概率论复习资料第一章5节-1
- 格式:ppt
- 大小:346.50 KB
- 文档页数:16
概率论与数理统计数学第一章复习第一章概率论的基本概念一、随机试验概率论中将满足下列三个特点的实验称为随机试验,通常用E或E1,E2…来表示,这三个特点是:1.试验可在相同的条件下重复进行;2.每次试验的可能结果不止一个,但所有的结果是明确可知的;3.进行一次试验之前不能确定哪一个结果会出现。
二、样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记做S。
样本空间的元素,即E的每个结果,称为样本点。
三、随机事件1.试验E的样本空间S的子集,即试验满足某些条件的可能结果称为E的随机事件。
在每次试验中,当且仅当事件中的一个样本点出现时,称这个事件发生。
2.由一个样本点组成的单点集称为基本事件,由多于一个样本点组成的集合称复合事件。
3.E和空集?都是E的子集,它们分别称为必然事件和不可能事件。
四、事件间的关系1.若BA?,则称事件B包含事件A,这指的是事件A发生必导致事件B 发生。
若BB?,即A=B,则称事件A与事件B相等。
A?且A2.事件BA ={x | x∈A或x∈B}称为事件A与事件B的和事件。
当且仅当A,B中至少有一个发生时,事件BA 发生。
3.事件BA ={x | x∈A且x∈B}称为事件A与事件B的积事件。
当且仅当A,B同时发生时,事件BA 也记作AB。
A 发生。
B4.事件A—B=={x | x∈A且x?B}称为事件A与事件B的差事件。
当且仅当A发生,B不发生时事件A—B发生。
5.若BA =?,则称事件A与事件B是互不相容的,或互斥的。
这指的是事件A与事件B不能同时发生。
基本事件是两两互不相容的。
6.若BA =?,则称事件A与事件B互为逆事件。
又称事件A与事件B互为A =S且B对立事件。
这指的是对每次试验而言,事件A、B中必有一个发生,且仅有一个发生。
A 的对立事件记作A,A=S-A。
五、事件的运算1.交换律:A∪B=B∪A,A∩B=B∩A2.结合律:(A∪B)∪C =A∪(B∪C),(A∩B)∩C =A∩(B∩C)=ABC3.分配律:A(B∪C)=AB∪AC, A∪(BC)=(A∪B)(A∪C)4.德摩根律:A B=A B, AB=A∪B5.吸收律:A∩(A∪B)=A, A∪(A∩B)=A6.双重否定律:A=A7.排中律:A∪A=Ω,A∩A=?8.差积转换律:A-B=A B六、频率1.在相同的条件下进行的n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nA /n称为事件A 发生的频率,并记成fn(A)。
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。
概率论知识点总结概率论知识点总结「篇一」概率,现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科,教学中,首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件,然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点,结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要。
其次,做游戏是学习数学最好的方法之一,根据课的内容的特点,教师设计了转盘游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性,在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理,在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式。
再次,我们教师在上课的时候要理解频率和概率的关系,教材中概率的概念是通过频率建立的,即频率的稳定值及概率,也就是用频率值估计概率的大小。
通过实验,让学生经历“猜测结果一进行实验一分析实验结果”的过程,建立概率的含义。
要建立学生正确的概率含义,必须让他们亲自经历对随机现象的探索过程,引导他们亲自动手实验收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,真正树立正确的概率含义。
第四,我们努力让学生在具体情景中体会概率的意义。
由于初中学生的知识水平和理解能力,初中阶段概率教学的基本原则是:从学生熟悉的生活实例出发,创设情境,贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作,在知识的主动建构过程中,促进了教学目标的有效达成,更重要的是,主动参与数学活动的经历会使他们终身受益,在具体情境中体验概率的意义。
第一章概率论的基本概念 第一节随机试验一、随机试验E1.试验可以在相同的条件下重复进行; 2.试验的可能结果不止一个,并且能事先 明确试验的所有可能结果;3.进行试验之前不能确定哪一个结果会出现。
说明:随机试验简称为试验,随机试验通常用E 来表示.实例:“抛掷一枚硬币,观察字面,花面出现的情况”.分析:1) 试验可以在相同的条件下重复地进行;2) 试验的所有可能结果:正面、反面;3) 进行一次试验之前不能确定哪个结果会出现故为随机试验同理可知下列试验都为随机试验:掷骰子观察点数;一批产品任选三件其正品与次品数;某地平均气温等第二节随样本空间、随机事件一、 样本空间 样本空间Ω随机试验的所有可能结果组成的集合. 样本空间Ω 中的元素,即E 的每个结果,称为样本点.样本点一般用ω表示,可记为Ω = { ω } 例:说明1. 同一试验, 若试验目的不同,则对应的样 本空间也不同.例如对于同一试验: “将一枚硬币抛掷2次”. 若观察正面H 、反面T 出现的情况,则样本空间为S = {HH , HT , TH , TT }.若观察正面出现的次数, 则样本空间为S={0,1,2,3}2. 建立样本空间,事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间S = {H ,T }它既可以作为抛掷硬币出现正面或出现反面的模型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型等.例:1. 同时掷三颗骰子,记录三颗骰子之和. S = {3, 4, 5,……, 18}.2. 生产产品直到得到10件正品,记录生产产品的总件数S = {10 , 11 , 12 ,……}. 二、 随机事件随机试验E 的样本空间Ω的子集称为E 的随机事件,简称事件。
例如,随机试验“抛骰子观察点数”的样本空间是S={1,2,3,4,5,6}对于“骰子的点数是偶数点”,它是一个事件,即{2,4,6},显然,它是样本空间的一个子集。
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A BA =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂ 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时 概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可. 第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B). 乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则 第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立. 三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。
概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。
随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。
大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。
第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。
古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。
几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。
等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。
第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。
随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。
数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。
离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。
第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。