铁路桥梁曲线布置
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
小半径曲线范围铁路桥梁的布置及设计摘要:针对小半径曲线范围铁路桥梁设计而言,其构造要求和受力上在一定程度上都要比常规的桥梁的上部结构和墩台的设计复杂。
所以本文主要针对小半径曲线范围铁路桥梁在设计过程布置设计等进行论述,从而能够让相关的设计人员熟悉以及了解小半径曲线铁路桥梁的相关布设内容,希望能够给与同行业人员提供一定价值的参考。
关键词:小半径;曲线范围;铁路桥梁;设计分析引言在一些车站以及枢纽站线,由于在一定程度上受到地形限制或者是拆迁成本等的制约,线路需要设置相对较小的曲线半径。
对于小半径曲线的桥梁设计要考虑桥梁上部结构和下部结构的设计,小以及对梁缝进行合理的控制和设计。
一般情况下需要进行特殊设计,这样做的目的不仅能满足铁路自身的正常运营,同时还能够满足其养护需要。
如果在设计的过程中存在着不合理问题,例如:无法进行架梁或者是梁体倾覆等一系列比较重大的事故,这就需要我们对小半径曲线范围内的桥梁设计进行较为系统的认识以及了解,只有这样才能够让桥梁在设计的过程中不仅具有合理性、安全性,同时也具有科学性。
一、单线桥梁在曲线上的布置原则1、梁的布置:为了使梁上受力接近均衡,曲线上桥梁的中心线(梁的中心线)一般均采用平分中失(f)法或切线法布置(图1-1),视其跨度及所在曲线半径来确定。
梁与梁间及梁与台间内侧道碴槽最外边缘的最小空隙即梁缝,当跨度L≤16m时为6cm;当跨度L≥20m时为10cm;不等跨时采用10cm,当不等跨均小于16m 时,采用6cm。
在坡道上的梁应考虑坡道布置对空隙的影响;大跨度梁尚应考虑预留拱度和荷载(恒载、远期活载、冲击力等)引起梁的伸缩。
在曲线上的梁布置办法采用f1=f/2~0之间的任何数值时,不需要检算梁的强度。
如采用0>f1>f/2,则必须根据其相应的超载系数,验算内外梁的强度。
在不等跨梁的配合中,比较合理的曲线布置,按大跨梁要求来确定偏距E值。
对于跨度L≤16m的梁,一般中失很小,如按小跨的要求确定E值,则大跨梁的中失稍大于f/2,而超载系数增加有限,不必验算梁的强度。
小半径曲线双线T梁横向湿接缝布置形式研究摘要:对于双线T梁桥梁,横向存在三处湿接缝,常规的调整方式有两种:①仅调整中央湿接缝,两侧湿接缝宽度不变;②根据△调整中央湿接缝,根据2E 调整两侧湿接缝。
计算采用BSAS计算软件进行分析,研究了不同湿接缝布置形式对于双线小半径曲线T梁支反力、预应力刚束布置等的影响。
针对T梁适用最小曲线半径R<1000m时,横向湿接缝加宽形式影响较大的现象,提出小半径曲线上双线T梁横向布置采用加宽各湿接缝(②)的布置形式的建议,以使结构受力更为合理,造价更为经济。
关键词:小半径曲线;双线T梁;横向湿接缝1.概述铁路专用线是近几年快速发展的铁路建设形式之一,同时国家颁布了《铁路专用线设计规范(试行)》[1],在实际应用中,为了达到更加经济、合理的使用需求,铁路专用线桥梁常常面临小半径曲线工况,研究小小半径曲线双线T梁横向湿接缝布置形式有很强的紧迫性和必要性。
目前使用的铁路简支T梁均由多片(单线2片,双线4片)预制后张法T梁组成,吊装到位后现场浇筑横隔板及桥面板连接湿接缝。
其布置形式如下(1)单线(2)双线图1 铁路简支T梁湿接缝布置形式在曲线段落,由于存在曲线加宽(加宽值为2E)及线间距加宽(双线并行情况下存在,值设为△),需要相应调整T梁的横向布置以满足适用要求。
对于单线桥梁,调整中央湿接缝,使调整后的宽度满足适用要求即可。
对于双线桥梁,由于其横向存在三处湿接缝,常规的调整方式有两种:①仅调整中央湿接缝,两侧湿接缝宽度不变;②根据△调整中央湿接缝,根据2E调整两侧湿接缝。
位于曲线上的简支梁,由于线路中线和梁中线的偏移、离心力的作用,导致的每片梁各截面的弯矩和剪力较直线上梁增大(或减小)[2]。
当曲线半径小时,每片梁间各截面的弯矩和剪力愈加明显,影响也不可忽略。
本文以32m双线简支T梁为例,就上文中两种不同湿接缝布置形式,对曲线半径600m≤R≤1200m工况下的受力及影响进行了研究,并以直线梁受力进行了对比。
第一部分桥梁在曲线上的布置一、梁的布置与基本概念1梁的布置设在曲线上的钢筋混凝土简支梁式桥,每孔梁仍是直的,于是各孔梁中线的连接线成为折线,以适应梁上曲线线路之需要。
但若按图1所示布置,使线路中线与梁的中线在梁端相交,则由图可以看出,线路中线总是偏在梁跨中线的外侧,当列车过桥时,外侧那片梁必然受力较大;况且列车运行时要产生离心力,使外侧的一片梁受力较大的现象更加严重。
为了使两片梁受力较为均衡,合理的布置方案应把梁的中线向曲线外侧适当移动。
一般情况下梁的布置有两种方案:⑴平分中矢布置:在跨中处梁的中线平分矢距f,即梁的中线与线路中线的偏距f1=f/2;在桥墩中线处梁的中线与线路中线的偏距E=f/2。
这种布置的特点是内外侧两片梁的偏距相同(f1=E=f/2),故两片梁的人行道加宽值相等。
⑵切线布置:在跨中处梁的中线与线路中线相切,即偏距f1=0;在桥墩中心处梁的中线与线路中线的偏距为E=f。
12图1 梁的中线连成折线示意1----线路中线 2-----梁的中线2基本概念桥梁工作线:在曲线上的桥,各孔梁中心线的连线是一折线,称桥梁工作线,与线路中线不一致,如图2,AB-BC是桥梁工作线,abc是线路中线。
桥墩中心:两相邻梁中心线之交点是桥墩中心,如图2中的A,B及C各点。
基本概念中所述均指桥墩无预偏心的情况(见桥墩布置图3);有预偏心时见桥墩布置图4,桥墩中心在偏距的基础上再向曲线外侧偏移一距离,偏移距离详见设计图。
桥墩轴线:过桥墩中心作一直线平分相邻二孔梁中心线的夹角,这个角平分线即桥墩横轴(又称横向中线),如图2中的Bb;过桥墩中心作桥墩横轴的垂线为桥墩纵轴(又称纵向中线)。
桥墩中心里程:桥墩横轴与线路中线之交点称桥墩中心在线路中线上的对应点,如图2中的a、b及c点。
桥墩中心里程即以其对应点的里程表示之。
偏距E:桥墩中心与其对应点之间的距离称为偏距,如图2的Aa、Bb及Cc;偏距的大小由梁长及曲线半径决定之。
铁路桥梁曲线布置中:平分中矢法和切线法相关概念这只有在曲线桥中才会出现这个名词的:由于曲线桥的路线中线是曲线,而所用的梁是直的,因此路线中线与梁的中线不能完全吻合。
梁在曲线上的布置,是使个梁跨的中线联结起来,成为与路中线基本相符的折线,这条折线成为桥梁的工作线。
墩、台中心一般就位于这条折线转折角的顶点上。
在桥梁设计中,梁中心线的两端并不是位于路线中线上,而是向外侧移动了一段距离E,E称为偏距。
如果偏距E为梁长为弦线中失值的一半,这种布梁方法称为平分中矢布置。
如果E等于中失值,称为切线布置。
偏移距的算法曲线桥的墩位中心是不在线路中线上,偏距E的计算方法如下:先确定梁的布置是切线布置,还是平分中矢布置,计算公式不同哟。
1. 圆曲线:切线布置E=L*L/(8*R),平分中矢布置E=L*L/(16*R)2. 缓和曲线:切线布置E=L*L*t/(8*R*l)平分中矢布置:E=L*L*t/(16*R*l)其中:R-圆曲线半径,L-交点距,l- 缓和曲线长,t-计算点至ZH(HZ)的距离。
关于连续梁与简支梁过渡墩的布置连续梁在曲线上,由于梁可以弯做,所以它下面的墩子是用不着外偏的,但是它相邻孔的简支梁下面的墩却要外偏,如果曲线半径很小,这个偏值很大,这样就造成了连续梁下面的墩子不偏,相邻孔简支梁的墩子外偏,显然简支梁无法架梁了,因为没有了梁缝。
还是求高人解答。
这个问题本来是我看上面的问题时在筑龙论坛看到的,也没注意。
后来我负责的一个桥也有这个问题才注意的。
图纸上写的是:联间墩的简支梁支座根据该侧偏角、偏距确定,连续梁支座按照径向布置确定。
这个可能干过的都觉得很明确了,但我不敢确定,后来问了总工和设计院的才确定的。
呵呵。
就是过渡墩不用偏,简支侧支座要偏移。
至于曲线半径大小,是否需要进行偏移,要看偏距大小和验标的要求了,桩基,墩身,支座的要求都是不同的。
林织铁路直(曲)线桥墩桥梁工作线、线路中线、支座、垫
石关系图解
单位名称:中铁二局林织铁路工程指挥部一项目经理部
工程名称:洁净煤厂大桥
计算示意图
一、说明
【1】工作线:曲线桥的中线是曲线,而预制简支梁通常是直的,导致线路中线与梁中线不能完全吻合,设计师采用将梁平均布置在曲线上,以使各跨梁的中线连线成为与线路中线基本相符的折线,这条折线就是桥梁的工作线。
【2】偏距、偏角:曲线梁在墩台上布置时,为了使直线梁趋近于曲线,将梁向外侧移动一定距离E,导致梁梁段并不位于线路中线上,这段距离E称为偏距
(偏距E值由各工点桥梁曲线布置表查取)。
【3】曲线桥梁支座的布置:从理论角度将一个直线桥墩上的所有垫石均呈矩形布置(各垫石相互平行),而曲线桥的所有垫石则呈扇形布置。
但是,无论在直线或曲线桥上,桥梁支座垫石的横轴始终与桥梁工作线(即直线简支梁的纵轴)垂直。
第一部分桥梁在曲线上的布置一、梁的布置与基本概念1梁的布置设在曲线上的钢筋混凝土简支梁式桥,每孔梁仍是直的,于是各孔梁中线的连接线成为折线,以适应梁上曲线线路之需要。
但若按图1所示布置,使线路中线与梁的中线在梁端相交,则由图可以看出,线路中线总是偏在梁跨中线的外侧,当列车过桥时,外侧那片梁必然受力较大;况且列车运行时要产生离心力,使外侧的一片梁受力较大的现象更加严重。
为了使两片梁受力较为均衡,合理的布置方案应把梁的中线向曲线外侧适当移动。
一般情况下梁的布置有两种方案:⑴平分中矢布置:在跨中处梁的中线平分矢距f,即梁的中线与线路中线的偏距f1=f/2;在桥墩中线处梁的中线与线路中线的偏距E=f/2。
这种布置的特点是内外侧两片梁的偏距相同(f1=E=f/2),故两片梁的人行道加宽值相等。
⑵切线布置:在跨中处梁的中线与线路中线相切,即偏距f1=0;在桥墩中心处梁的中线与线路中线的偏距为E=f。
12图1 梁的中线连成折线示意1----线路中线 2-----梁的中线2基本概念桥梁工作线:在曲线上的桥,各孔梁中心线的连线是一折线,称桥梁工作线,与线路中线不一致,如图2,AB-BC是桥梁工作线,abc是线路中线。
桥墩中心:两相邻梁中心线之交点是桥墩中心,如图2中的A,B及C各点。
基本概念中所述均指桥墩无预偏心的情况(见桥墩布置图3);有预偏心时见桥墩布置图4,桥墩中心在偏距的基础上再向曲线外侧偏移一距离,偏移距离详见设计图。
桥墩轴线:过桥墩中心作一直线平分相邻二孔梁中心线的夹角,这个角平分线即桥墩横轴(又称横向中线),如图2中的Bb;过桥墩中心作桥墩横轴的垂线为桥墩纵轴(又称纵向中线)。
桥墩中心里程:桥墩横轴与线路中线之交点称桥墩中心在线路中线上的对应点,如图2中的a、b及c点。
桥墩中心里程即以其对应点的里程表示之。
偏距E:桥墩中心与其对应点之间的距离称为偏距,如图2的Aa、Bb及Cc;偏距的大小由梁长及曲线半径决定之。
关于铁路桥梁刚度的几点意见赵煜澄Ξ(铁道部大桥工程局)提 要 本文论述桥梁刚度与车速的关系、简支梁挠度曲线和桁梁挠度的计算与实测方法, 并对 大跨度桥梁的刚度提出要求。
主题词 铁路 桥梁 刚度 分析桥梁刚度与车速的关系随着铁路车速的提高, 一般桥梁的刚度要求趋向严格。
单孔、多孔区别对待, 后者要求刚度 更大。
联邦德国为了适应高速铁路需要, 1985 年制定了“铁路新干线上桥梁的特殊规程 (D S 899ƒ59) ”。
对于跨度小于 60 m 的简支梁要求如下:多孔桥梁端部正切角限值 4 分, 即 112‰, 亦即 f = L ƒ2700。
单孔桥梁端部正切角限值 5 分, 即 1145‰, 亦即 f = L ƒ2200。
变位计算不计动力系数。
此规程是针对两条新干线( 时速 1 表 1 超过 200 km ƒh ) 而制定的。
1993 年 6 月 1 日第三次修改生 效的“德国铁路桥梁及其它工程结构物规范 (V E I ) D S 804 ”补充规定挠跨比 f ƒL 如表 1。
上表中V 指车速 km ƒh 。
此规范规定活载要计入冲击系数。
对跨度 65m 以内有影响并对活载作用下桥上线路的 不平顺度作了规定。
当V > 160 km ƒh 时, 在结构的任意部位应满足 tan Β≤010015, 即正切角限 值 115‰。
1992 年 4 月日本铁道建设公团编制的“日本高速铁路铁道结构物设计标准”, 适用于一般 Ξ 本文收稿日期 1997204210 赵煜澄: 高级工程师 铁道部大桥工程局副总工程师 武汉 邮编: 430050跨度 孔数≤2 孔数≥3 160< V ≤200 V > 200 160< V ≤200 V > 200 ≤25m 1ƒ500 1ƒ800 1ƒ1000 1ƒ1200 ≥30m 1ƒ800 1ƒ1000 1ƒ1700 1ƒ1700铁 道 工 程 学 报 1997 年 6 月 24 铁路及新干线最高时速 260 km ƒh , 按极限状态设计跨度小于 150 m 的简支桥梁, 对于既有线 与新干线分别作出挠跨比 f ƒL 的规定如表 2。
7 桥涵7.1 一般规定7.1.1 桥涵的洪水频率标准,应符合现行《铁路桥涵设计基本规范》(TB10002.1)中Ⅰ级铁路干线的规定。
7.1.2 桥涵结构应构造简洁、美观、力求标准化、便于施工和养护维修,结构应具有足够的竖向刚度、横向刚度和抗扭刚度,并应具有足够的耐久性和良好的动力特性,满足轨道稳定性、平顺性的要求,满足高速列车安全运行和旅客乘座舒适度的要求。
7.1.3 桥涵主体结构设计使用寿命应满足100年。
7.1.4 桥涵结构所用工程材料应符合现行国家及行业标准的规定。
7.1.5 桥梁上部结构型式的选择,应根据桥梁的使用功能、河流水文条件、工程地质情况、轨道类型以及施工设备等因素综合考虑。
桥梁上部结构宜采用预应力混凝土结构,也可采用钢筋混凝土结构、钢结构和钢-混凝土结合结构。
预应力混凝土简支梁结构,宜选用箱形截面梁,也可根据具体情况选用整体性好、结构刚度大的其他截面型式。
7.1.6 桥梁结构应设计为正交。
当斜交不可避免时,桥梁轴线与支承线夹角不宜小于60°,斜交桥台的台尾边线应与线路中线垂直,否则应采取特殊的与路基过渡措施。
7.1.7 桥面布置应满足轨道类型、桥面设施的设置及其养护维修的要求。
7.1.8 涵洞宜采用钢筋混凝土矩形框架涵。
7.1.9 相邻桥涵之间路堤长度,要综合考虑高速列车行车的平顺性要求、路桥(涵)过渡段的施工工艺要求以及经济造价等因素合理确定。
两桥台尾之间路堤长度不应小于150m,两涵(框构)之间以及桥台尾与涵(框构)之间路堤长度不应小于30m,对于特殊情况路堤长度不满足上述长度要求时,路基应特殊处理。
7.1.10 桥涵设置应做好和自然水系、地方排灌系统的衔接,并满足铁路路基排水的要求。
7.1.11当线路位于深切冲沟等特殊地形地貌、地质条件地区时要进行桥梁、涵洞方案比较确定跨越方式。
7.1.12无砟轨道桥涵变形及基础沉降应设立观测基准点进行系统观测与分析,其测点布置、观测频次、观测周期应符合《客运专线铁路无砟轨道铺设条件评估指南》的有关规定。
工程测量学试题及答案1、提高点位平面放样精度的措施有非常多,请列举三种措施盘左盘右分中法、归化法放样,采纳高精度的全站仪;2、线路断链分为长链和短链两种类型,产生线路断链的基本缘故要紧有外业断链和内业断链;3、隧道贯穿误差分为横向贯穿误差,纵向贯穿误差,高程贯穿误差;4、隧道洞内操纵测量普通采纳单导线、导线环、交叉导线(4、主副导线) 等导线形式。
1.导线操纵点补测和位移办法可采纳(交合法,导线测量法),位移和补测的导线点的高程可用(水准测量)和(三角高程测量)的办法举行测定2。
当路基填挖到一定的高度和深度后,会浮现导线点之偶尔导线点与线路中线之间别通视的事情,能够挑选通视条件好的地势(自由设站)测站,测站坐标能够按(交合法)或(导线测量法)确定。
3。
隧道洞内施工时以(隧道中心)为依据举行的,所以需要依照(隧道中线)操纵隧道掘进方向。
4。
路基横断面的超高方式:(线路中线,分隔带边缘线,线路内测)等。
5。
曲线隧道洞内施工时需要注意(线路中线)与隧道结构中心线的别同,所以需要依照(隧道结构中心线)操纵隧道掘进方向。
6。
要建立路基三维模型,需要从(线路平面中心线,线路纵断面,线路横断面)等三个角度去建立。
依照设计资料提供的(路基横断面、设计纵断面)等资料,并采纳(线性插值)的办法能够绘制任意路基横断面设计线,再利用全站仪(对边测量)测量办法能够得到该路基横断面。
7。
导线操纵点的补测和位移办法可采纳(交会法、导线法),移位和补测的导线点的高程可用(水准测量和三角高程测量)的办法举行测定。
8。
当路基填挖到一定高度和深度后,会浮现导线点之偶尔导线点与线路中线点之间别通视事情,能够选择通视条件良好的地势(自由设站)测站,测站坐标能够按(交会法或导线法)办法确定。
9。
列出两种提高桥涵结构物平面点位放样精度的办法有(角度分中法放样、归化法放样)10。
路基施工施工时,列出三种电位高程放样的办法(水准放样法、GPS高程放样法、三角高程放样法)简答题1。
铁路桥梁一般设计原则一、一般桥涵设计原则(一) 桥涵水文、孔径设计原则1、大中桥冲刷采用《铁路工程水文勘测设计规范》公式计算;对于平原及山区稳定河段或卵石河床,一般冲刷可采用包氏公式计算。
2、岩石河床的冲刷深度,可参照《桥渡水文》手册“岩石上桥墩基础冲刷及基底埋置深度参考数据表”确定。
3、对于洪水已达桥台的桥梁,必须进行桥台冲刷计算。
4、桥台锥体坡脚处建桥前的天然流速,一般不宜大于2.0m/s,否则应增加桥长。
(二) 桥梁布置一般原则1、计算立交桥净高时,无论铁路在上在下,均应考虑墩台沉降及铁(公) 路抬高的可能,铁路留0.1~0.2m,公路留0.2~0.3m。
2、当跨越的铁路或道路位于曲线时,立交桥下净空除按铁路或道路的曲线规定加宽外,还应考虑超高的影响。
同时还应考虑铁(道) 路纵坡的影响。
3、山区地形复杂,地面纵横坡陡峻,桥梁布置应注意桥基和山体的稳定性,尽量避免在山坡堆积层上布置墩台。
4、为避免修建桥头大锥体,宜适当延长桥孔,采用挖方台。
5、墩台位置应按桥址地形图和大比例尺的局部地形图,及带地质资料的辅助断面确定,防止基础悬空,或地基软硬不一。
横断面没有地质资料的工点,参照地质孔平行推算各层承载力。
6、墩台设置应注意土体稳定,相邻两墩台的基底高程,不宜相差过大,建在非岩石地基上的明挖基础,相邻两基础底相互之间的连线与水平线的夹角不得大于土的内摩擦角,并不得大于30度。
7、跨越高等级公路时,路基边坡尽量不设置桥墩。
桥墩基础施工时尽可能不破坏公路路肩。
承台可斜交设置。
8、跨路进行净空检算时,应检查吊篮是否影响净空,困难条件下可不设。
9、除受控制点影响外,尽量按等跨布置。
10、为避免引起线间距的增加,桥梁尽量不采用错线布置。
11、跨越高速公路及其连接线的桥梁,桥墩设在边坡上时,应征得高速公路管理部门的意见;连续梁采用悬浇法施工时,应与公路管理部门协商挂篮下通行高度,并取得书面意见,否则挂篮下净高按线路专业提供的永久高度计。
第一部分桥梁在曲线上的布置一、梁的布置与基本概念1梁的布置设在曲线上的钢筋混凝土简支梁式桥,每孔梁仍是直的,于是各孔梁中线的连接线成为折线,以适应梁上曲线线路之需要。
但若按图1所示布置,使线路中线与梁的中线在梁端相交,则由图可以看出,线路中线总是偏在梁跨中线的外侧,当列车过桥时,外侧那片梁必然受力较大;况且列车运行时要产生离心力,使外侧的一片梁受力较大的现象更加严重。
为了使两片梁受力较为均衡,合理的布置方案应把梁的中线向曲线外侧适当移动。
一般情况下梁的布置有两种方案:⑴平分中矢布置:在跨中处梁的中线平分矢距f,即梁的中线与线路中线的偏距f1=f/2;在桥墩中线处梁的中线与线路中线的偏距E=f/2。
这种布置的特点是内外侧两片梁的偏距相同(f1=E=f/2),故两片梁的人行道加宽值相等。
⑵切线布置:在跨中处梁的中线与线路中线相切,即偏距f1=0;在桥墩中心处梁的中线与线路中线的偏距为E=f。
(f=R-R*COS(α/2))12图1 梁的中线连成折线示意1----线路中线 2-----梁的中线2基本概念桥梁工作线:在曲线上的桥,各孔梁中心线的连线是一折线,称桥梁工作线,与线路中线不一致,如图2,AB -BC是桥梁工作线,abc是线路中线,E=F/2*1/COS(α/2)桥墩中心:两相邻梁中心线之交点是桥墩中心,如图2中的A,B及C各点。
基本概念中所述均指桥墩无预偏心的情况(见桥墩布置图3);有预偏心时见桥墩布置图4,桥墩中心在偏距的基础上再向曲线外侧偏移一距离,偏移距离详见设计图。
桥墩轴线:过桥墩中心作一直线平分相邻二孔梁中心线的夹角,这个角平分线即桥墩横轴(又称横向中线),如图2中的Bb;过桥墩中心作桥墩横轴的垂线为桥墩纵轴(又称纵向中线)。
桥墩中心里程:桥墩横轴与线路中线之交点称桥墩中心在线路中线上的对应点,如图2中的a、b及c点。
桥墩中心里程即以其对应点的里程表示之。
偏距E:桥墩中心与其对应点之间的距离称为偏距,如图2的Aa、Bb及Cc;偏距的大小由梁长及曲线半径决定之(E=L2/16R,L梁长,R曲线半径)。
铁路曲线桥布置铁路曲线桥布置基本原理梁和桥台在曲线上的布置形式桥梁位于曲线上,线路中线为具有⼀定半径的圆曲线或缓和曲线,⽽预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折线,如下图所⽰。
这条连续折线称为曲线桥梁的⼯作线,其顶点为相邻两梁中线的交点,相邻两交点之间的⽔平距离,称为交点距,亦称墩中⼼距或跨距,以L表⽰。
在曲线桥上,桥梁⼯作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏⼼荷载离⼼⼒作⽤。
为了使桥梁承受较⼩的偏⼼荷载,桥梁设计中,每孔梁中⼼线的两个端点并不位于线路中⼼线上,⽽必须将梁的中线向曲线外侧移动⼀段距离。
根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线的中⽮值,此布置⽅式称为切线布置,如图(a)所⽰;也可以等于该中⽮值的⼀半,称为平分中⽮布置,如图(b)所⽰。
两种布置形式⽐较,平分中⽮布置较为有利,铁路曲线桥基本上都采⽤这种布置形式。
偏距E 的计算在曲线桥上,梁的中线由弦线位置,向曲线外侧移动的⼀段距离称为偏距,并以E 表⽰。
由于曲线半径很⼤,相邻两跨梁中线的偏转⾓很⼩,故可以认为偏距E 就是桥梁⼯作线各转折点相对线路中线外移的距离。
圆的周长=π*D=2πR 将圆⼼⾓分成360份,每1份的弧长为 1*2πR/360,如果圆⼼⾓度是n 度,对应的弧长为n*2πR/360 即:弧长L=n*2πR/360=n*πR/180 n 为圆⼼⾓圆⼼⾓n=360*L/(2πR )=180*L/(πR )圆周⾓A=n/2=90*L/(πR )在圆曲线上,切线布置的梁,其外失距为: E=R-R*cos(90*L/π/R) 或E=L 2/8R若为平分中⽮布置,其偏距为:RL E 162在缓和曲线上,切线布置的梁,其外失距为:图1-1-2028l l R L E i ?=若为平分中⽮布置,则偏距为:0216l l R L E i ?=式中,L 为交点距也等于弧长、R 为圆曲线半径、l i 为ZH (或HZ )⾄计算点的距离、l 0为缓和曲线长。
浅谈铁路桥梁预偏心摘要:我国道路交通事业的迅速发展已经达到了赶超发达国家的程度,随着我国经济的快速发展,城际铁路也全面建设,这对我国桥梁施工技术有了更高的要求和挑战,铁路曲线桥梁是具有复杂力学性能的空间结构体系,为保证曲线桥梁的安全性,一般会采用合适的预偏心方法,所以在测量计算坐标数据上,需要考虑到横向预偏心以及纵向预偏心,本文结合石家庄至衡水至沧州至黄骅港城际铁路项目简要讲述了横向预偏心与纵向预偏的设置原因和偏移距E的计算过程,并结合图纸简述了在计算坐标过程中的一些步骤与注意事项。
关键词:铁路曲线预偏心1、概述跨南排河大桥为双线桥,101#-122#墩位于一个R=4500m的曲线上,在曲线上的简支梁的布置方式为平分中矢法布置,以左线为线路的中线,相邻两跨简支梁的中心线交点位于梁缝的纵向中心线上面,桥墩的中心是梁的横向中点。
对于等跨桥墩,桥墩中心即该两交点连线的中点;对于不等跨桥墩,桥墩中心应另考虑纵向预偏心的影响。
2、纵向预偏心纵向预偏心是因为桥墩两侧梁的跨度不同,因为跨度不同,所以两侧梁体的结构也不同,相对的支座大小也不同,位于大跨度的一侧所占桥墩纵向长度也要更大,梁缝中心与桥墩中心也就不重合,一般情况桥墩的中心线会偏向大跨径方向。
3、横向预偏心采用横向预偏心桥墩的目的是设在曲线上的简支梁,每孔梁仍然是直的,于是各孔梁中线的连线就成了折现,为了适应梁上曲线线路的需要,需将简支梁向曲线外侧移动一段距离,当列车通过铁路桥梁时,列车要产生一定的离心力,外侧梁受到的力必然大,为了使两片梁受力较为均衡,在计算坐标时应该继续向曲线外侧偏移一个偏移距E。
为了使得梁的受力均衡,正确的梁的布置方式是将梁向曲线的外侧移动一段距离。
一般有一下两种布置方法:平分中矢布置:在跨中处,梁的中线平分f,梁中线与线路中线偏距f=2f1,在桥墩处,梁的中线与线路中线f=2E,特点是内外两片梁的偏距相同f=2E=2f1切线布置:在跨中处,梁的中线与线路相切,偏距f1等于0,在桥墩的处,梁中心与线路中心偏距为f=E。
铁路桥梁曲线布置中:平分中矢法和切线法相关概念
这只有在曲线桥中才会出现这个名词的:
由于曲线桥的路线中线是曲线,而所用的梁是直的,因此路线中线与梁的中线不能完全吻合。
梁在曲线上的布置,是使个梁跨的中线联结起来,成为与路中线基本相符的折线,这条折线成为桥梁的工作线。
墩、台中心一般就位于这条折线转折角的顶点上。
在桥梁设计中,梁中心线的两端并不是位于路线中线上,而是向外侧移动了一段距离E,E称为偏距。
如果偏距E为梁长为弦线中失值的一半,这种布梁方法称为平分中矢布置。
如果E等于中失值,称为切线布置。
偏移距的算法
曲线桥的墩位中心是不在线路中线上,偏距E的计算方法如
下:先确定梁的布置是切线布置,还是平分中矢布置,计算公式不同哟。
1. 圆曲线:切线布置E=L*L/(8*R),
平分中矢布置E=L*L/(16*R)
2. 缓和曲线:切线布置E=L*L*t/(8*R*l)
平分中矢布置:E=L*L*t/(16*R*l)其中:R-圆曲线半径,
L-交点距,
l- 缓和曲线长,
t-计算点至ZH(HZ)的距离。
关于连续梁与简支梁过渡墩的布置
连续梁在曲线上,由于梁可以弯做,所以它下面的墩子是用不着外偏的,但是它相邻孔的简支梁下面的墩却要外偏,如果曲线半径很小,这个偏值很大,这样就造成了连续梁下面的墩子不偏,相邻孔简支梁的墩子外偏,显然简支梁无法架梁了,因为没有了梁缝。
还是求高人解答。
这个问题本来是我看上面的问题时在筑龙论坛看到的,也没
注意。
后来我负责的一个桥也有这个问题才注意的。
图纸上写的是:联间墩的简支梁支座根据该侧偏角、偏距确定,连续梁支座按照径向布置确定。
这个可能干过的都觉得很明确了,但我不敢确定,后来问了总工和设计院的才确定的。
呵呵。
就是过渡墩不用偏,简支侧支座要偏移。
至于曲线半径大小,是否需要进行偏移,要看偏距大小和验标的要求了,桩基,墩身,支座的要求都是不同的。