DSB波的调制与解调
- 格式:doc
- 大小:1.26 MB
- 文档页数:13
备注:(1)、按照要求独立完成实验项目内容,报告中要有程序代码和程序运行结果和波形图等原始截图。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号-张三-实验一)后,上传至指定ftp服务器目录下(homework_upload)的相应文件里,并由实验教师批阅记录后;
实验室统一刻盘留档。
ftp:59.74.50.66 账号:microele 密码:ele1507
实验四 DSB信号的调制与解调
一、实验目的
1.理解DSB信号的产生原理及时域波形
2.掌握DSB信号的相干解调原理及方法
3.熟悉Simulink的使用方法
二、实验步骤
1.利用信号发生器生成基带信号,观察时域波形
2.生成DSB信号
3.将调制信号通过相干解调方法解调
4.绘制基带信号、DSB信号及解调信号的时域图。
DSB调制解调系统设计与仿真通信原理概述:DSB调制解调系统是一种常用的调制解调技术,用于在通信系统中传输模拟信号。
本文将详细介绍DSB调制解调系统的设计原理和仿真方法,包括调制器和解调器的设计流程、相关参数的计算和仿真结果分析。
一、DSB调制器设计原理:1. 调制器功能:DSB调制器用于将基带模拟信号调制为高频信号,实现信号的传输。
其主要功能包括信号的频带变换、频谱的移频和功率的放大。
2. 调制器设计流程:(1)信号采样和量化:从模拟信号源中采样并将其转换为数字信号,以便进行后续处理。
(2)滤波器设计:设计低通滤波器对信号进行滤波,去除高频噪声和不必要的频谱成分。
(3)频带变换:使用频率乘法器将信号的频带变换到较高的频率范围,以便进行高频传输。
(4)功率放大:使用功率放大器将信号的幅度放大,以增加传输距离和抵抗噪声干扰。
3. 调制器参数计算:(1)采样率:根据信号的最高频率成分,选择适当的采样率,以避免采样失真和混叠现象。
(2)滤波器截止频率:根据信号的带宽和滤波器的设计要求,计算滤波器的截止频率。
(3)频率乘法器的倍频系数:根据需要将信号的频带变换到较高的频率范围,选择适当的倍频系数。
(4)功率放大器的放大倍数:根据传输距离和接收端的灵敏度要求,计算功率放大器的放大倍数。
4. 调制器仿真分析:使用MATLAB或其他仿真工具,搭建DSB调制器的仿真模型,并进行以下分析:(1)时域波形分析:观察信号在调制器各个模块中的时域波形变化,检查是否存在失真现象。
(2)频谱分析:计算信号在调制器输出端的频谱,验证频带变换和滤波器设计的效果。
(3)功率分析:计算信号在调制器输出端的功率,验证功率放大器的放大效果。
(4)误码率分析:通过引入噪声信号,计算解调器输出信号的误码率,评估系统的性能。
二、DSB解调器设计原理:1. 解调器功能:DSB解调器用于将接收到的高频信号解调为基带模拟信号,实现信号的恢复和处理。
dsb调制解调实验报告DSB 调制解调实验报告一、实验目的本次 DSB 调制解调实验的目的在于深入理解双边带调制(DSB)和解调的原理,通过实际操作和观察实验现象,掌握 DSB 调制与解调的基本方法和技术,分析其性能特点,并对相关理论知识进行验证和巩固。
二、实验原理(一)DSB 调制原理DSB 调制是一种抑制载波的双边带调制方式。
在调制过程中,将调制信号与载波信号相乘,得到已调信号。
其数学表达式为:\s_{DSB}(t) = m(t) \cdot c(t)\其中,\(m(t)\)为调制信号,\(c(t) = A \cos(\omega_c t)\)为载波信号,\(A\)为载波幅度,\(\omega_c\)为载波角频率。
(二)DSB 解调原理DSB 信号的解调通常采用相干解调法。
在接收端,将已调信号与同频同相的本地载波相乘,然后通过低通滤波器滤除高频分量,即可恢复出原始调制信号。
其数学表达式为:\r(t) = s_{DSB}(t) \cdot c(t)\\r(t) = m(t) \cdot c^2(t) =\frac{1}{2} m(t) +\frac{1}{2} m(t) \cos(2\omega_c t)\经过低通滤波器后,高频分量被滤除,得到解调后的信号:\m_d(t) =\frac{1}{2} m(t)\三、实验仪器与设备本次实验所使用的仪器和设备包括:1、函数信号发生器:用于产生调制信号和载波信号。
2、示波器:用于观察调制信号、已调信号和解调信号的波形。
3、乘法器:实现信号的相乘,完成调制和解调过程。
4、低通滤波器:滤除解调后的高频分量。
四、实验步骤1、按照实验电路图连接好各仪器设备,确保连接正确无误。
2、打开函数信号发生器,设置调制信号的频率、幅度和波形。
3、同样在函数信号发生器中设置载波信号的频率和幅度。
4、将调制信号和载波信号输入乘法器进行调制,在示波器上观察已调信号的波形。
5、将已调信号与同频同相的本地载波信号输入乘法器进行解调。
dsb或ssb的相干解调原理表达式。
-回复【DSB或SSB的相干解调原理表达式】引言:随着通信技术的不断发展,调制解调技术在无线通信系统中扮演着重要的角色。
其中,双边带Suppressed Carrier(DSB-SC)和单边带Suppressed Carrier(SSB-SC)是两种常见的调制形式。
本文将详细探讨DSB和SSB的相干解调原理,并给出相应的表达式。
一、DSB的相干解调原理表达式:DSB技术是将波形分成上下两个边带,然后抑制或者移除其中一个边带,并同时保留另一个边带和载波。
其相干解调原理如下:1. 时域表达式:设DSB调制信号为s(t),载波为c(t),调制指数为m,则DSB调制信号的时域表达式可以表示为:s(t) = A_c ∙[m(t) + k_c ∙m(t) ∙cos(2πf_c t)] ∙cos(2πf_ct)其中,A_c代表载波的幅度,f_c代表载波频率,m(t)为调制信号,k_c 为调制指数。
2. 频域表达式:假设调制信号频谱范围为±f_m,则DSB信号的频域表达式可表示为:S(f) = 0.5 ∙A_c ∙M(f - f_c)其中,S(f)为DSB频谱,M(f - f_c)为调制频谱,f代表频率。
3. 相干解调原理:相干解调的关键是提取调制信号并还原原始信号。
通过将接收到的DSB信号与与发送信号的频谱进行相关运算,可以得到相关值。
相干解调原理表达式如下:r(t) = d(t) ∙s(t) = d(t) ∙A_c ∙m(t) ∙cos(2πf_c t) ∙cos(2πf_c t) 求解后可得:r(t) = 0.5 ∙d(t) ∙A_c ∙m(t) + 0.5 ∙d(t) ∙A_c ∙m(t) ∙cos(4πf_c t)其中,r(t)为相干解调信号,d(t)为接收滤波器的输出。
二、SSB的相干解调原理表达式:SSB是DSB信号再经过一次频域滤波后得到的单边带信号,其相干解调原理如下:1. 时域表达式:设SSB调制信号为s(t),载波为c(t),调制指数为m,则SSB调制信号的时域表达式可以表示为:s(t) = A_c ∙m(t) ∙cos(2πf_ct) ∓jA_c ∙m(t) ∙sin(2πf_c t)其中,A_c代表载波的幅度,f_c代表载波频率,m(t)为调制信号。
课程设计班级:通信10-1班姓名:刘凯学号:1006030111指导教师:成绩:电子与信息工程学院信息与通信工程系目录目录 (2)摘要 (3)关键词 (3)第一章引言 (3)1.1 课程设计目的 (3)1.2 课程设计内容 (3)第二章设计原理及仿真 (4)2.1 调制与解调概述 (4)2.2 AM调制与相干解调 (4)2.2.1 AM调制原理 (4)2.2.2 AM调制与解调的仿真 (6)2.3 DSB的调制与相干解调 (10)2.3.1 DSB的调制 (10)2.3.2 DSB的相干解调 (13)2.3.3DSB调制与相干解调的仿真 (13)第三章心得体会 (19)第四章参考文献 (20)摘要:论文主要是综述现代通信系统中AM ,DSB解调的基本技术,并在时域讨论解调的基本原理, 以及介绍分析有关电路组成。
AM调制系统结构简单,价格低廉,所以至今仍广泛应用于无线广播。
与AM信号相比,因为不存在载波分量,DSB调制效率是100%。
DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率。
关键词:Multisim;AM和DSB的相干解调;1引言1.1课程设计目的通过此次课程设计可以进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关内容,同时培养分析问题、解决问题的综合能力,为今后参加科学工作打下良好的基础。
1.2课程设计内容信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。
调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。
而要还原出被调制的信号就需要解调电路。
调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。
论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。
实验报告哈尔滨工程大学教务处制DSB信号的调制及相干解调一、整体方案及参数设置1.1 方案设计DSB的调制过程实际上是一个频谱搬移的过程,即是将低频信号的频谱(调制信号)搬移到载频位置(载波)。
解调是调制的逆过程,即是将已调信号还原成原始基带信号的过程,信号的接收端就是通过解调来还原已调信号从而读取发送端发送的信息。
本次实验采用相干解调法解调DSB信号(即将已调信号与相同载波频率相乘),这种方式将广泛应用在载波通信和短波无线电话通信中。
但在信道传输过程中定会引入高斯白噪声,虽然经过带通滤波器后会使其转化成窄带噪声,但它依然会对解调信号造成影响,对信号频谱进行分析时将对比讨论加噪声与不加噪声对其影响。
图一:DSB频谱图图二:DSB调制图三:DSB解调DSB信号与本地相干载波相乘后的输出为:Z(t)= Sdsb(t)cos ωct=m(t)cosωct*cosωct=[m(t)/2]*(1+cos2ωct),经过低通滤波后就能够无失真地恢复原始调制信号为:So(t)= 1/2 m(t),因而可得到无失真的调制信号。
1.2参数设计这儿不知道咋写……你写了给我看下吧1.3实验大纲a.绘制出DSB调制波形时域频域图,用载波将其调制,得到已调波形;b.绘制已调波形时,分为加噪与不加噪两种,分析其频谱上有何差别;c.用与载波频率相同的波对上述两种已调信号进行解调,分别分析两种波形解调结果有何不同。
二.设计实现2.1 实验程序n=2048;fs=n;s=400*pi;i=0:1:n-1;t=i/n;m=sin(10*pi*t);c=cos(300*pi*t);x=m.*c;y=x.*c;x1=awgn(x,30);x2=awgn(x,30);x3=awgn(x,30);x4=awgn(x,30);y1=x1.*c;y2=x2.*c;y3=x3.*c;y4=x4.*c;z1=x1-x;z2=x2-x;z3=x3-x;z4=x4-x;n1=z1.*c;n2=z2.*c;n3=z3.*c;n4=z4.*c;wp=0.1*pi;ws=0.12*pi;Rp=1;As=15; [N,wn]=buttord(wp/pi,ws/pi,Rp,As); [b,a]=butter(N,wn);m1=filter(b,a,y);m1=2*m1;m2=filter(b,a,y1);m2=2*m2;M=fft(m,n);C=fft(c,n);X=fft(x,n);Y=fft(y,n);X1=fft(x1,n);Z1=fft(z1,n);Z2=fft(z2,n);Z3=fft(z3,n);Z4=fft(z4,n);N1=fft(n1,n);N2=fft(n2,n);N3=fft(n3,n);N4=fft(n4,n);[H,w]=freqz(b,a,n,'whole');f=(-n/2:1:n/2-1);figure(1);subplot(221),plot(t,m,'k');axis([0,1,-0.25,1.25]);title('m(t)波形');subplot(222),plot(t,abs(fftshift(M)),'k');%axis([-300,300,0,250]); title('m(t)频谱');subplot(223),plot(t,c,'k');axis([0,0.2,-1.2,1.2]);title('c(t)波形');subplot(224),plot(t,abs(fftshift(C)),'k');%axis([-300,300,0,600]); title('c(t)频谱');figure(2);subplot(221),plot(t,x,'k');axis([0,1,-1.2,1.2]);title('无噪时已调DSB时域波形');subplot(222),plot(t,abs(fftshift(X)),'k');%axis([-300,300,0,600]); title('无噪时已调DSB频谱图');subplot(223),plot(t,x1,'k');axis([0,1,-1.2,1.2]);title('有噪时已调DSB时域波形');subplot(224),plot(t,abs(fftshift(X1)),'k');%axis([-300,300,0,600]); title('有噪时已调DSB频谱图');figure(3);subplot(311),plot(t,abs(fftshift(H)),'k');%axis([-300,300,0,200]); title('滤波器特性');subplot(312),plot(t,m1,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(无噪)');subplot(313),plot(t,m2,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(有噪)');2.2实验结果三.总结从程序运行结果可以看出DSB调制是对基带信号进行频谱搬移。
dsb调制表达式DSB调制是一种广泛应用于通信领域的调制技术,它可以实现音频信号的传输和处理。
DSB调制的表达式和原理是如何的呢?下面我将详细介绍。
DSB调制全称为双边带调制(Double SideBand),它是一种基带信号调制到高频信号的过程。
DSB调制的表达式可以用数学公式表示为:s(t) = [1 + m(t)] * cos(2πfct)其中,s(t)是调制后的信号,m(t)是基带信号,fc是载波频率。
DSB 调制的过程就是将基带信号m(t)与载波信号cos(2πfct)相乘,然后再进行放大。
调制后的信号s(t)具有两个边带,分别位于载波频率的两侧。
DSB调制的原理是利用载波信号的幅度和相位来携带基带信号的信息。
在DSB调制中,基带信号m(t)通过调制器与载波信号相乘,得到调制后的信号s(t)。
在解调器中,通过将调制后的信号与一个相干载波信号相乘,可以恢复出原始的基带信号。
DSB调制具有一些特点和优势。
首先,DSB调制的频谱利用率较高,可以有效地利用频带资源。
其次,DSB调制的解调过程相对简单,可以通过简单的乘法运算实现。
此外,DSB调制的抗干扰性较强,可以有效地抵抗噪声和干扰。
在实际应用中,DSB调制常用于广播、电视等领域。
例如,在广播中,音频信号经过DSB调制后,可以通过无线电波传输到接收设备,实现声音的传播。
另外,DSB调制还可以用于音频信号的处理,例如在音频合成和语音识别等领域。
除了DSB调制,还有许多其他的调制技术,如AM调制、FM调制等。
每种调制技术都有其独特的特点和适用场景。
在选择调制技术时,需要根据具体的需求和应用场景来进行选择。
DSB调制是一种重要的调制技术,它可以实现音频信号的传输和处理。
通过对DSB调制的表达式和原理的了解,我们可以更好地理解和应用这一技术。
在实际应用中,DSB调制具有广泛的应用前景,可以为通信和音频处理领域提供更好的解决方案。
DSB调制与解调1 课程设计目的本课程设计是实现DSB的调制解调。
在此次课程设计中,我将通过多方搜集资料与分析,来理解DSB调制解调的具体过程和它在MATLAB中的实现方法。
预期通过这个阶段的研习,更清晰地认识DSB的调制解调原理,同时加深对MATLAB这款通信仿真软件操作的熟练度,并在使用中去感受MATLAB的应用方式与特色。
利用自主的设计过程来锻炼自己独立思考,分析和解决问题的能力,为我今后的自主学习研究提供具有实用性的经验.2 课程设计要求(1)熟悉MATLAB中M文件的使用方法,掌握DSB信号的调制解调原理,以此为基础用M文件编程实现DSB信号的调制解调。
(2)绘制出SSB信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对分析结果来加强对DSB信号调制解调原理的理解。
(3)对信号分别叠加大小不同的噪声后再进行解调,绘制出解调前后信号的时域和频域波形,比较未叠加噪声时和分别叠加大小噪声时解调信号的波形有何区别,由所得结果来分析噪声对信号解调造成的影响。
(4)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果.3 相关知识在AM 信号中,载波分量并不携带信息,信息完全由边带传送。
如果将载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。
DSB 调制器模型如图1所示.图1 DSB 调制器模型其中,设正弦载波为0()cos()c c t A t ωϕ=+式中,A 为载波幅度;c ω为载波角频率;0ϕ为初始相位(假定0ϕ为0).调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。
在解调过程中,输入信号和噪声可以分别单独解调。
实验3 双边带(DSB)调制与解调3-1 实验目的1.通过实验加深对DSB信号调制与解调基本原理的理解。
2.了解DSB调制解调的数字实现方法,观察调制解调过程中各点的波形。
3-2 实验仪器一、实验所需的仪器与器材之一(已购买IST-B智能信号测试仪)1.双踪示波器 1台2.IST-B智能信号测试仪 1台二、实验所需的仪器与器材之二(已购买IST-B智能信号测试仪)1.双踪示波器 1台2.低频信号发生器 1台3.多路稳压电源 1台4.频率计 1台5.选频表 1台3-3 实验原理挣幅调制(AM)存在着一个很大的缺点,就是他的频谱成分中含有一个不包含任何信号的载波,且占用了发射机的大部分功率。
DSB信号则是滤除了载波后的调幅信号。
设调制信号为uΩ(t)=uΩm cosΩt,载波信号为u c(t)=U cm cosωc t(忽略初始相位Φ),则DSB信号可表示为:uDSB (t)=mauΩ(t)u c(t)=m a uΩm U cm cosωc t可以看出,其频谱中仅有ωc +Ω和ωc-Ω两个分量,而没有载波分量。
用数字方法实现DSB的原理与实现AM的原理基本相同,不同之处在于它比需要加入载波。
3-4 实验内容1.改变输入调制信号的频率和幅度,观察输出波形的变化;2.观察DSB信号与AM信号波形的区别;3.修改调幅度,观察输出波形的变化;4.分别修改调制载波频率和解调载波频率,观察DSB信号及解调后信号波形;5.用IST-B智能信号测试仪或另一台现代通信技术实验箱观察DSB信号的频谱成分; 6.逐渐增加噪声幅度,观察各点波形的变化,特别注意在噪声幅度多大时解调后的信号出现失真。
3-5 实验步骤1.用IST-B智能信号测试仪(或低频信号发生器)产生约100Hz的正弦信号,加到实验箱模拟通道1输出端,将示波器探头接至模拟通道3输出端,同时用短路线将模拟通道1输出连接至模拟通道2的输入端。
2.在保证实验箱正确加电且串口电缆连接正常的情况下,运行现代通信技术实验开发软件,在“现代通信原理实验”菜单下选择“模拟调制与解调”的“幅度调制与解调”子菜单,出现如图3-1所示的窗口。
dsb模拟调制解调设计方案DSB模拟调制解调设计方案一、方案概述DSB模拟调制解调技术是一种广泛应用于通信领域的模拟调制解调技术。
本方案旨在设计一套DSB模拟调制解调系统,实现信号的调制和解调,以满足通信系统中的信号传输需求。
二、系统设计1. 调制器设计调制器是DSB模拟调制解调系统的核心部件,其主要功能是将基带信号调制成高频信号。
本方案采用的调制器为平衡调制器,其具有调制效率高、抗干扰能力强等优点。
2. 解调器设计解调器是DSB模拟调制解调系统的另一个核心部件,其主要功能是将调制后的信号解调成基带信号。
本方案采用的解调器为同步解调器,其具有解调效率高、抗干扰能力强等优点。
3. 滤波器设计滤波器是DSB模拟调制解调系统中的重要组成部分,其主要功能是对信号进行滤波,以去除噪声和杂波。
本方案采用的滤波器为低通滤波器,其具有滤波效果好、抗干扰能力强等优点。
4. 放大器设计放大器是DSB模拟调制解调系统中的另一个重要组成部分,其主要功能是对信号进行放大,以增强信号的传输能力。
本方案采用的放大器为功率放大器,其具有放大效果好、抗干扰能力强等优点。
三、系统实现1. 硬件实现本方案采用的硬件平台为FPGA开发板,其具有高性能、低功耗等优点。
调制器、解调器、滤波器和放大器均采用模拟电路实现,与FPGA 开发板进行连接。
2. 软件实现本方案采用的软件平台为Verilog HDL,其具有高效、易用等优点。
调制器、解调器、滤波器和放大器均采用Verilog HDL进行编程实现。
四、系统测试本方案采用的测试方法为实验测试,具体步骤如下:1. 将基带信号输入调制器,将调制后的信号输入解调器。
2. 将解调后的信号输入滤波器,将滤波后的信号输入放大器。
3. 测量放大器输出的信号的幅度、频率等参数,以评估系统的性能。
五、总结本方案设计了一套DSB模拟调制解调系统,实现了信号的调制和解调,以满足通信系统中的信号传输需求。
该系统具有调制效率高、解调效率高、滤波效果好、放大效果好、抗干扰能力强等优点,可广泛应用于通信领域。
综合课程设计报告—DSB波的调制与解调系别:物理系专业:******************指导老师:******小组成员:******************** ******************** ********************设计时间:2012年12月05日目录一、摘要 (2)二、关键词 (3)三、正文 (4)第一章设计总体思想1.1系统框图1.2 DSB调制与解调基本原理1.3模拟乘法器MC1496的工作原理1.4 DSB信号的调制电路1.5 DSB信号的解调电路第二章电路调试与仿真2.1 模拟乘法器MC1496的创建2.2 DSB调幅设计2.3 同步检波设计2.4 总电路图第三章电路安装与性能测试3.1 电路安装3.2 性能测试四、心得体会 (6)五、参考文献 (7)一、摘要调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。
而要还原出被调制的信号就需要解调电路。
调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。
本次设计我们就以振幅调制与解调为主,对DSB波进行处理,完成信号的发送和接收。
在处理DSB波的过程中,我们对正弦波的调幅进行调制,并用同步检波进行解调。
因为在调制和解调过程中,有复杂的频率变换,所以根据DSB波的性质,我们选用非线性器件——两个模拟乘法器来组成本设计的基本电路。
在检波之后产生很多新频率,我们用一个低通滤波器把不符合要求的频率滤除,取出我们需要的频率,这样我们就完成了DSB波的发送和接收原理设计。
Multisim软件广泛用于数字信号分析,动态仿真,本课题利用软件对DSB调制解调系统进行模拟仿真,利用100KHz正弦波对10KHz 正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布,了解及掌握DSB调制解调系统的性能。
接下来我们需要验证这个设计的可行性,即输入合适的调制信号和载波信号进行仿真,看我们的设计是否符合要求。
二、关键字:信息传输调制调解 DSB波模拟乘法器同步检波器 Multisim软件三、正文第一章设计总体思想1.1系统框图含模拟乘法器1的调制电路含模拟乘法器2的解调电路低通滤波器图1-1 总体设计框图DSB波的调制和解调总的来说分为三大部分:(1)模拟乘法器1 用于调制部分,即在传送信息的一方所要传送的较低频率的信息附加在载波上;(2)模拟乘法器2 用于解调部分,即将调幅信号中的原信号取出来;(3)低通滤波器滤除从检波器解调出来的无用频率分量,取出所需要的原调制信号。
将三个模块连在一起,就完成了整个DSB波的发送和接收。
1.2 DSB调制与解调原理调制原理DSB调制属于幅度调制。
幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律而变化的过程。
设载波信号u c(t)=U c cosw c t,调制信号uΩ(t)=UΩcosΩ t根据调制定义,幅度调制信号(已调信号)一般可表示为:u(t)=U c(1+m a cosΩt)cosw c t=U c cosw c t+1/2[U c m a cos(w c+Ω)t]+1/2[U c m a cos(w c+Ω)t]其中m a=KUΩ/U c,称调幅系数或调幅度,一般用%表示。
m a表征载波受调制信号控制的程度。
(m a越大,控制作用越大。
)调幅波的表示式表明:(1)调幅波的频率为载波的频率;(2)调幅波的幅值随调制信号的变化规律而变。
由以上表示式可见,在波形上,已调信号幅度随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。
标准振幅就是常规双边带调制,简称调幅(AM)。
假设调制信号uΩ(t)的平均值为0,将其叠加一个直流偏量后与载波相乘,即可形成调幅信号。
其时域表达式为:U(t)=m(t)cos(t)AM信号的频谱由载频分量、上边带、下边带三部分组成。
AM信号的总功率包括载波功率(Po=Uc 2/2R )和边带功率(Pw c+Ω=Pw c-Ω=m a 2Po/4)两部分。
只有边带功率才与调制信号有关,也就是说,载波分量并不携带信息。
因此,AM 信号的功率利用率比较低。
图1-2 AM 调制典型波形和频谱如果在AM 调制模型中将直流去掉,即可得到一种高调制效率的调制方式—抑制载波双边带信号(DSB —SC),简称双边带信号。
其时域表达式为U(t)=Um[cos(w c +Ω)t+cos(w c -Ω)t]它可以由载波信号和调制信号相乘得到:Ut=kUc(t)U Ω(t)=kUcU Ωcosw c tcosΩt=KUcU Ω[cos(w c +Ω)t+cos(w c -Ω)t]/2cos ω0t O t t O m (t )s DSB (t )O -ωc ωc ωM (ω)O ωωH -ωH S DSB (ω)2ωH图1-3 DSB调制典型波形和频谱双边带在调制信号相位变化时,其高频振荡相位要发生突变。
双边带由于失去载波,其包络线不能完全反映调制信号的实际变化规律,使解调困难。
与AM信号比较,因为不存在载波分量,DSB信号的调制效率是100%,即全部效率都用于信息传输。
解调原理解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号(即调制信号),是振幅调制的逆过程,其实质是实现频谱的线性搬移。
解调的方法可分为两类:相干解调和非相干解调(包络检波)。
相干解调,也称同步检波,为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它与接受的已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。
包络检波器就是直接从已调波的幅度中提取原调制信号,通常由半波或全波整流器和低通滤波器组成。
由于DSB信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信号。
DSB信号解调时需采用相干解调(同步检波)。
n(t)图1-4 DSB相干解调性能分析模型cosw c tcosΩt,与相干载波设解调器输入信号为Ui(t)= AUcmUΩmUr(t)=U r m cosw r t [w r=w c] 相乘后,得U(t)=,Ui(t)×Ur(t)=AUcmUΩm U r[cos2w c tcosΩt+cosΩt]/2 经低通滤波器后,输出信号为:mU O(t)=AUcmUΩm cosΩt/21.3模拟乘法器MC1496的工作原理调制解调的实质是频率变换,而模拟乘法器是实现频率变换的常用器件。
模拟乘法器具有频带宽、性能好、外接电路简单等优点。
二象限模拟相乘器的的基本原理电路如下所示:基本电路是一个恒流源差分放大电路,不同之处在于恒流源管VT3的基极输入了信号Uy(t),即恒流源电流Io受Uy(t)控制。
吉尔伯特乘法器吉尔伯特乘法器是一种四象限乘法器,也是大多数集成乘法器的基础电路。
基本电路如下图所示:MC1496是双平衡四象限模拟乘法器,其内部电路图和引脚如图所示。
其中VT1、VT2与VT3、VT4组成双差分放大器,VT5、VT6组成的单差分放大器用以激励VT1-VT4。
VT8、VT9极其偏置电路组成差分放大器VT5、VT6的恒流源。
引脚8与10接输入电压Ux,1与4接另一输入电压Uy,输出电压Uo从引脚6与12输出。
引脚2与3外接电阻Re,对差分放大器VT5、VT6产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。
引脚14为负电源端(双电源供电时)或接地端(单电源供电时),引脚5外接电阻R5,用来调节偏置电流I5及镜像电流Io/2的值。
静态工作点设置静态偏置电压设置根据MC1496的特性参数和它的内部电路,在应用时,静态偏置电压应满足下列关系:V8=V10,V1=V4,V6=V12,12V>=(V6-V8)>2V,12V>=(V8-V1)>2.7V,12V>=(V1-V5)>2.7V,静态偏置电流的确定静态偏置电流主要由恒流源Io的值来确定,当器件为单电源供电时,引脚14接地,5脚通过一个电阻Rs接正电源Vcc,由于Io/2是Is的镜像电流,所以改变电阻Rs可以调节Io的大小,即:Io/2≈Is=Vcc-0.7V/(Rs+500)当器件双电源供电时,引脚14接负电源,5脚通过电阻Rs接地,因此改变R5,也可以调节Io的大小,即Io/2≈Is=|-Vee|-0.7/(Rs+500)1.4 DSB信号的调制电路图1-8 MC1496 构成的振幅调制器电路其中载波信号Uc 经高频耦合电容C2 从ux 端输入,C3 为高频旁路电容,使8 脚接地。
调制信号UΩ经低频耦合电容C1 从uy 端输入,C4 为低频旁路电容,使4 脚接地。
调幅信号Uo 从12 脚单端输出。
器件采用双电源供电方式,所以5 脚的偏置电阻R5 接地,可计算出器件的静态偏置电流I5 或Io,即脚2 与3 间接入负反馈电阻RE,以扩展调制信号的UΩ的线性动态范围,RE增大,线性范围增大,但乘法器的增益随之减少。
电阻R6、R7、R8 及RL 为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
R1、R2 与电位器RP 组成平衡调节电路,改变RP可以使乘法器实现抑制载波的振幅调制或有载波的振幅调制。
1.5 DSB信号的解调电路图1-9 MC1496 构成的同步检波器电路其中ux端输入同步信号或载波信号Uc,uy端输入已调波信号Us。
输出端接有由R11与C6、C7组成的低通滤波器及隔直电容C8,所以该电路对有载波调幅信号及抑制载波的调幅信号均可实现解调。
第二章电路调试与仿真2.1模拟乘法器MC1496的创建2.2 DSB调幅设计2.3同步检波设计2.4 总电路图第三章安装与性能测试3.1电路安装3.2性能测试。