江西省九江市永修县七校2016届九年级数学4月联考试题
- 格式:doc
- 大小:895.50 KB
- 文档页数:8
九江市九年级数学4月联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·仙桃) 8的倒数是()A . ﹣8B . 8C . ﹣D .2. (2分)(2019·长春模拟) 如图,四边形ABCD中,AD∥BC,∠C=50°,则∠D的度数为()A . 40°B . 50°C . 120°D . 130°3. (2分)(2018·岳阳模拟) 下列各式计算正确的是()A . 2+b=2bB .C . (2a2)3=8a5D . a6÷ a4=a24. (2分)(2019·银川模拟) 一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A . 平均数B . 中位数C . 众数D . 方差5. (2分) (2017·福田模拟) 如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A . 2B . 4C .D .6. (2分)(2017·沂源模拟) 已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A . p>﹣1B . p<1C . p<﹣1D . p>17. (2分) (2016八上·萧山期中) 如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE 交AD于点F,连结BD交CE于点G,连结BE.下列结论中:①CE=BD; ②∠ADC=90°,③ ④ ,正确的是()A . ①②③④B . ①②③C . ①④D . ①③④8. (2分)(2019·鹿城模拟) 一个几何体的三视图如图所示,这个几何体是()A . 球B . 圆柱C . 圆锥D . 立方体9. (2分)(2017·天门) 如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE= ;④AF=2 ,其中正确结论的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为 [m,1-m,-1]的函数的一些结论:① 当m=-1时,函数图象的顶点坐标是(1,0);② 当m>0时,函数图象截x轴所得的线段长度大于1;③ 当m<0时,函数在x>时,y随x的增大而减小;④ 不论m取何值,函数图象经过一个定点.其中正确的结论有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共5题;共5分)11. (1分) (2018七上·锦州期末) 光的速度大约是300 000 000米/秒,将300 000 000用科学记数法表示为________.12. (1分) (2019八上·灌云月考) 在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点A′的坐标(________),顶点B的坐标(________),顶点C关于原点对称的点C′的坐标(________).(2)△ABC的面积为________.13. (1分) (2016七下·澧县期中) 已知x2﹣4x+n因式分解的结果为(x+2)(x+m),则n=________.14. (1分)如图,在平面直角坐标系xOy中,反比例函数y= 的图象与一次函数y=k(x﹣2)的图象交点为A(3,2)与B点.若C是y轴上的点,且满足△ABC的面积为10,则C点坐标为________.15. (1分) (2016八上·扬州期末) 如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线且AD=12,是AD上的动点,是AC边上的动点,则CF+EF的最小值为________.三、解答题 (共8题;共72分)16. (5分)(2017·本溪模拟) 先化简,再求值:[ ﹣]÷ ,其中x=tan45°﹣6sin30°.17. (5分) (2017八下·东莞期中) 如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.18. (6分) (2019八上·姜堰期末) 如图,中,,D为边AB上一点且.(1)求证:;(2)若,,求AC的长.19. (11分) (2019九下·绍兴期中) 某调查机构将今年绍兴市民最关注的热点话题分为消费.教育.环保.反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查________人,请在答题卡上补全条形统计图并标出相应数据;________(2)若绍兴市约有500万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲.乙.丙.丁四人最关注教育问题,现准备从这四中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(画树状图或列表说明).20. (10分)(2019·广州模拟) 已知关于x的方程x2–(k+2)x+ k2+1=0(1) k取什么值时,方程有两个不相等的实数根?(2)如果方程有两个实数根、()且满足,求k的值和方程的两根.21. (10分) (2016八下·滕州期中) 若方程组的解中,x是正数,y是非正数.(1)求k的正整数解;(2)在(1)的条件下求一次函数y= 与坐标轴围成的面积.22. (10分) (2020九上·玉环期末) 如图,中,,,平分,交轴于点,点是轴上一点,经过点、,与轴交于点,过点作,垂足为,的延长线交轴于点,(1)求证:为的切线;(2)求的半径.23. (15分) (2019九上·宜昌期中) 如图,抛物线y=(x−1)2+n与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,−3),点D与C关于抛物线的对称轴对称.(1)求抛物线的解析式及点D的坐标;(2)点P是抛物线上的一点,当△ABP的面积是8,求出点P的坐标;(3)过直线AD下方的抛物线上一点M作y轴的平行线,与直线AD交于点N,已知M点的横坐标是m,试用含m的式子表示MN的长及△ADM的面积S,并求当MN的长最大时s的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、12-2、13-1、14-1、15-1、三、解答题 (共8题;共72分)16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
第8题图A DB CEF12 5题图2015——2016年永修县七校第二次大联考数学试卷考试时间:120分钟 试卷分数:120分一、选择题(本题共6小题,每小题3分,共18分) 1.-3的相反数是( ).A .3B . 3-C . 13-D .132.江西省修水县着力打造宁红茶品牌,落实宁红茶产业发展规划,提升宁红茶的品质,2015年宁红茶总销售额达856万元,创历史新高,宁红茶已真正成为修水县的支柱产业之一,则856万用科学记数法可表示为( )A .8.56×107B .0.856×107C .8.56×106D .0.856×1063.下列运算正确的是( ).A .224a a a +=B .236(2)8a a -=- C . 236a a a ⋅= D . 2222a a -=4.下列命题中不成立...的是( ). A . 矩形的对角线长度相等 B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D . 一组对边平行,另一组对边相等的四边形一定是平行四边形 5.如图,在□ABCD 中,E 、F 是对角线BD 上的两点,下列所给条件不.能证明...△ABE ≌△CDF 的是( ) A .BE =DFB .BF =DEC .AE =CFD .∠1=∠26.若二次函数2y ax bx c =++(a ≠0)的图象上有两点,坐标分别为(x 1,y 1),(x 2,y 2),其中x 1<x 2 ,120y y <,则下列判断中正确的是( )A .a <0B .24b ac -的值可能为0 C .方程20ax bx c ++=必有一根x 0满足x 1<x 0<x 2D .12y y <二、填空题:(本题共6小题,每小题3分,共18分.) 7.分解因式:3832x x -= .8. 如图,若AB 是圆O 的直径,CD 是圆O 的弦,58ABD ∠=o,则BCD ∠=_______.9.在Rt △ABC 中,已知∠C =90°,且AC =10,BC =24,点M 、N 分别 是AC 、BC 的中点,则MN 的长为 .10.已知点A (x 1,-2)、B (x 2,1)是直线y kx b =+(k <0)上的两点,则12x x - 0(填“>”、“=”或“<”).11.某校九年级五班有7个合作学习小组,各学习小组的人数分别为:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是 . 12.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DE ⊥AB ,垂足为E ,点B '在边AB 上,且与点B 关于直线DE 对称,连结CB ',当△AB 'C 为等腰三角形时,BD 的长为___ ______. 三、(本大题共5小题,每小题6分,共30分). 13. (每小题3分,共6分) (1) 计算:1)33()20152016(12-+--π(2)不等式组:27163(1)5x xx x +≥-⎧⎨-->⎩的解集是__________.14.(6分)先化简,再求值:2221(1)2111a a aa a a a --÷++++-, 其中13a =+.15.(6分)如图,已知AB 是⊙O 的直径,四边形AODE 是平行四边形。
九年级四月调考测试数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑1.有理数的相反数是()A. B. C. D.2.式子在实数范围内有意义,则的取值范围是()A. B. C. D.3.下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;①“从一副普通扑克牌中任意抽取一张,点数一定是3”()A.只有①正确B.只有①正确C.①①都正确D.①①都错误4.下列四个图案中,是中心对称图形的是()5.下列立体图形中,主视图是三角形的是()6.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?如果设木长尺、绳长尺,则可以列方程组是()A. B. C. D.7.某超市为了吸引顾客,设计了一种返现促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样。
规定:顾客在本超市一次性消费满200元,就可以在箱子里一次性摸出两个小球,两球数字之和即为返现金额。
某顾客刚好消费200元,则该顾客所获得返现金额不低于30元的概率是()A. B. C. D.8.若点A(,),B(,),C(,1)在反比例函数的图象上,则,,的大小关系是为()A. B. C. D.9.如图,等腰①ABC中,AB=AC=5cm,BC=8cm.动点D从点C出发,沿线段CB以2cm/s 的速度向点B运动,同时动点O从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为(s),以点O为圆心,OB 长为半径的①O与BA交于另一点E,连接AD.当直线DE与①O相切时,的取值是()A. B. C. D.10.我们探究得方程的正整数解只有1组,方程的正整数解只有2组,方程的正整数解只有3组……那么方程的正整数解的组数是()A.34 B.35 C.36 D.37二、填空题(共6小题,每小题3分,共18分)11.计算的结果是_______.12.在学校举行“中国诗词大会”的比赛中,五位评为给选手小明的平分分别为:90、85、90、80、95,这组数据的众数是_______.13.化简的结果是_______.14.如图,D为①ABC中BC边上一点,AB=CB,AC=AD,①BAD=27°,则①C的大小是_______.第14题图第16题图15.抛物线经过(,),(,)两点,则关于的一元二次方程的解是_______.16.如图,在矩形ABCD中,AB=6,BC=9,点E、F分别在BC、CD上,若BE=3,①EAF=45°,则DF=_______.三、解答题(共8题,共72分)17.计算:18.如图,AB①CD,EF分别交AB、CD于点G、H,①BGH、①DHF的平分线分别为GM、HN.求证:GM①HN.19.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,诵读经典”活动,学校随机抽查了部分学生,对他们每天的课外阅读时间进行调查,并将调查统计的结果分为四类:每天诵读时间分钟的学生记为A类,20分钟分钟的学生记为B类,40分钟分钟记为C 类,分钟的学生记为D类,收集数据绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)这次共抽取了_______名学生进行调查统计,扇形统计图中,D类所对应的扇形圆心角大小为_______;(2)将条形统计图补充完整;(3)如果该校共有2000名学生,请你估计该校C类学生约有多少人?20.如图,在下列的网格中,横纵坐标均为整数的点叫格点.例如:A(2,1)、B(5,4)、C(1,8)都是格点.(1)直接写出①ABC的形状;(2)要求在下图中仅用无刻度尺的直尺作图,将①ABC绕点A顺时针旋转角度得到①,=①BAC,其中B、C的对应点分别为,操作步骤如下:第一步:找个格点D,连接AD,使①DAB=①CAB;第二步:找两个格点,连接交AD于;第三步:连接,则△即为作出图形.请你按步骤完成作图,并直接写出三点的坐标.21.如图,在等腰①ABC中,AB=AC,AD是中线,E是边AC的中点,过B、D、E三点的①O交AC于另一点F,连接BF.(1)求证:BF=BC;(2)若BC=4,AD=,求①O的直径.22.某公司计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的,且不高于B种的.已知,A、B两种计算器单价分别为150元/个,100元/个.设购买A种计算器个.(1)求计划购买这两种计算器所需费用(元)与的函数关系式;(2)问该公司按计划购买这两种计算器有多少种方案?(3)由于市场行情波动,实际购买时,A种计算器单价下调了()元/个,同时B种计算器单价上调了元/个.此时购买这两种计算器所需最少费用为12150元,求的值.23.如图,正方形ABCD的对角线交于点O,点E在边BC上,.AE交OB于点F,过点B作AE垂线BG交OC于点G,连接GE.(1)求证:OF=OG;(2)用含有的代数式表示①OBG的值;(3)若①GEC=90°,直接写出的值.24.已知抛物线经过点A(,).(1)如图,过点A分别向轴和轴作垂线,垂足分别为B,C,得到矩形ABOC,且抛物线经过点C.①请直接写出该抛物线解析式;①将抛物线向左平移()个单位,分别交线段OB,AC于D、E两点,若直线DE刚好平分矩形ABCO的面积,求的值;(2)将抛物线平移,使点A的对应点为,其中.若平移后的抛物线仍然经过点A,求平移后的抛物线定点所能达到最高点时的坐标.X k B 1 . c o m。
2015——2016年永修县七校第二次大联考语文试卷考试时间:150分钟试卷分数:120分考试说明:1.本卷共四大题,24小题。
2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、语言知识及运用(本题共5小题,每小题2分,共10分)1.下列字形和加点字注音全部正确的一项是()(2分)A.惬.意(xiá)栖.(qī)息九曲.连环(qǔ)销声匿迹B.哺.育(bǔ)惯.(guàn)通硕果累.累(lěi)藏污纳垢C.默契.(qì)迷惘.(wǎng)豁.(huò)然开朗我行我素D.荫庇.(pì)绯.(fēi)红芒.(máng)刺在背通霄达旦2.下列句子加点词语使用正确的一项是()(2分)A. 黄山的石、雾、松是大自然的造化,无不精雕细琢....,令人赞叹不止。
B.《简爱》是一篇炙手可热....的小说,深受广大读者的喜爱。
C. 学习语文一定要学会在文章中断章取义....,咬文嚼字,品词析句。
D.一个又一个大的四方竹纸本子,写满了密密麻麻的小楷,如群蚁排衙....。
3.下列句子没有语病的一项是()(2分)A.《三国演义》中,诸葛亮与周瑜两位军事天才团结协作、联手指挥了一场著名的以少胜多的战役是赤壁之战。
B.学习数学要一步一步地循序渐进。
C.俄罗斯举行规模空前的阅兵式,目的是号召人们反对战争、珍爱和平。
D.在暮霭中矗立,向南凝视,故乡在绚烂的彩霞中,化为我生命的宫殿。
4.下列句子组成语段顺序排列正确的一项是()(2分)①我们在内有自我的坚持,在外又能与人随和相处,能在这两者间平衡,真是大智慧。
②林黛玉带着不妥协的坚持死去,③我们永远都会在两种性格之间矛盾。
④我们性格里都有林黛玉和薛宝钗,⑤薛宝钗因懂得圆融跟现世妥协而活下来。
A.④③②⑤①B.①②⑤④③ C.④⑤②③①D.①④③②⑤5.下面改句与画线句意思不符合的一项是()(2分)A.到一周岁生日,还打造了一个分量不小的长命锁,金光闪闪的,差一点把何满子勒断了气。
某某省某某市永修县七校2016届九年级化学4月联考试题说明:1.本卷共有五大题。
24小题.全卷满分100分,考试时间为70分钟。
2.本卷可能用到的相对原子质量:H-1 N-14 O-16 S-32 Cl-35.5 Cu-64 C-12 Ca--40 3.本卷分为试题卷和答题卷,答案要求写在答题卷上。
一、单项选择题(每小题2分,共20分。
每小题的4个选项中只有1个符合题意。
)1.下列物质常温下呈固态的是()A.牛奶B.氮气C.玻璃D.氧气2.下列金属活动性最弱的是()A.银B.铜C.镁D.钠3.在化肥中硝酸钾【KNO3】属于()A.钾肥B.氮肥C.磷肥D.复某某4.实验室制取二氧化碳,可直接采用的发生装置是()A.B.C.D.5.“超临界水”因具有许多优良特质而被科学家追捧,它是指当气压和温度达到一定值时,水的液态和气态完全交融在一起的流体。
下面有关“超临界水”的说法正确的是()A.它是混合物B.它是一种不同于水的物质C.它的分子之间有间隔D.它的一个分子由4个氢原子和2个氧原子构成6.研究和学习化学,有许多方法。
下列方法中所举示例错误..的是()选项方法示例A 实验法用磷做“测定空气中氧气含量”的实验B 分类法根据组成物质的元素种类,将纯净物分为单质和化合物C 归纳法根据稀盐酸、稀硫酸等物质的化学性质,归纳出酸的通性D 类比法根据金属铝能与稀盐酸反应,推测金属铜也能与稀盐酸反应7.下列实验操作符合安全要求的是()A.验证氢气的可燃性B.闻气体气味 C.移走蒸发皿D.稀释浓硫酸8.如图的反应中,甲、乙、丙三种分子的个数比为1:3:2,则从图示中获得的信息正确的是()A.生成物一定属于氧化物B.原子种类在化学反应中发生了变化C.该反应不可能是分解反应D.乙分子中A与B的原子个数比为1:29.下列物质的用途中,与其化学性质无关的是()A.小苏打用于焙制糕点B.熟石灰用于改良酸性土壤C.食醋用于除热水瓶中的水垢D.酒精用于给发烧病人擦拭以降低体温10.下列实验过程与如图所示描述相符合的一组是()A.①表示水的电解B.②表示在一定温度下,向饱和氢氧化钙溶液中加入氧化钙C.③表示将稀盐酸滴入氢氧化钠溶液中,在M点时,溶液中的溶质只有氯化钠D.④表示向盐酸和氯化铜的混合溶液中滴加氢氧化钠溶液二、选择填充题(本大题包括5小题,每小题3分,共15分。
江西中考数学试卷真题2016以下是江西中考2016年数学试卷的真题。
一、选择题1. 几何体的棱数、面数和顶点数分别是4, 8, 6的是:A. 三棱锥B. 四面体C. 正方体D. 三角柱2. 曲线y = x² - 4x + 3的图象是:A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 双曲线3. 已知一扇形的半径为10 cm, 弧长为12 cm, 则该扇形的面积为:A. 24 cm²B. 36 cm²C. 60 cm²D. 120 cm²4. 在象限内, 具有函数关系y = 2x - 4的图象是:A. 第一象限内的一条直线B. 第二象限内的一条直线C. 第三象限内的一条直线D. 第四象限内的一条直线5. 一个有4个字母组成的人名的名字的各字母的排序是有规律的。
若第一个字母是A, 第二个字母是B, 第三个字母是C, 第四个字母是D, 则按此排序能组成的名字的个数是:A. 6B. 10C. 12D. 16二、填空题1. 三维图形中,立体角的度数总和是_________度。
2. 已知圆的半径为6 cm,圆的周长是_________cm。
3. 若函数y = ax + b和y = 6x + a的图象重合,则a = _________。
4. 两个相交直线之间的夹角叫做_________。
三、解答题1. 凸多边形的对角线的条数比顶点数E和边数N的关系是:_____________。
2. 在平行四边形ABCD中,AB = 8 cm,AD = 6 cm,且∠DAB = 120°。
请计算平行四边形ABCD的面积。
3. 小明有一条绳子,长12 m。
他打算用这条绳子围在自家的花圃周围。
如果他花圃的长是3 m,宽是2 m,则还剩下多少米的绳子?4. 已知函数y = x² - 2x + 1,找出其中的最小值。
四、应用题1. (1) 某学校禁止车辆在操场上行驶。
2016年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.【点评】本题考查解一元一次不等式\在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式的方法.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.【点评】本题考查了合并同类项、积的乘方、单项式乘单项式、完全平方公式,掌握运算法则是解答本题的关键.4.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义即可得到结果.【解答】解:其主视图是C,故选C.【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣1【考点】根与系数的关系.【分析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.【点评】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.6.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③【考点】相似三角形的判定与性质;三角形中位线定理.【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=﹣1.【考点】有理数的加法.【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【解答】解:﹣3+2=﹣1.故答案为:﹣1.【点评】此题考查了有理数的加法.注意在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.8.(3分)(2016•江西)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠B'AC'=33°,∠BAB'=50°,从而得到∠B′AC的度数.【解答】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为50°.【考点】平行四边形的性质.【分析】由“平行四边形的对边相互平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边相互平行推知DC∥AB是解题的关键.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=4.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【点评】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB=(k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5\sqrt{2}或4\sqrt{5}或5.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=6代入进行计算即可.【解答】解:原式=÷=÷=•=,当x=6时,原式==﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A(2,0),AB=∴BO===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C(0,﹣1)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣1【点评】本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【考点】条形统计图;用样本估计总体.【分析】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案;(3)无确切答案,结合自身情况或条形统计图,言之有理即可.【解答】解:(1)乙组关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【考点】作图—应用与设计作图.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【点评】本题考查作图﹣应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.【考点】切线的性质;垂径定理.【分析】(1)连接OC,根据切线的性质和PE⊥OE以及∠OAC=∠OCA得∠APE=∠DPC,然后结合对顶角的性质可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【解答】(1)证明:连接OC,∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.【点评】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系直接求值;(2)根据数量关系找出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式(方程或方程组)是关键.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为\frac{1}{2};(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【考点】列表法与树状图法.【分析】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案.【解答】解:(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为:=;故答案为:;(2)画树状图得:则共有12种等可能的结果;列表得:∴乙获胜的概率为:.【点评】此题考查了列表法或树状图法求概率.注意根据题意列出甲、乙的“最终点数”的表格是难点.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•江西)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.五、(本大题共10分)22.(10分)(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为60°﹣\frac{180°}{n}(用含n的式子表示)【考点】几何变换综合题.【分析】(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;(5)用(3)的方法求出正n边形的,“叠弦角”的度数.【解答】解:(1)如图1,∵四ABCD是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'(ASA)∴AP=AO,∵∠OAP=60°,∴△AOP是等边三角形,(2)如图2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO∴△APE≌△AOE'(ASA)∴∠OAE'=∠PAE.在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AA AE=AB ∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN∴Rt△APM≌Rt△AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3)由(1)有,△APD≌△AOD',∴∠DAP=∠D′AO,在△AD′O和△ABO中,,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋转得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案为:15°,24°.(4)如图3,∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO∴∠PAO=∠FAO=60°,∴△PAO是等边三角形.故答案为:是(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°﹣故答案:60°﹣.【点评】此题是几何变形综合题,主要考查了正多边形的性质旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.六、(本大题共12分)23.(12分)(2016•江西)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n (()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)直接把点A1的坐标代入y=ax2求出a的值;(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=2×12=2;A2B2是点A2的纵坐标:则A2B2=2×()2=;…则A n B n=2x2=2×[()n﹣1]2=;B1B2=1﹣=,B2B3=﹣==,…,B n B n+1=;(3)因为Rt△A k B k B k+1与Rt△A m B m B m+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1≤k<m≤n(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比.【解答】解:(1)∵点A1(1,2)在抛物线的解析式为y=ax2上,∴a=2;(2)A n B n=2x2=2×[()n﹣1]2=,B n B n+1=;(3)由Rt△A n B n B n+1是等腰直角三角形得A n B n=B n B n+1,则:=,2n﹣3=n,n=3,∴当n=3时,Rt△A n B n B n+1是等腰直角三角形,②依题意得,∠A k B k B k+1=∠A m B m B m+1=90°,有两种情况:i)当Rt△A k B k B k+1∽Rt△A m B m B m+1时,=,=,=,所以,k=m(舍去),ii)当Rt△A k B k B k+1∽Rt△B m+1B m A m时,=,=,=,∴k+m=6,∵1≤k<m≤n(k,m均为正整数),∴取或;当时,Rt△A1B1B2∽Rt△B6B5A5,相似比为:==64,当时,Rt△A2B2B3∽Rt△B5B4A4,相似比为:==8,所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.【点评】本题考查了二次函数的综合问题,这是一个函数类的规律题,把坐标、二次函数和线段有机地结合在一起,以求线段的长为突破口,以相似三角形的对应边的比为等量关系,代入计算解决问题,综合性较强,因为本题小字标较多,容易出错.2016年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2B.C.0D.﹣22.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n24.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2B.1C.﹣2D.﹣16.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=.8.(3分)(2016•江西)分解因式:ax2﹣ay2=.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB 于点E,交CB的延长线于点F,则∠BEF的度数为.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三、解答题(本大题共5小题,每小题3分,满分27分)13.(3分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共4小题,每小题8根,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;。
2016年江西中考数学大联考试卷3(带答案和解释)2016年江西省中考大联考数学试卷(三)一、选择题(每小题3分,共18分) 1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是() A.∠A=30°,∠B=40°B.∠A=30°,∠B=110° C.∠A=30°,∠B=70° D.∠A=30°,∠B=90° 2.下列各数中是有理数的是() A. B.4πC.sin45° D. 3.关于函数y=2x,下列结论中正确的是() A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限 C.y随x的增大而增大D.不论x取何值,总有y>0 4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A. B. C. D. 5.如图,有一个正方体纸巾盒,它的平面展开图是() A. B. C. D. 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是() A.左、右两个几何体的主视图相同 B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(每题3分,共24分) 7.函数y= 中,自变量x的取值范围是. 8.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为. 9.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为. 10.已知�x2+4x的值为6,则2x2�8x+4的值为. 11.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是个. 12.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为() 13.如图,点A、B是反比例函数(x>0)图象上的两个点,在△AOB中,OA=OB,BD垂直于x轴,垂足为D,且AB=2BD,则△AOB的面积为. 14.如图,半径为1的⊙P在射线AB上运动,且A(�3,0)B(0,3),那么当⊙P 与坐标轴相切时,圆心P的坐标是.三、解答题 15.解不等式组:,并在数轴上把解集表示出来. 16.已知(a+2+ )2与|b+2�|互为相反数,求(a+2b)2�(2b+a)(2b�a)�2a2的值. 17.当a<�1时,代数式6�9a�的值是正的还是负的?试说明你的理由. 18.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(�3,1),B、C两点在直线y=�3上,D、E两点在y轴上.(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;(2)求F点到y轴的距离. 19.如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为n≥8 .规定:顶点既在圆上又是正方形格点的直角三角形称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来. 20.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1 一班 5 8 8 9 8 10 10 8 5 5 二班 10 6 6 9 10 4 5 7 10 8 表2 班级平均数中位数众数方差及格率优秀率一班 7.6 8 a3.82 70% 30% 二班 b 7.5 104.94 80% 40% (1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率. 21.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元? 22.如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.(1)求证:四边形ABFE是平行四边形.(2)△ABD 沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,①当t为何值时,▱ABFE是菱形?请说明你的理由.②▱ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由. 23.已知二次函数.(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a�k2+6k�4=0 有大于0且小于3的实数根,求a的整数值. 24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足 = ,求的值.(提示:请利用备用图进行探求) 2016年江西省中考大联考数学试卷(三)参考答案与试题解析一、选择题(每小题3分,共18分) 1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是() A.∠A=30°,∠B=40° B.∠A=30°,∠B=110° C.∠A=30°,∠B=70° D.∠A=30°,∠B=90° 【考点】命题与定理.【分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解答】解:例如:若∠A=30°,∠B=70°,则∠A+∠B>90°.故选C 2.下列各数中是有理数的是() A. B.4π C.sin45° D.【考点】特殊角的三角函数值.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、 = =3 ,是无理数; B、4π是无理数; C、sin45°= 是无理数; D、 = =2,是有理数;故选D. 3.关于函数y=2x,下列结论中正确的是() A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限 C.y随x的增大而增大 D.不论x取何值,总有y>0 【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误; B、函数图象经过第一、三象限,错误; C、y随x的增大而增大,正确; D、当x>0时,才有y>0,错误;故选C. 4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A. B. C. D.【考点】生活中的旋转现象.【分析】根据△ABC 绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A. 5.如图,有一个正方体纸巾盒,它的平面展开图是() A. B. C. D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B. 6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是() A.左、右两个几何体的主视图相同 B.左、右两个几何体的左视图相同 C.左、右两个几何体的俯视图不相同 D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误; B、左、右两个几何体的左视图为:,故此选项正确; C、左、右两个几何体的俯视图为:,故此选项错误; D、由以上可得,此选项错误;故选:B.二、填空题(每题3分,共24分) 7.函数y= 中,自变量x的取值范围是x≥0且x≠1.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x�1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1. 8.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为4.32×10�6 .【考点】科学记数法―表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10�n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000432用科学记数法表示为4.32×10�6.故答案为:4.32×10�6. 9.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为70π.【考点】由三视图判断几何体.【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(π×42�π×32)=70π,故答案为70π. 10.已知�x2+4x 的值为6,则2x2�8x+4的值为�8 .【考点】代数式求值.【分析】直接将原式变形进而将已知代入求出答案.【解答】解:∵�x2+4x=6,∴x2�4x=�6,∴2x2�8x+4=2(x2�4x)+4 =2×(�6)+4 =�8.故答案为:�8. 11.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是20 个.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.【解答】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在20%和40%,∴口袋中白色球的个数很可能是(1�20%�40%)×50=20(个).故答案为:20. 12.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质得出位似比进而得出答案.【解答】解:如图所示:∵△ABO缩小后变为△A′B′O,∴△OAB∽△OA′B′,∴ = = ,∵线段AB上有一点P(m,n),∴点P在A′B′上的对应点P′的坐标为:(,). 13.如图,点A、B是反比例函数(x>0)图象上的两个点,在△AOB中,OA=OB,BD垂直于x轴,垂足为D,且AB=2BD,则△AOB的面积为 3 .【考点】反比例函数综合题.【分析】作等腰三角形底边上的高,利用等腰三角形的性质和已知条件得到两个三角形全等,由此可以得到△AOB的面积是△OBD的2倍,进而求得△OAB的面积.【解答】解:作OC⊥AB于C点,∵OA=OB,∴AC=CB,∵AB=2BD,∴BC=BD,∵∠BDO=∠BCO=90°,OB=OB,∴△OCB≌△ODB,∵S△OBD= ,∴S△OAB=2S△OBC=2× =3.故答案为:3. 14.如图,半径为1的⊙P在射线AB上运动,且A(�3,0)B(0,3),那么当⊙P与坐标轴相切时,圆心P的坐标是(�2,1)或(�1,2)或(1,4).【考点】切线的性质;坐标与图形性质.【分析】由⊙P与坐标轴相切画出符合题意的图形可知有三种情况,再根据圆的半径长为1以及点A和点B的坐标即可求出不同情况下圆心的坐标.【解答】解:如图所示:当点P在第一项象限时,则点P的坐标为(1,4);当点P在第二象限时,则点P′坐标为(�1,2);点P″的坐标为(�2,1),故答案为:(�2,1)或(�1,2)或(1,4).三、解答题 15.解不等式组:,并在数轴上把解集表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式,求出其解集,在数轴上表示出来,找出公共部分,即求出了不等式组的解集.【解答】解:解第一个不等式得x<1,解第二个不等式得x≥�2,所以不等式组的解集为�2≤x<1.其解集在数轴上表示为: 16.已知(a+2+ )2与|b+2�|互为相反数,求(a+2b)2�(2b+a)(2b�a)�2a2的值.【考点】整式的混合运算―化简求值.【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出a与b 的值,原式利用完全平方公式,平方差公式化简,去括号合并后代入计算即可求出值.【解答】解:∵(a+2+ )2与|b+2� |互为相反数,∴(a+2+ )2+|b+2� |=0,∴a=�2�,b=�2+ ,则原式=a2+4ab+4b2�4b2+a2�2a2=4ab=4×(�2�)×(�2+ )=4. 17.当a<�1时,代数式6�9a�的值是正的还是负的?试说明你的理由.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据a<�1进行判断即可.【解答】解:是正的.理由:原式= =�,∵a<�1,(3a�1)2>0,∴原式的值是正的. 18.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(�3,1),B、C两点在直线y=�3上,D、E两点在y轴上.(1)在△ABC中,作AH、CK分别垂直BC、AB于H、K,求证:KC=HA;(2)求F点到y轴的距离.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】(1)欲证明KC=HA,只要证明△AKC≌△CHA即可.(2)作PF⊥DE于E,只要证明△AKC≌△DPF即可.【解答】(1)证明:如图,AH⊥BC于H,CK⊥AB于K.∴∠DPF=∠AKC=∠CHA=90°,∵AB=BC,∴∠BAC=∠BCA,在△AKC和△CHA中,,∴△AKC≌△CHA,∴KC=HA.(2)作PF⊥DE于E.∵B、C在y=�3上,且点A的坐标为(�3,1),∴AH=4,∴KC=AH=4,∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF,在△AKC和△DPF中,,∴△AKC≌△DPF,∴KC=PF=4.∴F点到y轴的距离4. 19.如图,下列正方形网格的每个小正方形的边长均为1,⊙O的半径为n≥8 .规定:顶点既在圆上又是正方形格点的直角三角形称为“圆格三角形”,请按下列要求各画一个“圆格三角形”,并用阴影表示出来.【考点】作图―应用与设计作图.【分析】(1)以直径为斜边,直角边分别为2和6的圆内接直角三角形满足要求;(2)以直径为斜边,直角边分别为2 和4 的圆内接直角三角形满足要求;(3)以直径为斜边,直角边为2 的圆内接等腰直角三角形满足要求.【解答】解:(1)如图1所示,△ABC即为所求三角形,其中AC=2,BC=6;(2)如图2所示,△DEF即为所求作三角形,其中DF=2 ,EF=4 ,则其面积为×2 ×4 =8;(3)如图3所示,△PQR即为所求作三角形,其中PR=QR,∠PRQ=90°,∵PQ= =2 ,∴∠PRQ所对弧长为 = π. 20.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1 一班 5 8 8 9 8 10 10 8 5 5 二班 10 6 6 9 104 5 7 10 8 表2 班级平均数中位数众数方差及格率优秀率一班 7.6 8 a 3.82 70% 30% 二班 b 7.5 10 4.94 80% 40% (1)在表2中,a= 8 ,b= 7.5 ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【考点】列表法与树状图法;加权平均数;中位数;众数;方差.【分析】(1)分别用平均数的计算公式和众数的定义解答即可;(2)方差越小的成绩越稳定,据此求解;(3)列表或树状图后利用概率公式求解即可;【解答】解:(1)∵数据8出现了4次,最多,∴众数a=8; b= =7.5;(2)一班的平均成绩高,且方差小,较稳定,故一班成绩好于二班;(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P (一男一女)= = . 21.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据买了“雀巢巧克力”和“趣多多小饼干”共10包,“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元,列出方程组,求解即可;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,求出购物金额,若在B超市购物花费少,也求出购物金额,从而得出去哪家超市购物更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据在B超市累计购物超过100元后,超过100元的部分打八折,列出不等式,再进行求解,即可得出答案.【解答】解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m�50)<100+0.8(m�100),解得:m<150,若在B超市购物花费少,则50+0.9(m�50)>100+0.8(m�100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n�100)×0.8≤20n,解得:n≥8 ,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元. 22.如图,已知△ABD和△CEF都是斜边为2cm的全等直角三角形,其中∠ABD=∠FEC=60°,且B、D、C、E都在同一直线上,DC=4.(1)求证:四边形ABFE是平行四边形.(2)△ABD沿着BE的方向以每秒1cm的速度运动,设△ABD运动的时间为t秒,①当t为何值时,▱ABFE是菱形?请说明你的理由.②▱ABFE有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.【考点】四边形综合题.【分析】(1)根据全等三角形的性质得到AB=EF,根据平行线的判定定理证明AB∥EF,根据平行四边形的判定定理证明结论;(2)①根据△ABD的移动速度和时间得到D 与C重合,根据菱形的判定定理解答即可;②根据矩形的性质和正弦的定义求出BE,根据正切的定义求出AE,求出CD的长,得到t的值,根据矩形的面积公式求出面积.【解答】(1)证明:∵已知△ABD 和△CEF都是斜边为2cm的全等直角三角形,∴AB=EF,∵∠ABD=∠FEC,∴AB∥EF,又AB=EF,∴四边形ABFE是平行四边形;(1)①当t=4时,▱ABFE是菱形.理由如下:∵△ABD沿着BE的方向以每秒1cm的速度运动, 4秒后,△ABD移动的距离为4÷1=4,又DC=4,∴D与C重合,∴AF⊥BE,又四边形ABFE是平行四边形,∴四边形ABFE是菱形;②当四边形ABFE是矩形时,∠BAE=90°,∵∠ABD=60°,∴∠BEA=30°,∴BE=2AB=4,AE= =2 ,∵∠ABD=60°,AB=2,∴BD=1,同理CE=1,∴CD=4�1�1=2,t=2÷1=2秒,矩形的面积=AB×AE=4 cm2. 23.已知二次函数.(1)求证:不论k为任何实数,该函数的图象与x轴必有两个交点;(2)若该二次函数的图象与x轴的两个交点在点A(1,0)的两侧,且关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,求k的整数值;(3)在(2)的条件下,关于x的另一方程x2+2(a+k)x+2a�k2+6k�4=0 有大于0且小于3的实数根,求a的整数值.【考点】二次函数综合题.【分析】(1)表示出方程:x2+kx+ k� =0的判别式,即可得出结论;(2)二次函数的图象与x轴的两个交点在点A(1,0)的两侧,则可得当x=1时,函数值y<0,再由关于x 的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,可得出k的取值范围,从而得出k的整数值;(3)将求得的k的值代入,然后可求出方程的根,根据方程有大于0且小于3的实数根,可得出a的取值范围,继而得出a的整数值.【解答】(1)证明:x2+kx+ k�=0,△1=b2�4ac=k2�4( k�) =k2�2k+14 =k2�2k+1+13 =(k�1)2+13>0,∴不论k为任何实数,该函数的图象与x轴必有两个交点;(2)解:∵二次函数y=x2+kx+ k�的图象与x轴的两个交点在点(1,0)的两侧,且二次函数开口向上,∴当x=1时,函数值y<0,即1+k+ k�<0,解得:k<,∵关于x的一元二次方程k2x2+(2k+3)x+1=0有两个不相等的实数根,∴k≠0且△2=b2�4ac=(2k+3)2�4k2=4k2+12k+9�4k2=12k+9>0,∴k>�且k≠0,∴�<k<且k≠0,∴k=1;(3)解:由(2)可知:k=1,∴x2+2(a+1)x+2a+1=0,解得x1=�1,x2=�2a�1,根据题意,0<�2a�1<3,∴�2<a<�,∴a的整数值为�1. 24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+ ,PA= ,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2 ;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足 = ,求的值.(提示:请利用备用图进行探求)【考点】勾股定理的应用;相似形综合题.【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长;过点C作CD⊥AB,垂足为D,从而可求得CD、PD的长,然后在Rt三角形CDP中依据勾股定理可求得PC的长;②△ACB为等腰直角三角形,CD⊥AB,从而可求得:CD=AD=DB,然后根据AP=DC�PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CD⊥AB,垂足为D,则AP=(AD+PD)=(DC+PD),PB=(DP�BD)=(PD�DC),可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PD 的长(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC和PC的长度即可.【解答】解:(1)如图①:①∵△ABC 是等腰直直角三角形,AC=1+ ∴AB= = = + ,∵PA= ,∴PB= ,作CD⊥AB于D,则AD=CD= ,∴PD=AD�PA= ,在Rt△PCD中,PC= =2,故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD�PD)2=(DC�PD)2=DC2�2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DC•PD+PD2 ∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+B P2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2, PB2=(DP�BD)2=(PD�DC)2=DC2�2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵ ,∴ .∴ .在Rt△CP1D中,由勾股定理得: = = DC,在Rt△ACD中,由勾股定理得:AC= = = DC,∴ = .②当点P位于点P2处时.∵ = ,∴ .在Rt△CP2D中,由勾股定理得: = = ,在Rt△ACD中,由勾股定理得:AC= = = DC,∴ .综上所述,的比值为或. 2017年2月28日。
2016年永修县九年级七校联考地理试题卷一、选择题(15)分2015年5月8日到10日,国家主席出席在莫斯科举行的纪念卫国战争胜利70周年庆典并访问俄罗斯。
图1为俄罗斯示意图。
读图1,回答1一2题。
1.俄罗斯首都莫斯科大致在图中的位置是........................................ ( )A.①B.②C.③D.④2.图中能代表俄罗斯母亲河(伏尔加河)的是....................................... ( )A.甲B.乙C.丙D.丁读某极地经纬线图(图2),回答3一4题。
3.图中C在B什么方向......................................................... ( )A.东北B.西北C.东南D.西南4.一个人若由B点沿直线到C点,则他行走的方向是............................... ( )A.先向东北再向东南B.先向西北再向东南C.先向西南再向东南D.先向东南再向东北读图3,回答5一6题5.某某某日5:10日出,且该日昼长达一年中极值,此时地球公转位于甲图中......... ( )A. AB. BC. CD.D6.甲图与乙图时间段对应正确的一组是........................................... ( )A①一d B.②一a C.③一C D.④一b东平某中学地理兴趣小组开展了一次夏令营野外考察活动。
并绘制了等高线地形图(图4)。
据此完成7一8题7.从他们绘制的地形图中可以提取的地理信息是.................................. ( ) A.地势大致西高东低 B.地形以高原、山地为主C.甲、乙两村均位于盆地 D.悬崖顶部海拔300多米8.考察小组选择了①②③④四个观测点,其中记录错误的是......................... ( )A.在①处看到了成片的脐橙园B.站在②处看到了甲、乙两村C.在③处看到悬崖和北流的河水D.到④处考察了河流上游的植被读”中国四大地理区域”图(图5)完成9一11题9.甲区域是................................. ( )A.北方地区B.南方地区C.西北地区D.青藏地区10.乙区域河流,共同的水文特征是.......... ( )A.水量大 B.讯期长 C.含沙量大 D.有结冰期11.下列景观属于秦岭――淮河一线以南的是.... ( )A.望一无际麦金黄B.河网密布稻花香C.白山黑水冬漫长D.风吹草低见牛羊第31届夏季奥林匹克运动会将于2016年8月5日一21日在巴西的里约热内卢举行。
江西初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列计算错误的是【】A.B.C.D.2.使有意义的x的取值范围是……………………………………………【】A.x≥3B.x≥3且x≠-1C.x≤3D.x<33.在式子中,是最简二次根式的式子有【】个A.2B.3C.1D.04.把的根号外的因式移到根号内的结果是………………………………【A.B.C.D.5.下列方程①;②③;④;⑤,其中一元二次方程有…………………………【】A.1个B.2个C.3个D.4个6.一元二次方程–5x+3x2 ="12" 的二次项系数、一次项系数、常数项分别是……【】A.-5,3,12B.3,-5,12C.3,-5,-12D.-3,5,-127.已知一个三角形的两边长是方程的根,则第三边y长的取值范围是………………………………………………………………………………【】A.y<8B.2<y<8C.3<y<5D.无法确定8.对任意实数y,多项式的值是一个……………………………【】A.负数B.非负数C.正数D.无法确定正负9.下列方程没有实数根的是………………………………………………………【】A.x2-x-1=0B.x2-6x+5=0C.D.2x2+x+1=0.10.在一幅长80cm,宽50cm的矩形北京奥运风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,那么x满足的方程是……………【】A .x 2+130x -1400=0B .x 2+65x -350="0"C .x 2-130x -1400=0D .x 2-65x -350=0二、填空题1.计算:= .2.若方程无解,则b 应满足的条件是: 。
3.关于的一元二次方程的一个根是0,则的值为 。
江西省九江市数学中考模拟试卷(4月)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共19分)1. (2分)(2017·宁波模拟) -2的相反数是()A . 2B .C . -2D .2. (2分)(2018·普宁模拟) 下列计算正确的是()A . a5+a5=a10B . a7÷a=a6C . a3•a2=a6D . (﹣a3)2=﹣a63. (2分) (2019九上·官渡期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分) (2020九下·深圳月考) 以下说法正确的是()A . 小明做了次掷图钉的实验,发现次钉尖朝上,由此他说钉尖朝上的概率是B . 一组对边平行,另一组对边相等的四边形是平行四边形C . 点都在反比例函数图象上,且则;D . 对于一元二元方程,若则方程的两个根互为相反数5. (2分)(2020·台安模拟) 如图所示的几何体是由五个小正方形组合而成的,则它的左视图是()A .B .C .D .6. (2分)(2015·衢州) 如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα= ,则“人字梯”的顶端离地面的高度AD是()A . 144cmB . 180cmC . 240cmD . 360cm7. (2分) (2018九上·梁子湖期末) 某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,如果平均每月增长率为x,则由题意可列方程()A . 100(1+x)2=500B . 100+100•2x=500C . 100+100•3x=500D . 100[1+(1+x)+(1+x)2]=5008. (2分)(2017·永嘉模拟) 如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A .B .C .D . 29. (2分) (2019九上·上海月考) 已知中,D、E分别在AB、AC上,下列条件中,能推断与相似的有()个①∠BDE+∠C=180°;② ;③ ;④∠A=90°,且A . 1B . 2C . 3D . 410. (1分) (2019八上·嘉兴期末) 如图,在一张直角三角形纸片ABC中,∠ACB=90°,BC=1,AC= ,P 是边AB上的一动点,将△ACP沿着CP折叠至△A1CP.当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP的度数为________。
2016年永修县九年级七校联考数学试题卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各实数中,最小的是................................................... ( )A. π- B. ()01- C. 31- D. |-2|2. 2015年第一季度我国彩电销量为1233万台,将1233万用科学计数法可表示为.... ( )A. 51033.12⨯ B. 310233.1⨯ C. 8101233.0⨯ D. 710233.1⨯3.如下图是一根钢管的直观图,则它的三视图为 .................................. ( )4.下列计算正确的是......................................................... ( )A. 3m+2n=5mnB. (ab2)3=a3b5C.x5•x=x6 D. y3÷y3=y5.如右图,以原点为圆心的圆与反比例函数kyx=的图象交于A、B、C、D四点,顺次连接这四点所围成的四边形为 ( )A. 平行四边形B. 矩形C. 菱形D. 以上答案都不对6.如下图,在矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是 .............................. ( )二、填空题(本大题共8小题,每小题3分,共24分)7.因式分解:a2b - b= 。
8.如右图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为。
9.不等式组⎩⎨⎧≥-≤-1,02xx的解集为。
10.若m、n是方程x2-2x-3=0的两个实数根,则m2+mn+n2的值为。
2016年永修县九年级七校联考数学试题卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各实数中,最小的是 ................................................... ( ) A. π-B. ()01-D. |-2|2. 2015年第一季度我国彩电销量为1233万台,将1233万用科学计数法可表示为 .... ( ) A. 51033.12⨯B. 310233.1⨯C. 8101233.0⨯D. 710233.1⨯3.如下图是一根钢管的直观图,则它的三视图为 .................................. ( )4.下列计算正确的是 ......................................................... ( )A. 3m +2n =5mnB. (ab 2)3=a 3b 5 C .x 5•x =x 6 D. y 3÷y 3=y 5.如右图,以原点为圆心的圆与反比例函数ky x=的图象交于 A 、B 、C 、D 四点,顺次连接这四点所围成的四边形为 ( ) A. 平行四边形 B. 矩形 C. 菱形 D. 以上答案都不对6.如下图,在矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的平分线交AB 于点E.设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 .............................. ( )二、填空题(本大题共8小题,每小题3分,共24分)7.因式分解:a 2b - b = 。
8.如右图,AB ∥CD,∠A=45°,∠C=28°,则∠AEC 的大小为 。
9.不等式组⎩⎨⎧≥-≤-1,02x x 的解集为 。
10.若m 、n 是方程x 2-2x-3=0的两个实数根,则m 2+mn +n 2的值为 。
11.永修某旅行社组织甲、乙两个旅游团分别到庐山、婺源旅游。
已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人。
问甲、乙两个旅游团各有多少人?设甲、乙两个旅游团各有x 人,y 人,根据题意可列方程组为 。
12.如右图,在矩形ABCD 中,点E,F 分别是AB,CD 的中点,连接DE 和BF, 分别取DE,BF 的中点M,N,连接AM 、CN 、MN ,若AB=BC= 则图中阴影部分的面积为 。
13.如图,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠A =20°,则∠B 的第8题第13题度数是 。
14.如图,在边长为6的正方形ABCD 中,P 点是直线..BC 上的一动点, 连接AP ,过点A 作AP 的垂线交射线PD 于点Q ,当△PAD 是等腰三角形时,线段DQ 的长为 。
三、(本大题共4小题,每小题6分,共24分)15.201(20152016)2sin 60322-⎛⎫--++ ⎪⎝⎭16.先化简:34211x x x x x --⎛⎫-÷⎪--⎝⎭ ,再任选一个你喜欢的数x 代入求值。
17.(1)如图1已知△ABC ,AB =BC,以AB 为直径的⊙O 与AC 相交于点D ,请你用无刻度...的直尺作出∠ABC 的平分线BP ;(2)如图2已知△ACD ,AD =CD,以AB 为直径的⊙O 经过A 、C 、D 三点,请你用无刻度...的直尺作出∠ABC 的平分线BP 。
(保留作图的痕迹,不写作法)18.为了进一步增强学生体质,据悉,永修县2016年中考体育测试将进行改革,测试项目为:⑴每位学生将有多少种选择方案?⑵用树状图或列表法的方法求小刚(男生)与小强(男生)将选择同种方案的概率。
四、(本大题共4小题,每小题8分,共32分) 19.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC 与AFE 按如图1所示位置放置,现将Rt △AEF 绕A 点按逆时针方向旋转角α(0°<α<90°),如图2, AE 与BC 交于点M ,AC 与EF 交于点N,BC 与EF 交于点P 。
(1)求证:AM=AN ;(2)当旋转角α=30°时,四边形ACPF 是 什么样的特殊四边形?并说明理由。
第14题图2图1第19题F B20.如图,已知反比例函数ky x=(x>0)与正比例函数y=x(x≥0)的图象,点A(1,4),点A'(4,b)与点B'均在ky x=(x>0)的图象上,点B 在直线y =x 上,四边形AA'B'B 是平行四边形,设点B 的横坐标为m ,(1)求反比例函数的解析式;(2)试用m 的式子表示出点B'的坐标,并求出m 的值。
21.如图1是一种置于桌面上的简易台灯,将其结构简化成图2,灯杆AB 与CD 交于点O (点O 固定),灯罩连杆CE 始终保持与AB 平行,灯罩下方FG 处于水平位置。
测得OC=20cm ,∠COB=70°,∠F=40°,EF=FG ,点G 到OB 的距离为12cm 。
(1)求∠CEG 度数;(2)求灯罩的宽度(FG 的长,精确到0.1cm ,可用科学计算器)。
(参考数据: sin 40°=0.642,cos 40°=0.766,sin 70°=0.939,cos 70°=0.342)22.已知:△ABC 内接于☉O ,过点A 作直线EF.(1)如图甲,AB 为直径,要使EF 为☉O 的切线,还需添加的条件是(写出两种情况): ① 或② .(2)如图乙,AB 是非直径的弦,若∠CAF=∠B ,求证:EF 是☉O 的切线. (3)如图乙,若EF 是☉O 的切线,CA 平分∠BAF ,求证:OC ⊥AB.第21题第22题五、(本大题共10分)23.如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x= -1。
(1)求抛物线的解析式;(2)若点P 在y 轴的正半轴上,点M 在x 轴的正半轴上,过点M 作x 轴的垂线,交抛物线于点C ,OP=3OM ; ①当四边形OMCP 为矩形时,求OM 的长;②过点C 作x 轴的平行线,交抛物线于另一点D,当点P 在直线 CD 的下方时,求CD 的取值范围。
六、(本大题共12分)24.我们把过等腰三角形的底边所在的直线上的点作两腰的垂线及作一腰的高的图形称为“腰垂等腰三角形”如图①,图②,在△ABC 中,AB=AC ,点P 为边BC (或BC 所在的直线)上的任意一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB,垂足为F ,像这样的图形就称为“腰垂等腰三角形”。
特例探索:(1)如图1,PD=5,PE=3,则CF= ;如图2,PD=10,PE=4,则CF= 。
猜想证明:(2)以图2为例,请猜想PD 、PE 、CF 的数量关系,并给出证明;拓展应用:(3)如图3在四边形ABCD 中,E 为AB 上的一点,ED ⊥AD ,EC ⊥CB ,垂足分别为D 、C ,且,AD 3,BD AD DEAB BC CE==== 求DE+EC 的长。
图1第23题2016年永修县九年级七校联考数学试题答案1、A2、D3、D4、C5、B6、C7、b(a+1)(a-1)8、0739、1x ≤- 10、7 11、5525x y x y +=⎧⎨=-⎩12、13、025 14、06或或15、解:原式分=-1---------------------------------------6分16、解:=x-2.-------------4分∵∴x ≠1,且x ≠2.本题答案不唯一,如:当x=0时,原式=0-2=-2.------------------6分17、解:作图如图所示:(每小题3分共6分)18、解:(1)4种---------------------------------2分(2)四种选择方案分别记为A 、B 、C 、D开始小刚A B CD小强 A B C D A B C D A B C D A B C D ------5分共有16种等可能性结果,其中小刚与小强选择同种方案的结果有4种,所以所求的概率为14。
----------------------------------------------------------------------------------------------------6分19、(1)证明:∵∠α+∠EAC=90°,∠NAF+∠EAC=90°,∴∠α=∠NAF.又∵∠B=∠F ,AB=AF ,∴△ABM ≌△AFN ,∴AM=AN.-------------------------------4分 (2)解:四边形ABPF 是菱形.---------------------------------5分理由:∵∠α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠C=∠F=60°, ∴∠C+∠BAF=60°+120°=180°,∠F+∠CAF=180°. ∴AF ∥BC ,AC ∥EF ,∴四边形ACPF 是平行四边形.图2图1A又∵由(1)知AC=AF ,∴四边形ACPF 是菱形. - ----------- 8分 20、解:(1)∵点A (1,4)在反比例函数y=x k (x>0)的图象上,∴k=1×4=4. ∴4y x= --3分 (2)∵点A'(4,b )在反比例函数y=x4(x>0)的图象上,∴b=1,∴A'(4,1).------4分 ∵点B 在直线y=x 上,又点B 的横坐标为m ,∴B 的坐标为(m ,m ).---------5分 ∵四边形AA'B'B 是平行四边形,∴AA'与B'B 平行且相等,∴B'可由点B (m ,m )沿AA'方向平移得到,由点的平移规律可知点B'的坐标为(m+3,m-3).---------------------------6分∵点B'在反比例函数图象上,∴m-3=,解得m=或m=-(舍去).--------8分21.解:(1)延长CE 交FG 于点H ,∵CE ∥OB ,FG 处于水平位置,∴EH ⊥FG .…………………………………………1分 ∵∠F =40°,EF=FG ,∴FH=HG ,∠FEH=∠GEH =90°-∠F =50°.∴∠CEG =130°.……………………………………3分 (2)过点C 作OB 的垂线CM ,垂足为M , ∵OC =20cm ,∠COB =70°, ∴CM =cm CO COM 70sin 20sin =⋅∠.………5分延长FG 交OB 于N ,则有HN ⊥OB . 由CE ∥OB ,CM ⊥OB ,∴四边形CHNM 为矩形,CM=HN .………………………………………………6分 ∵点G 到OB 的距离为12cm ,即GN =12cm ,∴HG=HN -GN=CM -GH==-cm cm 1270sin 206.78cm .∴灯罩的宽度FG 的长约为13.5cm .………………………………………………8分 22解:(1)OA ⊥EF ∠FAC=∠B--------------------2分(2)证明:作直径AM ,连接CM ,-------------------3分∴∠B=∠M (在同圆或等圆中,同弧所对的圆周角相等).∵∠FAC=∠B ,∴∠FAC=∠M. ∵AM 是☉O 的直径,∴∠ACM=90°.∴∠CAM+∠M=90°.∴∠FAC+∠CAM=90°. ∴EF ⊥AM.∵OA 是半径,∴EF 是☉O 的切线.-----------------------------------5分 (3)证明:连接OA ,OB.∵OA=OB ,∴点O 在AB 的垂直平分线上.∵∠FAC=∠B ,∠BAC=∠FAC ,∴∠BAC=∠B.∴点C 在AB 的垂直平分线上.∴OC 垂直平分AB.∴OC ⊥A B.—8分23、解:(1)设抛物线的解析式为y=a (x+1)2+k ,∵A (1,0),B (0,3)在抛物线上,∴解得∴抛物线的解析式为y=-(x+1)2+4或y=-x 2-2x+3.—3分(2)①设OM=t ,则OP=3t ,∵CM ⊥x 轴, ∴C 点坐标为(t ,-t 2-2t+3),∴CM=-t 2-2t+3.∵四边形OMCP为矩形,∴CM=OP, 即-t2-2t+3=3t,整理得t2+5t-3=0,解得t1=2375+-,t2=2375--(舍去),∴OM的长为2375+-.-----------------------------7分②∵抛物线的对称轴是直线x=-1,∴点C到直线x=-1的距离为t+1,∵点C与点D关于直线x=-1对称,∴CD=2(t+1).由①得,当OM=2375+-时,四边形OMCP为矩形,此时点P在CD上,∴当点P在直线CD的下方时,t<2375+-.而t=22-CD>0,∴,22-CD<2375+-且CD-2>0,解得2<CD<-3, ∴CD的取值范围为2<CD<-3.---------------------------------------------------10分24 --------------------------------2分-----------------3分-----------------7分-------8分-----9分--------10分---------12分。