抛物线C 向右平移3 个单位2C.将抛物线C 向右平移5 个单位D.将抛物线C 向右平移6 个单位6.函数y=ax+1 与y=ax2+bx+1(a≠0)的图象可能是()A. B. C. D.7.如图,已知双曲线 y= k(k<0)经过直角三角形 OAB 斜边 OA 的中点 D ,且与直角边 AB 相交于点 C .若点 A 的x坐标为(﹣6,4),则△AOC 的面积为()A.12B.9C.6D.4第 7 题图 第 8 题图 第 9 题图8.一个商标图案如图中阴影部分,在长方形 ABCD 中,AB=8cm ,BC=4cm ,以点 A 为圆心,AD 为半径作圆与 BA 的 延长线相交于点 F ,则商标图案的面积是( )A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm 29.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升 10 ℃,加热到 100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至 30 ℃,饮水机关机.饮水机关机后即刻 自动开机,重复上述自动程序.若在水温为 30 ℃时,接通电源后,水温 y(℃)和时间 x(min)的关系如图,为了 在上午第一节下课时(8:45)能喝到不超过 50 ℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:5010.如图,OA ⊥OB,等腰直角△CDE 的腰 CD 在 OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转 75°,点 E 的对应点 N 恰好落在 OA 上,则OC的值为()CDA.1 B.1 C.2 D. 32323第 10 题图第 11 题图 第 12 题图 11.平时我们在跳绳时,绳摇到最高点处的形状可近似地看做抛物线,如 图所示.正在摇绳的甲、乙两名同学拿绳的手间距为 4 m ,距地高均为 1 m ,学生丙、丁分别站在距甲拿绳的手水平距离 1 m ,2.5 m 处.绳子在摇到最高 处时刚好通过他们的头顶.已知学生丙的身高是 1.5 m ,则学生丁的身高为 ()A.1.5 mB.1.625 mC.1.66 mD.1.67 m12.已知二次函数 y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)的图象如图所示.下列 5 个结论:①abc<0;②b<a+c ; ③4a+2b+c>0;④c<4b ;⑤a+b<k(ka+b)(k 为常数,且 k ≠1).其中正确的结论有( )A.2 个B.3 个C.4 个D.5 个2 二 填空题:13.若梯形的下底长为 x,上底长为下底长的1,高为 y,面积为 60,则 y 与 x 的函数解析式是(不考虑 x3的取值范围).14.如图,A 是反比例函数 y k的图像上一点,已知 Rt △AOB 的面积为 3,则 k=.x15.二次函数 y=x 2﹣2x+6 的最小值是16.在平面直角坐标系中,将解析式为 y=2x 2的图象沿着 x 轴方向向左平移 4 个单位,再沿着 y 轴方向向下平移 3 个单位,此时图象的解析式为.17.已知扇形半径是 3cm ,弧长为 2πcm ,则扇形的圆心角为 °.(结果保留π) 18.抛物线的部分图象如图所示,则当 y<0 时,x 的取值范围是.第 18 题图 第 19 题图 第 20 题图 19.如图,木工师傅从一块边长为 60cm 的正三角形木板上锯出一块正六边形木板,那么这块正六边形木板的边长 为cm .20.如图,四边形 ABCD 是☉O 的内接四边形,∠ABC=2∠D,连接 OA 、OB 、OC 、AC ,OB 与 AC 相交于点 E.若∠COB=3∠AOB ,OC=2 3 ,则图中阴影部分面积是(结果保留π和根号).21.如图,在平面直角坐标系 xOy 中,⊙P 的圆心 P 为(﹣3,a ),⊙P 与 y 轴相切于点 C.直线 y=﹣x 被⊙P 截得的线段 AB 长为 4 ,则过点 P 的双曲线的解析式为第 21 题图 第 22 题图22.如图,一段抛物线:y=x(x-2)(0≤x ≤2),记为 C 1,它与 x 轴交于点 O ,A ,;将 C 1 绕点 A 1 旋转 180°得 C 2,交 x 轴于点 A 2;将 C 2 绕点 A 2 旋转 180°得 C 3,交 x 轴于点 A 3;…,如此进行下去,直至得 C 2016.若 P(4031,a)在第 2016 段抛物线 C 2016 上,则 a=.三 简答题:23.如图,正方形网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点.△ABC 的三个顶点 A ,B , C 都在格点上,将△ABC 绕点 A 按顺时针方向旋转 90°得到△AB ′C ′. (1)在正方形网格中,画出△AB ′C ′; (2)计算线段 AB 在变换到 AB ′的过程中扫过区域的面积.24.如图,在平面直角坐标系中,反比例函数 y 4(x>0)图象与一次函数 y=﹣x+b 图象的一个交点为 A(4,m).x(1)求一次函数的解析式; (2)设一次函数 y=﹣x+b 的图象与 y 轴交于点 B ,P 为一次函数 y=﹣x+b 的图象上一点,若△OBP 的面积为 5, 求点 P 的坐标.25.如图,AB 是⊙O 的直径,弦 CD ⊥AB 于点 E ,点 P 在⊙O 上,PB 与 CD 交于点 F ,∠PBC=∠C . (1)求证:CB ∥PD ;(2)若∠PBC=22.5°,⊙O 的半径 R=2,求劣弧 AC 的长度.26.张师傅准备用长为8cm 的铜丝剪成两段,以围成两个正方形的线圈,设剪成的两段铜丝中的一段的长为x cm,围成的两个正方形的面积之和为Scm2.(1)求S 与x 的函数关系式,并写出自变量的取值范围;(2)当x 取何值时,S 取得最小值,并求出这个最小值.27.已知在⊙O 中,AB 是直径,AC 是弦,OE⊥AC 于点E,过点C 作直线FC,使∠FCA=∠AOE,交AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G,若OG=2,求⊙O 半径的长;(3)在(2)的条件下,当OE=3 时,求图中阴影部分的面积.28.已知点O 是等边△ABC 内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是;②用等式表示线段OA,OB,OC 之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2 中画出符合条件的图形,并说明理由;②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.参考答案1、B2、B3、D4、D5、C6、C7、B8、A9、A 10、C 11、B 12、B 13、y=90 14、-6 15、5. 16、y=2(x+4)2﹣3. 17、120 °18、x >3 或 x <﹣1. 19、20x203π- 2 3 , 21、y=﹣ 32+9 x. 22、123、【解答】解:(1)如图所示:△AB ′C ′即为所求;(2)∵AB==5, ∴线段 AB 在变换到 AB ′的过程中扫过区域的面积为: 25π.424、解:(1)∵点 A (4,m )在反比例函数 y = 4(x >0)的图象上,∴m=1,∴A 点坐标为(4,1),x将 A (4,1)代入一次函数 y=﹣x+b 中,得 b=5.∴一次函数的解析式为 y=﹣x+5;(2)由题意,得 B (0,5),∴OB=5.设 P 点的横坐标为 x P . ∵△OBP 的面积为 5,∴x P =±2. 当 x=2,y=﹣x+5=3;当 x=﹣2,y=﹣x+5=7,∴点 P 的坐标为(2,3)或(﹣2,7). 25、解:(1)∵∠PBC=∠D ,∠PBC=∠C ,∴∠C=∠D ,∴CB ∥PD ; (2)∵AB 是⊙O 的直径,弦 CD ⊥AB 于点 E ,∴弧 BC=弧 BD ,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧 AC 的长为: 3π2 26、解:(1)设一段铁丝的长度为 x ,另一段为(8﹣x ),则边长分别为 1 x , 1(8﹣x ),44则 S= 1x 2+ 1 (8﹣x )(8﹣x )= 1x 2﹣x+4;自变量的取值范围:0<x <8;16 168(2)S= 1 (x ﹣4)2+2,所以当 x=4cm 时,S 最小,最小为 2cm 2. 8 27、【解答】证明:(1)连接 OC (如图①),∵OA=OC ,∴∠1=∠A .∵OE ⊥AC ,∴∠A+∠AOE=90°.∴∠1+∠AOE=90°. ∵∠FCA=∠AOE ,∴∠1+∠FCA=90°.即∠OCF=90°.∴FD 是⊙O 的切线.(2)连接 BC ,(如图②)∵OE ⊥AC ,∴AE=EC (垂径定理).又∵AO=OB ,∴OE ∥BC 且 BC=2OE .∴∠OEG=∠GBC (两直线平行,内错角相等),∠EOG=∠GCB (两直线平行,内错角相等), ∴△OEG ∽△CBG (AA ).∴OG = OE = 1.∵OG=2,∴CG=4.∴OC=OG+GC=2+4=6.即⊙O 半径是 6. CG CB 2(3)∵OE=3,由(2)知 BC=2OE=6,∵OB=OC=6,∴△OBC 是等边三角形.∴∠COB=60°.∵在 Rt △OCD 中,CD=OC•tan60°=6 3 ,∴S 阴影=S △OCD ﹣S 扇形 OBC =18 3 -6π.28、解:(1)①90°. ②线段 OA ,OB ,OC 之间的数量关系是 OA 2+OB 2=OC 2. 如图 1,连接 OD.∵△BOC 绕点 C 按顺时针方向旋转 60°得△ADC ,∴△ADC ≌△BOC ,∠OCD=60°.∴CD = OC,∠ADC =∠BOC=120°, AD= OB. ∴△OCD 是等边三角形.∴OC=OD=CD ,∠COD=∠CDO=60°.∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°.∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°. 在 Rt △ADO 中,∠DAO=90°,∴OA 2+AD 2=OD 2.∴OA 2+OB 2=OC 2. (2)①如图 2,当α=β=120°时,OA+OB+OC 有最小值. 作图如图 2 的实线部分. 如图 2,将△AOC 绕点 C 按顺时针方向旋转 60°得△A’O’C,连接 OO’. ∴△A’O’C≌△AOC ,∠OCO’=∠ACA’=60°.∴O’C=OC, O’A’=OA,A’C=BC, ∠A’O’C=∠AOC. ∴△OC O’是等边三角形.∴OC= O’C = OO’,∠COO’=∠CO’O=60°.∵∠AOB=∠BOC=120°,∴∠AOC =∠A’O’C=120°.∴∠BOO’=∠OO’A’=180°. ∴四点 B ,O ,O’,A’共线.∴OA+OB+OC= O’A’ +OB+OO’ =BA’ 时值最小.②当等边△ABC 的边长为 1 时,OA+OB+OC 的最小值 A’B= 3 .。