1第一章概率论基本概念
- 格式:pdf
- 大小:656.54 KB
- 文档页数:11
概率论第一章知识点总结
概率论第一章主要介绍了以下几个知识点:
1. 随机试验:指具有以下三个特征的试验:可以进行多次独立重复;每次试验只有两个可能结果中的一个发生;每次试验发生的概率相同。
2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,通常用S表示。
3. 事件:样本空间的任意子集称为事件,通常用A、B等大写字母表示。
4. 概率:事件A发生的概率定义为P(A)=n(A)/n(S),其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
5. 概率的性质:对于任意事件A和B,有以下性质:
(1) 0 ≤ P(A) ≤ 1
(2) P(S) = 1
(3) P(A∪B) = P(A) + P(B) - P(A∩B)
(4) 若A和B互不相容(即A∩B=),则P(A∪B) = P(A) + P(B) 6. 条件概率:事件B在事件A发生的条件下发生的概率称为条件概率,记为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A)。
7. 乘法公式:对于任意事件A1,A2,…,An,有P(A1∩A2∩…∩An) = P(A1)P(A2|A1)P(A3|A1∩A2)…P(An|A1∩A2∩…∩An-1)。
8. 全概率公式和贝叶斯公式:全概率公式和贝叶斯公式是基于条件概率的重要公式,用于计算复杂事件的概率。
其中全概率公式为:
P(B) = Σi=1,2,…,nP(Ai)P(B|Ai),贝叶斯公式为:P(Aj|B) = P(Aj)P(B|Aj)/Σi=1,2,…,nP(Ai)P(B|Ai)。
第一章概率论的基本概念第一章概率论的基本概念第六节独立性一、事件的相互独立性二、几个重要定理三、例题讲解四、小结一、事件的相互独立性1.引例盒中有5个球(3绿2红),每次取出一个,有放回的取两次,记A:第一次抽取,取到绿球B:第二次抽取,取到绿球则有P(B|A)=P(B)他表示A的发生并不影响B发生的可能性大小,即)P(AB)=P(A)P(BP(B|A)=P(B⟺)2.定义设A,B是两事件,如果满足等式P AB=P A P B则称事件A,B相互独立,简称A,B独立.说明:事件A与事件B相互独立,是指事件A的发生与事件B发生的概率无关.两事件相互独立)P(AB)=P(A)P(B 两事件互斥AB =∅两事件相互独立与两事件互斥的关系.请同学们思考二者之间没有必然联系互斥独立AB例如由此可见两事件相互独立,但两事件不互斥.P(A)=12,P(B)=12,P(AB)=P(A)P(B).A BP A=12,P B=12则P(AB)=0,而P(A)P(B)=1 4 ,故P(AB)≠P(A)P(B).由此可见两事件互斥但不独立. AB3.三事件两两相互独立的概念定义:设A,B,C是三个事件,如果满足等式൞P(AB)=P(A)P(B), P(BC)=P(B)P(C), P(AC)=P(A)P(C),则称事件A,B,C两两相互独立4.三事件相互独立的概念定义:设A,B,C是三个事件,如果满足等式P AB=P A P B,P BC=P B P C,P AC=P A P C,P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立注意:三个事件相互独立→三个事件两两相互独立三个事件相互独立↚三个事件两两相互独立推广:设A1,A2,⋯,A n是n个事件,如果对于任意k(1<k≤n),任意1≤i1<i2<⋯<i k≤n,具有等式P(A i1A i2⋯A ik)=P(A i1)P(A i2)⋯P(A ik)则称A1,A2,⋯,A n为相互独立的事件n个事件相互独立→n个事件两两相互独立n个事件相互独立↚n个事件两两相互独立二、几个重要定理定理一:设A,B是两事件,且P(A)>0.若A,B相互独立,则P(B|A)=P(B),反之亦然.定理二:若A,B相互独立,则下列各对事件,ഥA与B,A与ഥB,ഥA与ഥB,也相互独立。