抛物线上或外一点切线问题研究经典
- 格式:doc
- 大小:82.00 KB
- 文档页数:1
与抛物线相切有关的三种直线方程的统一形式吴家华(四川省遂宁中学 629000)在高三数学复习中,笔者惊奇地发现与抛物线相切的三类问题的三种直线方程的形式是完全一样的. 现介绍如下:(1)过抛物线py x 22=上一点),(00y x P 的切线方程为)(00y y p x x +=.(2) 过抛物线py x 22=外一点),(00y x P 引抛物线的两条切线,切点为B A ,,则直线AB 的直线方程为)(00y y p x x +=.(3) 过不在抛物线py x 22=上一点),(00y x P 的直线与抛物线相交于B A ,两点,则过B A ,两点的切线的交点的轨迹是一条直线,其方程也为)(00y y p x x +=. 证明 (1) 由py x 22=得:221x p y =,对x 求导,得:x py 1=', ∴ 01|0x py x x ='= 又∵点),(00y x P 在抛物线py x 22=上,∴0202py x =。
∴切线方程为)(1000x x x py y -=-,即0020002py x x x x x py py -=-=-, ∴切线方程为)(00y y p x x +=.(2)设),(11y x A ,),(22y x B ,则由(1)可得:切线PB 、PA 的方程分别为: )(11y y p x x += , )(22y y p x x +=。
∵点),(00y x P 在切线PB 、PA 上,∴)(1001y y p x x += ,)(2002y y p x x += 由此可见,B A ,两点在直线)(00y y p x x +=上,即直线AB 的方程为)(00y y p x x +=。
(3)设)21,(211x p x A ,)21,(222x px B )(21x x ≠,则直线AB 的方程为 )(212121112212221x x x x x p x p x p y ---=-,即 2121)(2x x x x x py -+=,∵点),(00y x P 在直线AB 上, ∴210210)(2x x x x x py -+= ①又由(1)知:过抛物线上A 点的切线方程为)21(211x py p x x += ,即 21122x x x py -= ② 同理:过抛物线上B 点的切线方程为22222x x x py -= ③由②、③解得:x x x 221=+, py x x 221=,代入①,得:)(00y y p x x +=,即为过B A ,两点的切线的交点的轨迹方程.同理,对于抛物线标准方程的其它几种形式:py x 22-=,px y 22=,px y 22-=,它们对应的直线方程的统一形式分别为:)(00y y p x x +-=,)(00x x p y y +=,)(00x x p y y +-=.类似地,可以证明,对于解析几何中的圆、椭圆、双曲线的类似于抛物线的上述三种情形,我们也有相应的直线方程的统一形式,它们是1. 圆222R y x =+,对应的直线方程的统一形式为200R y y x x =+; 2. 椭圆12222=+by a x ,对应的直线方程的统一形式为12020=+b y y a x x ; 3. 双曲线12222=-by a x ,对应的直线方程的统一形式为12020=-b y y a x x . 应用上述结论,我们可迅速地解答和编拟一些新问题.。
第一章 函数与导数专题02 曲线的切线问题探究【压轴综述】纵观近几年的高考命题,对曲线的切线问题的考查,主要与导数相结合,涉及切线的斜率、倾斜角、切线方程等问题,题目的难度有难有易.利用导数的几何意义解题,主要题目类型有求切线方程、求切点坐标、求参数值(范围)等.与导数几何意义有关问题的常见类型及解题策略有: 1.已知斜率求切点.已知斜率k ,求切点()()11,x f x ,即解方程()f x k '=.2.求切线方程:注意区分曲线在某点处的切线和曲线过某点的切线.即注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.(1)已知切点求切线方程:①求出函数()y f x =在点0x x =处的导数,即曲线()y f x =在点()()00,x f x 处切线的斜率;②由点斜式求得切线方程为()()000y y f x x x '-=-. (2)求过点P 的曲线的切线方程的步骤为: 第一步,设出切点坐标P ′(x 1,f(x 1));第二步,写出过P ′(x 1,f(x 1))的切线方程为y-f(x 1)=f ′(x 1)(x-x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y-f(x 1)=f ′(x 1)(x-x 1)可得过点P(x 0,y 0)的切线方程.3.求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.4.根据导数的几何意义求参数的值(范围)时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.5.已知两条曲线有公切线,求参数值(范围).6.导数几何意义相关的综合问题.【压轴典例】例1.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 【答案】(e, 1). 【解析】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .例2.(2019·全国高考真题(理)) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)证明见解析. 【解析】(1)函数()f x 的定义域为(0,1)(1,)⋃+∞,2211()ln ()1(1)x x f x x f x x x x ++'=-⇒=--,因为函数()f x 的定义域为(0,1)(1,)⋃+∞,所以()0f x '>,因此函数()f x 在(0,1)和(1,)+∞上是单调增函数;当(0,1)x ∈,时,0,x y →→-∞,而11112()ln 0111e f e e e e+=-=>--,显然当(0,1)x ∈,函数()f x 有零点,而函数()f x 在(0,1)x ∈上单调递增,故当(0,1)x ∈时,函数()f x 有唯一的零点;当(1,)x ∈+∞时,2222221213()ln 0,()ln 01111e e ef e e f e e e e e e +-+-=-=<=-=>----,因为2()()0f e f e ⋅<,所以函数()f x 在2(,)e e 必有一零点,而函数()f x 在(1,)+∞上是单调递增,故当(1,)x ∈+∞时,函数()f x 有唯一的零点综上所述,函数()f x 的定义域(0,1)(1,)⋃+∞内有2个零点; (2)因为0x 是()f x 的一个零点,所以000000011()ln 0ln 11x x f x x x x x ++=-=⇒=-- 1ln y x y x'=⇒=,所以曲线ln y x =在00A(,ln )x x 处的切线l 的斜率01k x =,故曲线ln y x =在00A(,ln )x x 处的切线l 的方程为:0001ln ()y x x x x -=-而0001ln 1x x x +=-,所以l 的方程为0021x y x x =+-,它在纵轴的截距为021x -.设曲线x y e =的切点为11(,)x B x e ,过切点为11(,)x B x e 切线'l ,x xy e y e '=⇒=,所以在11(,)x B x e 处的切线'l 的斜率为1x e ,因此切线'l 的方程为111(1)x xy e x e x =+-,当切线'l 的斜率11xk e =等于直线l 的斜率01k x =时,即11001(ln )x e x x x =⇒=-, 切线'l 在纵轴的截距为01ln 110001(1)(1ln )(1ln )x xb e x ex x x -=-=+=+,而0001ln 1x x x +=-,所以01000112(1)11x b x x x +=+=--,直线',l l 的斜率相等,在纵轴上的截距也相等,因此直线',l l 重合,故曲线ln y x =在00A(,ln )x x 处的切线也是曲线x y e =的切线.例3. (2019·湖北高考模拟(理))已知函数2()1f x x ax =-+,()ln ()g x x a a R =+∈. (1)讨论函数()()()h x f x g x =+的单调性;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围.【答案】(1)见解析;(2)(],1-∞ 【解析】(1)函数()h x 的定义域为()0,∞+,()()()2h x f x g x x ax lnx a 1(x 0)=+=-+++>,所以()212x ax 1x 2x a x xh -+=-+='所以当2Δa 80=-≤即a -≤≤()'x 0h >,()h x 在()0,∞+上单调递增;当2Δa 80=->即a a ><-当a <-()'x 0h >,()h x 在()0,∞+上单调递增;当a >时,令()'x 0h =得x =综上:当a ≤时,()h x 在()0,∞+上单调递增;当a >时()h x 在⎛ ⎝⎭,∞⎫+⎪⎪⎝⎭单调递增,在⎝⎭单调递减.(2)设函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同,()()111x 2,x f x a g x''=-=,则()()()()121212f x g x x x x x f g -==-'',由1212x a x -=,得121a x 2x 2=+,再由()2112212x ax 1lnx a 1x x x -+-+=- 得2121122x x x ax 1lnx a x -=-+--,把121a x 2x 2=+代入上式得()222221a a lnx a 20*4x 2x 4++++-= 设()221a a F x lnx a 24x 2x 4=++++-(∵x 2>0,∴x ∈(0,+∞)), 则()23231a 12x ax 1x 2x 2x x 2xF --=--+=' 不妨设20002x ax 10(x 0)--=>. 当00x x <<时,()x 0F '<,当0x x >时,()x 0F '>所以()F x 在区间()00,x 上单调递减,在区间()0x ,∞+上单调递增, 把001a=2x x -代入可得:()()20000min1F x F x x 2x lnx 2x ==+-+- 设()21G x x 2x lnx 2x =+-+-,则()211x 2x 20x xG =+++>'对x 0>恒成立, 所以()G x 在区间()0,∞+上单调递增,又()G 1=0所以当0x 1<≤时()G x 0≤,即当00x 1<≤时()0F x 0≤,又当2ax e -=时,()22a 42a 2a 1a a F x lne a 24e 2e 4---=-+++- 22a 11a 04e -⎛⎫=+≥ ⎪⎝⎭因此当00x 1<≤时,函数()F x 必有零点;即当00x 1<≤时,必存在2x 使得()*成立; 即存在12x ,x 使得函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同. 又由()1y 2x 0,1x=-在单调递增得,因此(]0001a=2x ,x 0,1x -∈所以实数a 的取值范围是(],1-∞. 【总结提升】(1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程;(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. 例4.(2019·山东高考模拟(文))已知函数ln 1()x f x x+=. (Ⅰ)证明:2()f x e x e ≤-; (Ⅱ)若直线(0)yax b a =+>为函数()f x 的切线,求b a的最小值.【答案】(1)见解析.(2) 1e-.【解析】(Ⅰ)证明:整理2()f x e x e ≤-得22ln 10(0)x e x ex x -++≤>令22()ln 1g x x e x ex =-++,2221(1)(21)()e x ex ex ex g x x x-++-+'==-当10,x e ⎛⎫∈ ⎪⎝⎭,()0g x '>,所以()g x 在1(0,)e上单调递增;当1,x e ⎛⎫∈+∞ ⎪⎝⎭,()0g x '<,所以()g x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,所以1()0g x g e ⎛⎫≤= ⎪⎝⎭,不等式得证.(Ⅱ)221(ln 1)ln ()x xf x x x-+-'==,设切点为()()00,x f x , 则02ln x a x -=,函数()f x 在()()00,x f x 点处的切线方程为()()()000y f x f x x x '-=- ()000200ln 1ln x x y x x x x +-=--,令0x =,解得002ln 1x b x +=, 所以()0002ln 1ln x x ba x +=-,令()()00002ln 1ln x x h x x +=-, 因为0a >,02ln 0x x ->,所以100<<x , ()()()()20000000022202ln 3ln 2ln 12ln 1ln 12ln ln 1ln ln ln x x x x x x x h x x x x +---++-'=-=-=-,当010,x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在10,e ⎛⎫⎪⎝⎭上单调递减;当1,1x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在1,1e ⎛⎫⎪⎝⎭上单调递增,因为100<<x ,()011h x h e e⎛⎫≥=- ⎪⎝⎭. 【思路点拨】(1)由2()f x e x e ≤-即为22ln 10(0)x e x ex x -++≤>,令22()ln 1g x x e x ex =-++,利用导数求得函数()g x 的单调性与最值,即可得到结论; (2)求得函数()f x 的导数,设出切点,可得020ln x a x -=的值和切线方程,令0x =,求得002ln 1x b x +=,令()()00002ln 1ln x x h x x +=-,利用导数求得函数()0h x 的单调性与最小值.对于恒成立问题,往往要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题. 例5.(2014·北京高考真题(文))已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 【答案】 【解析】(1)由3()23f x x x =-得2'()63f x x =-,令'()0f x =,得x =或x =, 因为(2)10f -=-,(2f -=()2f -=(1)1f =-, 所以()f x 在区间[2,1]-上的最大值为(f =(2)设过点P (1,t )的直线与曲线()y f x =相切于点00(,)x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为2000(63)()y y x x x -=--,因此2000(63)(1)t y x x -=--,整理得:32004630x x t -++=,设()g x =32463x x t -++,则“过点(1,)P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”,()g x '=21212x x -=12(1)x x -,()g x 与()g x '的情况如下:x(,0)-∞0 (0,1)1 (1,)+∞()g x '+0 -+()g xt+3所以,31t -<<-是()g x 的极大值,31t -<<-是()g x 的极小值, 当,即1t ≥-时,此时()g x 在区间(,0)-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当,(1,)P t 时,此时()g x 在区间(,0)-∞和(,0)-∞上分别至多有1个零点,所以()g x 至多有2个零点.当且(3,1)--,即时,因为,,所以()g x 分别为区间和()g x 上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是.(3)过点A (-1,2)存在3条直线与曲线()y f x =相切; 过点B (2,10)存在2条直线与曲线()y f x =相切; 过点C (0,2)存在1条直线与曲线()y f x =相切.例6. (2018·天津高考真题(理))已知函数()xf x a =, ()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 【答案】(Ⅰ)单调递减区间(),0-∞,单调递增区间为()0,+∞;(Ⅱ)证明见解析;(Ⅲ)证明见解析. 【解析】(I )由已知, ()xh x a xlna =-,有()xh x a lna lna ='-.令()0h x '=,解得x =0.由a >1,可知当x 变化时, ()h x ', ()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(II )由()x f x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1xa lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .因为这两条切线平行,故有121xa lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (III )曲线()y f x =在点()11,x x a 处的切线l 1: ()111xxy a a lna x x -=⋅-.曲线()y g x =在点()22,a x log x 处的切线l 2: ()2221a y log x x x x lna-=⋅-. 要证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线, 只需证明当1ea e ≥时,存在()1,x ∈-∞+∞, ()20,x ∈+∞,使得l 1和l 2重合.即只需证明当1ea e ≥时,方程组1112121{1x x x a a lna x lnaa x a lna log x lna=-=-①②有解,由①得()1221x x a lna =,代入②,得1111120x x lnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于x 1的方程③存在实数解. 设函数()12x x lnlnau x a xa lna x lna lna=-+++, 即要证明当1ea e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的x 0,且x 0>0,使得()00u x '=,即()02010x lna x a-=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-, 所以()()000000201212220xxlnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <.由(I )可得1xa xlna ≥+,当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++, 所以存在实数t ,使得()0u t <因此,当1e a e ≥时,存在()1,x ∈-∞+∞,使得()10u x =.所以,当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 例7.(2015·广东高考真题(理))(14分)(2015•广东)设a >1,函数f (x )=(1+x 2)e x﹣a . (1)求f (x )的单调区间;(2)证明f (x )在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行,(O 是坐标原点),证明:m≤﹣1.【答案】(1)f (x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)见解析 (3)见解析 【解析】(1)f'(x )=e x(x 2+2x+1)=e x(x+1)2∴f′(x )≥0,∴f(x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f (0)=1﹣a , ∵a>1.∴1﹣a <0∴f(0)<0.当x→+∞时,f (x )>0成立. ∴f(x )在(﹣∞,+∞)上有且只有一个零点 (3)证明:f'(x )=e x(x+1)2,设点P (x 0,y 0)则)f'(x )=e x0(x 0+1)2,∵y=f(x )在点P 处的切线与x 轴平行,∴f'(x 0)=0,即:e x0(x 0+1)2=0, ∴x 0=﹣1将x 0=﹣1代入y=f (x )得y 0=.∴,∴…10分令;g (m )=e m﹣(m+1)g (m )=e m﹣(m+1), 则g'(m )=e m﹣1,由g'(m )=0得m=0. 当m∈(0,+∞)时,g'(m )>0 当m∈(﹣∞,0)时,g'(m )<0 ∴g(m )的最小值为g (0)=0…12分 ∴g(m )=e m ﹣(m+1)≥0 ∴e m≥m+1∴e m(m+1)2≥(m+1)3即: ∴m≤…14分例8.(2019·四川棠湖中学高考模拟(文))已知抛物线2:4C x y = ,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB ,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程; (2)证明:以AB 为直径的圆恒过点M. 【答案】(1)22(1)4x y +-=(2)见证明 【解析】(1)解:当M 的坐标为(0,1)-时,设过M 点的切线方程为1y kx =-,由24,1,x y y kx ⎧=⎨=-⎩消y 得2440x kx -+=. (1) 令2(4)440k ∆=-⨯=,解得1k =±. 代入方程(1),解得A(2,1),B(-2,1).设圆心P 的坐标为(0,)a ,由PM PB =,得12a +=,解得1a =. 故过,,M A B 三点的圆的方程为22(1)4x y +-=.(2)证明:设0(,1)M x -,由已知得24x y =,12y x '=,设切点分别为211(,)4x A x ,222(,)4x B x ,所以12MA x k =,22MB xk =, 切线MA 的方程为2111()42x x y x x -=-即2111124y x x x =-,切线MB 的方程为2222()42x x y x x -=-即2221124y x x x =-.又因为切线MA 过点0(,1)M x -,所以得201111124x x x -=-. ① 又因为切线MB 也过点0(,1)M x -,所以得202211124x x x -=-. ②所以1x ,2x 是方程2011124x x x -=-的两实根,由韦达定理得1202,x x x +=124x x =-.因为2110(,1)4x MA x x =-+,2220(,1)4x MB x x =-+,所以22121020()()(1)(1)44x x MA MB x x x x ⋅=--+++22221212012012121()()21164x x x x x x x x x x x x ⎡⎤=-+++++-+⎣⎦. 将1202,x x x +=124x x =-代入,得0MA MB ⋅=. 所以以AB 为直径的圆恒过点M .【压轴训练】1.(2019·湖南高考模拟(理))过抛物线()220x py p =>上两点,A B 分别作抛物线的切线,若两切线垂直且交于点()12P -,,则直线AB 的方程为( ) A .122y x =+ B .134y x =+ C .132y x =+ D .124y x =+ 【答案】D 【解析】由22x py =,得22x y p=,∴'x y p =.设()()1122,,,A x y B x y ,则1212','x x x x x x y y p p====,抛物线在点A 处的切线方程为2112x x y x p p=-, 点B 处的切线方程为2222x x y x p p=-, 由21122222x x y x p px x y x p p⎧=-⎪⎪⎨⎪=-⎪⎩,解得121222x x x x x y p +⎧=⎪⎪⎨⎪=⎪⎩, 又两切线交于点()1,2P -,∴12121222x x x x p+⎧=⎪⎪⎨⎪=-⎪⎩,故得12122,4x x x x p +==- (*). ∵过,A B 两点的切线垂直,∴121x x p p⋅=-, 故212x x p =-,∴4p =,故得抛物线的方程为28x y =.由题意得直线AB 的斜率存在,可设直线方程为y kx b =+, 由28y kx bx y=+⎧⎨=⎩消去y 整理得2880x kx b --=, ∴12128,8x x k x x b +==- (**),由(*)和(**)可得14k =且2b =, ∴直线AB 的方程为124y x =+.故选:D .2.(2019·山东高考模拟(文))设函数的图象上任意一点处的切线为,若函数的图象上总存在一点,使得在该点处的切线满足,则的取值范围是__________.【答案】【解析】,即又,即本题正确结果:3.(2019·山东高考模拟(理))已知函数()2f x x 2ax =+,()2g x 4a lnx b =+,设两曲线()y f x =,()y g x =有公共点P ,且在P 点处的切线相同,当()a 0,∞∈+时,实数b 的最大值是______.【答案】e 【解析】 设()00,P x y ,()'22f x x a =+,()24'a g x x=.由题意知,()()00f x g x =,()()00''f x g x =,即2200024x ax a lnx b +=+,①200422a x a x +=,②解②得0x a =或02(x a =-舍),代入①得:2234b a a lna =-,()0,a ∞∈+,()'684214b a alna a a lna =--=-,当140,a e ⎛⎫∈ ⎪⎝⎭时,'0b >,当14,a e ∞⎛⎫∈+ ⎪⎝⎭时,'0b <.∴实数b 的最大值是1144342b e e elne e ⎛⎫=-= ⎪⎝⎭. 故答案为:2e .4.(2013·北京高考真题(理))设l 为曲线C :在点(1,0)处的切线.(I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 【答案】(I)(II)见解析【解析】 (1)设f(x)=,则f′(x)=所以f′(1)=1,所以L 的方程为y =x -1.(2)证明:令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于g(x)>0(∀x>0,x≠1). g(x)满足g(1)=0,且g′(x)=1-f′(x)=.当0<x <1时,x 2-1<0,ln x <0,所以g′(x)<0,故g(x)单调递减; 当x>1时,x 2-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增. 所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C 在直线L 的下方.5.(2015·天津高考真题(文))已知函数(Ⅰ)求的单调区间;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若方程有两个正实数根且,求证:.【答案】(Ⅰ)的单调递增区间是,单调递减区间是;(Ⅱ)见试题解析;(Ⅲ)见试题解析.【解析】(Ⅰ)由,可得的单调递增区间是,单调递减区间是;(Ⅱ),,证明在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有;(Ⅲ)设方程的根为,可得,由在单调递减,得,所以.设曲线在原点处的切线为方程的根为,可得,由在在单调递增,且,可得所以.试题解析:(Ⅰ)由,可得,当,即时,函数单调递增;当,即时,函数单调递减.所以函数的单调递增区间是,单调递减区间是.(Ⅱ)设,则,曲线在点P处的切线方程为,即,令即则.由于在单调递减,故在单调递减,又因为,所以当时,,所以当时,,所以在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有.(Ⅲ)由(Ⅱ)知,设方程的根为,可得,因为在单调递减,又由(Ⅱ)知,所以.类似的,设曲线在原点处的切线为可得,对任意的,有即.设方程的根为,可得,因为在单调递增,且,因此,所以.6.(2013·福建高考真题(文))已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(1)由,得.又曲线在点处的切线平行于轴,得,即,解得.(2),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值当,在处取得极小值,无极大值.(3)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(1)(2)同解法一.(3)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解, 解得的取值范围是.综上,得的最大值为.7.(2013·北京高考真题(文))已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【答案】(Ⅰ)求两个参数,需要建立两个方程.切点在切线上建立一个,利用导数的几何意义建立另一个,联立求解.(Ⅱ)利用导数分析曲线的走势,数形结合求解.【解析】由f(x)=x2+xsin x+cos x,得f′(x)=2x+sin x+x(sin x)′-sin x=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b=f(0)=1. (5分)(2)设g(x)=f(x)-b=x2+xsin x+cos x-b.令g′(x)=f′(x)-0=x(2+cos x)=0,得x=0.当x变化时,g′(x),g(x)的变化情况如下表:所以函数g(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,且g(x)的最小值为g(0)=1-b.①当1-b≥0时,即b≤1时,g(x)=0至多有一个实根,曲线y=f(x)与y=b最多有一个交点,不合题意.②当1-b<0时,即b>1时,有g(0)=1-b<0,g(2b)=4b2+2bsin 2b+cos 2b-b>4b-2b-1-b>0.∴y=g(x)在(0,2b)内存在零点,又y =g(x)在R 上是偶函数,且g(x)在(0,+∞)上单调递增, ∴y=g(x)在(0,+∞)上有唯一零点,在(-∞,0)也有唯一零点. 故当b>1时,y =g(x)在R 上有两个零点, 则曲线y =f(x)与直线y =b 有两个不同交点.综上可知,如果曲线y =f(x)与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).(12分)8.(2019·北京高考模拟(文))已知函数32()f x x ax =-.(Ⅰ)当3a =时,求函数()f x 在区间]2,0[上的最小值;(Ⅱ)当3a >时,求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切. 【答案】(I )4-.(Ⅱ)见解析. 【解析】(Ⅰ)当a =3时,f (x )=x 3﹣3x 2,f '(x )=3x 2﹣6x =3x (x ﹣2). 当x ∈[0,2]时,f '(x )≤0, 所以f (x )在区间[0,2]上单调递减.所以f (x )在区间[0,2]上的最小值为f (2)=﹣4.(Ⅱ)设过点P (1,f (1))的曲线y =f (x )的切线切点为(x 0,y 0),f '(x )=3x 2﹣2ax ,f (1)=1﹣a ,所以()()()32000200001321y x ax y a x ax x ⎧=-⎪⎨--=--⎪⎩,.所以()3200023210x a x ax a -+++-=.令g (x )=2x 3﹣(a +3)x 2+2ax +1﹣a ,则g '(x )=6x 2﹣2(a +3)x +2a =(x ﹣1)(6x ﹣2a ), 令g '(x )=0得x =1或3ax =, 因为a >3,所以1a >.∴g (x )的极大值为g (1)=0,g (x )的极小值为()103a g g ⎛⎫=⎪⎝⎭<, 所以g (x )在3a ,⎛⎫-∞ ⎪⎝⎭上有且只有一个零点x =1.因为g (a )=2a 3﹣(a +3)a 2+2a 2+1﹣a =(a ﹣1)2(a +1)>0,所以g (x )在3a ⎛⎫+∞ ⎪⎝⎭,上有且只有一个零点. 所以g (x )在R 上有且只有两个零点.即方程()3200023210x a x ax a -+++-=有且只有两个不相等实根,所以过点P (1,f (1))恰有2条直线与曲线y =f (x )相切. 9.(2019·四川高考模拟(理))已知函数,.(1)若,求函数在区间(其中,是自然对数的底数)上的最小值;(2)若存在与函数,的图象都相切的直线,求实数的取值范围.【答案】(1)见解析;(2).【解析】 (1)由题意,可得,,令,得. ①当时,在上单调递减,∴.②当时,在上单调递减,在上单调递增,∴.综上,当时,,当时,.(2)设函数在点处与函数在点处有相同的切线,则,∴,∴,代入得.∴问题转化为:关于的方程有解,设,则函数有零点,∵,当时,,∴. ∴问题转化为:的最小值小于或等于0.,设,则当时,,当时,.∴在上单调递减,在上单调递增,∴的最小值为.由知,故.设,则,故在上单调递增,∵,∴当时,,∴的最小值等价于.又∵函数在上单调递增,∴.10.(2019·湖南高考模拟(理))设函数()()()22,42x f x e ax g x x x =+=++.(Ⅰ)讨论()y f x =的极值;(Ⅱ)若曲线()y f x =和曲线()y g x =在点()0,2P 处有相同的切线,且当2x ≥-时,()()mf x g x ≥,求m 的取值范围 .【答案】(Ⅰ)见解析;(Ⅱ)21,e ⎡⎤⎣⎦.【解析】 (Ⅰ)∵()()2xf x e ax =+,∴()()2xf x eax a '=++.①当0a =时,()20xf x e '=>恒成立,所以()f x 在R 上单调递增,无极值.②当0a >时,由()0f x '=得2a x a+=-, 且当2a x a +<-时,()0,()f x f x '<单调递减;当2a x a+>-时,()0,()f x f x '>单调递增. 所以当2a x a+=-时,()f x 有极小值,且()2=a a f x ae +--极小值,无极大值. ③当0a <时,由()0f x '=得2a x a+=-,且当2a x a +<-时,()0,()f x f x '>单调递增;当2a x a+>-时,()0,()f x f x '<单调递减.所以当2a x a+=-时,()f x 有极大值,且()2=a a f x ae +--极大值,无极小值. 综上所述,当0a =时,()f x 无极值; 当0a >时,()2=a af x ae +--极小值,无极大值; 当0a <时, ()2=a af x ae +--极大值,无极小值.(Ⅱ)由题意得()2+4g x x '=,∵()y f x =和()y g x =在点()0,2P 处有相同的切线, ∴(0)(0)f g ='',即24a +=,解得2a =, ∴()()22xf x ex =+.令()()()()222(42)xF x mf x g x me x x x =-=+-++,则()()()124xF x me x '=-+,由题意可得()0220F m =-≥,解得1m ≥. 由()0F x '=得12ln ,2x m x =-=-.①当ln 2m ->-,即21m e ≤<时,则120x -<≤,∴当()12,x x ∈-时,()0,()F x F x '<单调递减;当()1,x x ∈+∞时,()0,()F x F x '>单调递增, ∴()()2,F x -+∞在上的最小值为()()2112111224220F x x x x x x =+---=-+≥,∴()()mf x g x ≥恒成立.②当ln 2m -=-,即2m e =时,则()()2()124x F x ex +'=-+,∴当2x ≥-时,()0,()F x F x '≥在()2,-+∞上单调递增, 又(2)0F -=,∴当2x ≥-时,()0F x ≥,即()()mf x g x ≥恒成立. ③当ln 2m -<-,即2m e >时, 则有()222(2)2220F me em e --=-=--+<-,从而当2x ≥-时,()()g x mf x ≤不可能恒成立.综上所述m 的取值范围为21,e ⎡⎤⎣⎦.11.(2019·天津高考模拟(理))已知函数()()()()21ln f x x x x a a R =---∈.(1)若()f x 在()0,∞+上单调递减,求a 的取值范围;(2)若()f x 在1x =处取得极值,判断当(]0,2x ∈时,存在几条切线与直线2y x =-平行,请说明理由; (3)若()f x 有两个极值点12,x x ,求证:1254x x +>. 【答案】(Ⅰ)(],1-∞;(Ⅱ)答案见解析;(Ⅲ)证明见解析. 【解析】(Ⅰ)由已知,()()11ln 2ln 2120x f x x x a x x a x x-=+--=--++≤'恒成立 令()1ln 212g x x x a x=--++,则()()()222221111212(0)x x x x g x x x x x x-+--++='=+-=>, ()210x -+<,令()'0g x >,解得:01x <<,令()'0g x <,解得:1x >,故()g x 在()0,1递增,在()1,+∞递减,()()max 122g x g a ∴==-,由()'0f x ≤恒成立可得1a ≤.即当()f x 在()0,+∞上单调递减时,a 的取值范围是(],1-∞. (Ⅱ)()f x 在1x =处取得极值,则()’10f =,可得1a =. 令()1ln 232f x x x x -'=-+=-,即 1ln 250x x x--+=. 设()1ln 25h x x x x =--+,则()()()222221111212x x x x h x x x x x-+--++='=+-=. 故()h x 在()0,1上单调递增,在()1,2上单调递减, 注意到()55520h eee --=--<,()()112,2ln202h h ==+>, 则方程1ln 250x x x--+=在(]0,2内只有一个实数根, 即当(]0,2x ∈时,只有一条斜率为2-且与函数()f x 图像相切的直线. 但事实上,若1a =,则()1'ln 23f x x x x=--+, ()()()2121''x x f x x--+=,故函数()'f x 在区间()0,1上单调递增,在区间()1,2上单调递减, 且()'101230f =--+=,故函数()'0f x ≤在区间(]0,2上恒成立, 函数()f x 在区间(]0,2上单调递减,即函数不存在极值点, 即不存在满足题意的实数a ,也不存在满足题意的切线. (Ⅲ)若函数有两个极值点12,x x ,不妨设120x x <<, 由(Ⅰ)可知1a >,且:()11111ln 212f x x x a x -+'=-+①, ()22221ln 212f x x x a x -+'=-+②, 由①-②得:()()112112122121221211ln20,2ln 0,2x x x x x x x x x x x x x x x x ⎛⎫-+--=∴--=->∴< ⎪⎝⎭, 即12112x x e>> , 由①+②得:()()12121212ln 2240x x x x x x a x x ++--++=, ()121212ln 24124512242x x a x x x x ++-++∴+=>=++. 12.(2019·辽宁高考模拟(理))已知a R ∈,函数()()2ln ,0,6.f x a x x x =+∈()I 讨论()f x 的单调性;()II 若2x -是()f x 的极值点,且曲线()y f x =在两点()()()()1122,,,P x f x Q x f x 12x x 处的切线相互平行,这两条切线在y 轴上的截距分别为12,b b ,求12b b -的取值范围 【答案】()I 当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增;()II 2ln 2,03⎛⎫- ⎪⎝⎭.【解析】(Ⅰ)()2222a ax f x x x x-'=-+=.()0,6x ∈∴ ①当0a ≤时,()0f x '<在()0,6x ∈上恒成立. ∴ ()f x 在()0,6上单调递减,无单调递增区间;②当0a >,且26a≥,即103≤a <时,()0f x '<在()0,6x ∈上恒成立.∴ ()f x 在()0,6上单调递减,无单调递增区间;③当0a >,且26a <,即13a >时,在20,x a ⎛⎫∈ ⎪⎝⎭上,()0f x '<,在2,6x a ⎛⎫∈ ⎪⎝⎭上,()0f x '>,∴ ()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增.综上,当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫⎪⎝⎭上单调递增. (Ⅱ)2x =是()f x 的极值点,∴由()1可知22,1a a=∴= 设在()()11.P x f x 处的切线方程为()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭在()()22,Q x f x 处的切线方程为()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭ ∴若这两条切线互相平行,则2211222121x x x x -+=-+,121112x x ∴+= 令0x =,则1114ln 1b x x =+-,同理,2224ln 1b x x =+- 【解法一】211112x x =- 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ 111211114ln ln 22x x x ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭设()182ln ln 2g x x x x ⎛⎫=--+-⎪⎝⎭,11,43x ⎛⎫∈ ⎪⎝⎭()2211168180122x x g x x x x x-+'∴=--=<--,()g x ∴在区间11,43⎛⎫ ⎪⎝⎭上单调递减,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭即12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法二】12122x x x =- 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭1182ln 12x x ⎛⎫-+- ⎪⎝⎭令()1182ln 12x g x x ⎛⎫=-+- ⎪⎝⎭,其中()3,4x ∈ ()()2228181622x x g x x x x x -+'∴=-+=-- ()()22402x x x -=>-∴函数()g x 在区间()3,4上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭.∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法三】()12122x x x x =+121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ ()2111224ln ·x x x x x x -+ ()2112122ln x x x x x x -=++ 12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭=++设()()21ln 1x g x x x-=++,则()()()()22214111x g x x x x x --'=+=++ 11211,122x x x ⎛⎫=-∈ ⎪⎝⎭,()0g x ∴'>,∴函数()g x 在区间1,12⎛⎫ ⎪⎝⎭上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭ ∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭.13.(2019·安徽高考模拟(文))已知函数()ln x f x x =+,直线l :21y kx =-.(Ⅰ)设(,)P x y 是()y f x =图象上一点,O 为原点,直线OP 的斜率()k g x =,若()g x 在(,1)x m m ∈+(0)m 上存在极值,求m 的取值范围;(Ⅱ)是否存在实数k ,使得直线l 是曲线()y f x =的切线?若存在,求出k 的值;若不存在,说明理由; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由. 【答案】11e m e k -<<=Ⅰ,(Ⅱ),(Ⅲ)见解析 【解析】 (Ⅰ)∵()ln (0)y x x g x x x x +==>,∴()1ln 0xg x x='-=,解得x e =. 由题意得: 01m e m <<<+,解得1e m e -<<.(Ⅱ)假设存在实数k ,使得直线是曲线()y f x =的切线,令切点()00,P x y , ∴切线的斜率0121k x =+. ∴切线的方程为()()00001ln 1y x x x x x ⎛⎫-+=+- ⎪⎝⎭,又∵切线过(0,-1)点,∴()()000011ln 10x x x x ⎛⎫--+=+- ⎪⎝⎭.解得01x =,∴22k =, ∴1k =.(Ⅲ)由题意,令ln 21x x kx +=-, 得 ln 12x x k x++=.令()ln 1(0)2x x h x x x ++=>, ∴()2ln 2xh x x-=',由()0h x '=,解得1x =. ∴()h x 在(0,1)上单调递增,在()1,+∞上单调递减,∴()()max 11h x h ==,又0x →时,()h x →-∞;x →+∞时,()1ln 11222x h x x +=+→, {}1,12k ⎛⎤∴∈-∞⋃ ⎥⎝⎦时,只有一个交点;1,12k ⎛⎫∈ ⎪⎝⎭时,有两个交点;()1,k ∈+∞时,没有交点.14. (2019·河北高考模拟(理))已知函数()xf x e =,()g x alnx(a 0)=>. ()1当x 0>时,()g x x ≤,求实数a 的取值范围;()2当a 1=时,曲线()y f x =和曲线()y g x =是否存在公共切线?并说明理由.【答案】(1)(]0,e ;(2)存在公共切线,理由详见解析.【解析】()1令()()ln m x g x x a x x =-=-,则()1a a x m x x x-=-='. 若0x a <<,则()0m x '>,若x a >,则()0m x '<.所以()m x 在()0,a 上是增函数,在(),a +∞上是减函数.所以x a =是()m x 的极大值点,也是()m x 的最大值点,即()max ln m x a a a =-.若()g x x ≤恒成立,则只需()max ln 0m x a a a =-≤,解得0a e <≤.所以实数a 的取值范围是(]0,e . ()2假设存在这样的直线l 且与曲线()y f x =和曲线()y g x =分别相切与点()()1122,,,ln x A x e B x x . 由()x f x e =,得()xf x e '=. 曲线()y f x =在点A 处的切线方程为()111x x y e e x x -=-,即()1111x xy e x x e =+-. 同理可得,曲线()y g x =在点B 处的切线方程为()2121ln y x x x x -=-,即221ln 1y x x x =+-. 所以()11212111x x e x x e lnx ⎧=⎪⎨⎪-=-⎩则()1111lne 1x x x e --=-,即()111110x x e x -++= 构造函数()()x11,h x x e x =-++ x R ∈ 存在直线l 与曲线()y f x =和曲线()y g x =相切,等价于函数()()x11h x x e x =-++在R 上有零点对于()1xh x xe ='-. 当0x ≤时,()0h x '>,()h x 在上单调递增.当0x >时,因为()()()'10x h x x e +'=-<,所以()h x '在()0,+∞上是减函数.又()()010,110h h e ''=>=-<,,所以存在()00,1x ∈,使得()00010x h x x e'=-=,即001x e x =. 且当()000,x x ∈,()0h x '>时,当()00,x x ∈+∞时,()0h x '<.综上,()h x 在()00,x 上是增函数,在()0,x +∞上是减函数.所以()0h x 是()h x 的极大值,也是最大值,且()()()()0000000max 0011111?10x h x h x x e x x x x x x ==-++=-++=+>. 又()22310h e --=-<,()2230h e =-+<,所以()h x 在()02,x -内和()0,2x 内各有一个零点. 故假设成立,即曲线()y f x =和曲线()y g x =存在公共切线.15.(2019·广西高考模拟(理))已知函数1()ln f x x mx x =--在区间(0,1)上为增函数,m R ∈.(1)求实数m 的取值范围; (2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求+a b 的最小值.【答案】(1)2m ≤;(2)+a b 的最小值为-1.【解析】(1)∵()1ln f x x mx x =--, ∴()211f x m x x=+-'. 又函数()f x 在区间()0,1上为增函数,∴()2110f x m x x =-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭, 则当1x =时,()t x 取得最小值,且()2min t x =,∴2m ≤,∴实数m 的取值范围为(],2∞-.(2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭, 则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()11min h x h ==-,∴a b +的最小值为1-.16.(2019·四川高考模拟(理))已知函数()ln x a f x x e +=-.(1)若曲线()f x 在点()()1,1f 处的切线与x 轴正半轴有公共点,求a 的取值范围;(2)求证:11a e>-时,()1f x e <--.【答案】(1)1a <-;(2)证明见解析.【解析】(1)函数f (x )=lnx ﹣e x +a 的导数为f ′(x )=1x﹣e x +a .曲线f (x )在点(1,f (1))处的切线斜率为1﹣e 1+a ,切点为(1,﹣e 1+a ),可得切线方程为y +e 1+a =(1﹣e 1+a )(x ﹣1),可令y =0可得x =111a e +-,由题意可得111a e+->0, 可得e 1+a <1,解得a <﹣1; (2)证明:f ′(x )=1x ﹣e x +a .设g (x )=f ′(x )=1x ﹣e x +a . 可得g ′(x )=﹣(21x +e x +a ),当x >0时,g ′(x )<0,g (x )递减; 由a >1﹣1e ,e x +a >e x .若e x >1x ,g (x )<1x﹣e x <0, 当0<x <1时,e x +a <e 1+a .若e 1+a <1x,即x <e ﹣1﹣a , 故当0<x <e ﹣1﹣a 时,g (x )>0,即g (x )=f ′(x )有零点x 0,当0<x <x 0时,f ′(x )>0,f (x )递增;当x >x 0时,f ′(x )<0,f (x )递减,可得f (x )≤f (x 0),又f (x 0)=lnx 0﹣e x 0+a ,又e x 0+a =01x , 可得f (x 0)=lnx 0﹣01x ,在x 0>0递增, 又a =ln 01x ﹣x 0=﹣(lnx 0+x 0), a >1﹣1e ⇔﹣(lnx 0+x 0)>1﹣1e =﹣(ln 1e +1e), 所以lnx 0+x 0<ln 1e +1e,由于lnx 0+x 0递增, 可得0<x 0<1e ,故f (x )≤f (x 0)<f (1e )=﹣1﹣e .。
抛物线外一点做两条切线轨迹方程1. 概述抛物线是数学中常见的一种曲线,其在物理学、工程学、计算机图形学等领域有着广泛的应用。
抛物线外一点做两条切线是一个经典的问题,其涉及到抛物线的性质和切线的几何关系。
本文将探讨抛物线外一点做两条切线的轨迹方程,希望能够为读者对此问题的理解提供一些帮助。
2. 抛物线的一般方程一般来说,抛物线的一般方程可以表示为:\[y = ax^2 + bx + c \]其中a、b、c为常数且a不为0。
抛物线的顶点坐标为(-b/2a, c - b^2/4a)。
3. 抛物线外一点做两条切线的条件对于给定的抛物线和一点P(x, y)外,我们希望找到通过点P的两条切线。
根据几何性质,抛物线外一点做两条切线的条件为:点P到抛物线的切线长度相等。
设点P到抛物线的距离为d,则点P到抛物线的两个切点为A和B,过点P作AB的垂线交抛物线于C和D,则PC=PD。
4. 推导轨迹方程我们可以找到切线的一般方程。
设抛物线的方程为y = f(x),点P的坐标为(x, y),则点P到抛物线的距离 \[d = \frac{|y - f(x)|}{\sqrt{1 +f'(x)^2}} \] 其中f'(x)为抛物线的导数。
根据切线的性质,切线的斜率为f'(x)。
由上式我们得到\[d = \frac{|y - f(x)|}{\sqrt{1 + f'(x)^2}} = \frac{|ax^2 + bx + c -f(x)|}{\sqrt{1 + f'(x)^2}} \]根据点到直线的距离公式,我们知道点P到抛物线的切线的距离为d,于是我们得到抛物线外一点做两条切线的轨迹方程。
5. 结论通过以上推导,我们得到了通过抛物线外一点的两条切线的轨迹方程。
这个问题的解决不仅涉及到抛物线的性质,也考虑到切线的几何特性。
抛物线作为数学中的经典曲线,在这个问题中展现了其独特的魅力。
希望读者通过本文能够对抛物线外一点做两条切线的轨迹方程有一个更清晰的认识。
抛物线外一点引两条切线,切点连线的方程1. 引言1.1 概述在数学领域,抛物线是一种常见的曲线形状,具有许多重要的性质和应用。
与抛物线相关的一个重要问题是如何确定抛物线外一点引出的两条切线,并找到这两条切线上的切点及其连线方程。
本文将详细探讨该问题。
1.2 研究背景抛物线作为一个具有特殊形状和性质的曲线,在几何学和微积分中都占据着重要地位。
早在古希腊时期,古代数学家就开始研究抛物线,并发现了许多与之相关的定理和性质。
随着数学研究的不断深入,人们对于抛物线的认识也越来越深刻。
在这个过程中,人们逐渐发现了如何确定抛物线外一点引出的两条切线,并求解切点及其连线方程这个问题。
1.3 目的本文旨在介绍抛物线与切线之间的关系,并详细推导出抛物线外一点引两条切线所涉及的数学方法。
通过典型例题的分析和解答,将帮助读者理解并掌握如何确定抛物线外一点引出的两条切线,并求解切点及其连线方程的步骤。
此外,本文还将探讨这个问题在实际应用中的价值,并对研究尚未解决的相关问题进行展望。
以上是“1. 引言”部分的详细内容,通过介绍本文的概述、研究背景和目的,读者可以初步了解文章所要讨论的问题和内容。
接下来,“2. 抛物线与切线关系”部分将详细介绍抛物线及切线的定义及性质。
2. 抛物线与切线关系2.1 抛物线定义及性质抛物线是一种平面曲线,由所有与一个固定点(焦点)和一条直线(准线)的距离相等的点组成。
其标准方程可以表示为y = ax^2 + bx + c,其中a、b和c 为常数,且a不等于0。
抛物线具有以下性质:- 对称性:抛物线关于其顶点对称。
- 面积:抛物线所夹的面积相等于焦点到准线的距离乘以基本边长。
- 焦距:抛物线中焦点到顶点的距离等于焦半径。
2.2 切线定义及性质切线是指曲线上某一点处与该点处切给曲线只有一个公共交点的直线。
切线与曲线相切于该点,并且在该点处具有相同的斜率。
切线具有以下性质:- 斜率:切线与曲线在交点处具有相同的斜率。
抛物线经典结论和例题抛物线)0(22>=p pxy)0(22>-=p pxy)0(22>=p pyx)0(22>-=p pyx定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
{MFM=点M 到直线l 的距离}范围 0,x y R ≥∈0,x y R ≤∈,0x R y ∈≥,0x R y ∈≤对称性关于x 轴对称关于y 轴对称焦点(2p,0) (2p -,0) (0,2p ) (0,2p -) 焦点在对称轴上顶点 (0,0)O离心率 e =1准线 方程 2p x -= 2p x =2p y -= 2p y =准线与焦点位于顶点两侧且到顶点的距离相等。
顶点到准2p xyO lFxyOl FlF x y Oxy O l F线的距离 焦点到准线的距离p焦半径11(,)A x y12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦 点弦 长AB12()x x p ++12()x x p -++12()y y p ++12()y y p -++焦点弦AB 的几条性质11(,)A x y 22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,则22sin pAB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===∙∙ ox ()22,B x y Fy ()11,A x y切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+1. 直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
抛物线上或外一点切线问题研究经典
抛物线上或外一点切线问题研究经典
证明:(1 )抛物线y2 = 2px(p > 0)上一点M(x0,y0)处的切线方程为y o y= /?(x + x0): ⑵过抛物线y2=2px(p>0)外一点引两条切线,切点弦所在直线方程为)‘0)'=“匕+ 儿)。
(1)设切线方程为x = ty + A,则兀=$。
+儿,①
由[X^ty + A得『2一2“处一2“兄=0.所以△ = 4pW+8p/l = 0,
=2px
所以pt2 + 22 = 0②又因为儿彳=2/如③
2 解①②(㉚得(儿一/")2=0,所以y0 = pt,即f =如,所以兄=勺一也•
P P
2
所以切线方程为x =卫y +心一卫-即y o y = p(x + )。
P P
(2)设两切点坐标为(兀,必),匕2,比),
由(1)知,两条切线方程分别为y x y = p{x+x x Y y2y = p(x+x2),
因为点M(兀,儿)同时在两条切线上,
所以儿凡=P(X0 + X]),儿儿=P(x o+ “2),
所以3, y)(吃os)均满足方程y Q y = P(X+x0),
所以切点弦所在直线方程为y()y = p(x+x Q)o。
2024年5月上半月㊀试题研究㊀㊀㊀㊀切点弦场景创设,定点与动点轨迹一道抛物线题的探究◉江苏省苏州工业园区星海实验高级中学㊀卢㊀闯㊀㊀切点弦是二次曲线中一类比较特殊的弦,其是由二次曲线外的一点向二次曲线引两条切线,连接两切点的线段.特别对于抛物线中的切点弦问题,更是其中一个具有独特属性的知识点,备受关注.1问题呈现问题㊀(2024届广东四校高三第一次联考数学试卷 16)过P(m,-2)向抛物线x2=4y引两条切线P Q,P R,切点分别为Q,R.又点A(0,4)在直线Q R上的射影为H,则焦点F与H连线的斜率的取值范围是.2问题剖析此题以过定直线中的动点向抛物线引两条切线来设置问题场景,结合抛物线切点弦的构建,以及定点到切点弦上的射影的给出,确定焦点到对应射影的连线的斜率问题,以直线斜率的取值范围来构建问题.本题涉及动点㊁切点㊁定点㊁射影㊁焦点等众多类型的点,切线㊁弦点弦㊁焦点与射影的连线等对应类型的直线,创设一个 动 静 结合的和谐场景,以定直线上动点的变化带动切线的变化,引起切点弦的变化,进一步带动定点在切点弦上的射影的变化,最后直接关系到焦点与射影连线的斜率的变化, 定值 与变量 的巧妙转化,构建一个动态情景,同时也为问题的解决提供切入点.本题可以从众多类型的点入手加以设点法处理,也可以从众多类型的直线入手加以设线法处理,都可以很好达到解决问题的目的.若理解并掌握圆锥曲线切点弦公式的话,可直接利用 二级结论 快捷处理.而对于该问题,当动点P(m,-2)中m=0时,焦点F与点H的连线是一条怎样的直线,是否存在斜率呢这也是该问题命制过程中的一个弊端所在,要加以合理的修正与改进,以保证命题的完善性.3问题破解方法1:设点法 导数思维.解析:设Q(x1,y1),R(x2,y2),则有y1=14x21,y2=14x22.依题y=14x2,求导可得yᶄ=12x.根据导数的几何意义可得,切线P Q的方程为y-14x21=12x1(x-x1),整理有y=12x1x-y1.而点P(m,-2)在切线P Q上,则有-2=12x1m-y1,即x1m-2y1+4=0,所以(x1,y1)是方程m x-2y+4=0的解,即点Q是直线m x-2y+4=0上的点.用x2替换x1,用y2替换y1,可知点R也是直线m x-2y+4=0上的点.所以直线Q R的方程为m x-2y+4=0.将上述方程变形,得m x=2(y-2),从而直线Q R过定点B(0,2).而由于AHʅB H,|A B|=2,则知点A在直线Q R上的射影H的轨迹就是以A B为直径的圆,其方程为x2+(y-3)2=1.图1当F H与该圆相切时,结合平面几何性质可知,直线F H的斜率分别为-3,3,如图1所示.故焦点F与H连线的斜率的取值范围是(-ɕ,-3]ɣ[3,+ɕ).解后反思:通过设点法,结合导数的几何意义来确定圆锥曲线的切线方程,为进一步求解圆锥曲线的切点弦提供条件.这是圆锥曲线的切点弦方程求解的一种 通性通法 .而基于抛物线的切点弦方程,通过对直线过定点的挖掘,以及射影轨迹的判断,为数形结合确定对应直线斜率的极端情况打下基础.同时要注意直线斜率的取值范围以及图形之间的联系,不要出现混淆.方法2:设线法 方程思维.解析:设切线P Q,P R的方程分别为y=k1(x-m)-2,y=k2(x-m)-2.联立y=k1x-k1m-2,x2=4y,{消去参数y并整理可得38试题研究2024年5月上半月㊀㊀㊀x 2-4k 1x +4k 1m +8=0,由判别式Δ=16k 21-4(4k 1m +8)=0,化简有k 21-k 1m -2=0,可得x 1=x 2=2k 1,则Q (2k 1,k 21),用k 2替换k 1,同理可得R (2k 2,k 22).于是可知k 1,k 2是方程k 2-k m -2=0的两个根,利用韦达定理可得k 1+k 2=m ,k 1k 2=-2.而直线Q R 的方程为y -k 21=k 22-k 212k 2-2k 1(x -2k 1),即y =k 1+k 22x -k 1k 2,亦即y =m 2x +2,变形可得m x =2(y -2),从而直线Q R 过定点B (0,2).以下部分同方法1(此略),可知焦点F 与H 连线的斜率的取值范围是(-ɕ,-3]ɣ[3,+ɕ).解后反思:通过设线法,结合方程的判别式来确定圆锥曲线的切点弦所在的直线方程,为进一步求解圆锥曲线的切点弦提供条件.这是圆锥曲线的切点弦方程求解的另一种 通性通法 .思维视角不同,对数学基础知识的理解与应用也有所侧重,关键是把握问题的内涵与实质,巧妙加以综合与应用.方法3:性质法.解析:由圆锥曲线的切点弦方程的 二级结论 可知,直线Q R 的方程为m x =4ˑ-2+y2=2(y -2),从而直线Q R 过定点B (0,2).以下部分同方法1(此略),可知焦点F 与H 连线的斜率的取值范围是(-ɕ,-3]ɣ[3,+ɕ).解后反思:熟练掌握圆锥曲线的切点弦方程的二级结论 过曲线A x 2+C y 2+D x +E y +F =0(A ,C 不同时为零)外一点M (x 0,y 0)作曲线的两条切线M P ,M Q ,切点分别为P ,Q ,则切点弦P Q 所在的直线方程为A x 0x +C y 0y +Dx 0+x 2+E y 0+y2+F =0.作为课外拓展与提升知识,供学有余力或参与竞赛的学生参考,在把握 二级结论 的基础上,解题更加简单快捷,很好地提升解题效益.4问题辨析在以上问题中,对于动点P (m ,-2),若m =0时,此时点P (0,-2),过点P 向抛物线x 2=4y 引两条切线P Q ,P R ,利用抛物线的对称性可知,切点Q ,R关于y 轴对称,由此可得点A (0,4)在直线Q R 上的射影H 在y 轴上,而焦点F (0,1)也在y 轴上,可知F H 的方程为x =0,此时,F H 的斜率不存在.由以上问题的特殊场景分析可知,在原问题的设置中,应该把m =0这一特殊情况排除在外,由此对原问题进一步加以改进如下:问题㊀过P (m ,-2)(m ʂ0)向抛物线x 2=4y 引两条切线P Q ,P R ,切点分别为Q ,R .又点A (0,4)在直线Q R 上的射影为H ,则焦点F 与H 连线的斜率的取值范围是.这样修改后,问题更加合理与完善,不存在漏洞或不合理的地方,而具体的解析过程也更加合理有效.5变式拓展借助原问题解析过程中的产物,可以得到一些相应的变式问题.5.1定点问题变式1㊀过P (m ,-2)向抛物线x 2=4y 引两条切线P Q ,P R ,切点分别为Q ,R ,则直线Q R 恒过的定点的坐标是.(答案:(0,2).)由此可得更加一般性的结论:结论:过P (m ,a )(a <0)向抛物线x 2=2p y (p >0)引两条切线P Q ,P R ,切点分别为Q ,R ,则直线Q R 恒过的定点的坐标是(0,-a ).5.2轨迹问题变式2㊀过P (m ,-2)向抛物线x 2=4y 引两条切线P Q ,P R ,切点分别为Q ,R .又点A (0,4)在直线Q R 上的射影为H ,则动点H 的轨迹方程是.(答案:x 2+(y -3)2=1.)6教学启示二次曲线(圆㊁椭圆㊁双曲线与抛物线)中的切点弦问题,是平面解析几何中一类综合性较强的问题,解决这类问题的 通性道法 主要有两种:(1)结合函数与导数的应用,利用导数的几何意义确定对应的切线方程,进而加以深入综合与应用;(2)结合函数与方程的应用,利用方程的判别式确定对应的切线方程,同时为切点弦的确定提供条件.而特殊的思维技巧就是借助二次曲线的切点弦方程的 二级结论 ,直接利用公式确定切点弦方程,快速解决问题.常规的技巧方法是我们必须理解并掌握的知识,也是对此类问题的基本要求,需要借助知识的学习与练习的训练加以掌握与应用;而特殊的思维技巧给我们的课外学习开辟了一个更加宽广的空间,提供了更加简单快捷的技巧与方法.Z48。
抛物线考纲解读 1.利用抛物线的定义及简单性质求抛物线的标准方程;2.根据抛物线标准方程求其几何性质;3.利用抛物线几何性质研究与直线有关的综合问题.[基础梳理]1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内.(2)与一个定点F 和一条定直线l 距离相等. (3)l 不经过点F .2.抛物线的标准方程与几何性质O (0,0)[三基自测]1.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B.1516 C.78 D .0 答案:B2.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则其方程是( )A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8x答案:D3.抛物线y 2=8x 上到其焦点F 距离为5的点P 有( ) A .0个 B .1个 C .2个 D .4个 答案:C4.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________.答案:y 2=-8x 或x 2=-y5.(2017·高考全国卷Ⅱ改编)过y 2=8x 的焦点F 垂直于x 轴的直线交抛物线于M 、N 两点,求|MN |.答案:8考点一 抛物线的定义及应用|方法突破[例1] (1)(2018·河北三市联考)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53 B.75 C.97D .2(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .25-1B .25-2 C.17-1D.17-2(3)与y 轴相切并与圆C :x 2+y 2-6x =0也相切的圆的圆心的轨迹方程为________. [解析] (1)设A (x 1,y 1)、B (x 2,y 2),分别过点A 、B 作直线x =-2的垂线,垂足分别为点D 、E (图略).∵|P A |=12|AB |,∴⎩⎪⎨⎪⎧3(x 1+2)=x 2+23y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.(2)由题意得圆x 2+(y -4)2=1的圆心A (0,4),半径r =1,抛物线的焦点F (1,0).由抛物线的几何性质可得:点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是|AF |-r =1+16-1=17-1.选C.(3)当动圆在y 轴右侧时,如图,动圆圆心P 到(3,0)的距离等于P 到定直线x =-3的距离(3+r ),所以P 点的轨迹是以(3,0)为焦点的抛物线. 其方程为y 2=12x (x >0).当动圆在y 轴左侧时,其圆心在x 轴的负半轴上,其方程为y =0(x <0). [答案] (1)A (2)C (3)y 2=12x (x >0)或y =0(x <0) [方法提升][母题变式]1.将本例(1)改为过抛物线y 2=4x 的焦点的直线交抛物线于A ,B 两点,若|AB |=10,则AB 的中点到y 轴的距离等于( )A .1B .2 C .3D .4解析:AB 的中点到抛物线准线的距离为|AB |2=5,所以AB 的中点到y 轴的距离为5-1=4.答案:D2.将本例(2)改为已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,求|MA |+|MF |的最小值.解析:抛物线x 2=4y 的焦点为F (0,1),准线为y =-1,由抛物线的定义得|MF |等于M 到准线的距离d ,所以|MA |+|MF |的最小值等于圆心C 到准线的距离减去圆的半径,即5+1-1=5.考点二 抛物线标准方程及性质|方法突破[例2] (1)(2018·沈阳模拟)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)(2)(2018·保定模拟)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点A (0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x(3)经过抛物线C 的焦点F 作直线l 与抛物线C 交于A 、B 两点,如果A 、B 在抛物线C 的准线上的射影分别为A 1、B 1,那么∠A 1FB 1等于( )A.π6B.π4C.π2D.2π3[解析] (1)抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).(2)由已知得抛物线的焦点F ⎝⎛⎭⎫p 2,0,设点M (x 0,y 0),则AF →=⎝⎛⎭⎫p 2,-2,AM →=⎝⎛⎭⎫y 202p ,y 0-2.由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝⎛⎭⎫8p ,4.由|MF |=5,得⎝⎛⎭⎫8p -p 22+16=5. 又p >0,解得p =2或p =8.(3)由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AF A 1=∠AA 1F .又∠OFB 1=∠BB 1F ,∠OF A 1=∠AA 1F ,故∠BFB 1=∠OFB 1,∠AF A 1=∠OF A 1,所以∠OF A 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.[答案](1)B(2)C(3)C[方法提升]求抛物线方程的方法[跟踪训练]1.(2018·宜宾诊断)顶点在原点,对称轴为坐标轴,且过点P(-4,-2)的抛物线的标准方程是()A.y2=-xB.x2=-8yC.y2=-8x或x2=-yD.y2=-x或x2=-8y解析:若焦点在x轴上,设抛物线方程为y2=ax,将点P(-4,-2)的坐标代入,得a =-1,所以抛物线的标准方程为y2=-x;若焦点在y轴上,设方程为x2=by,将点P(-4,-2)的坐标代入,得b =-8,所以抛物线的标准方程为x 2=-8y .故所求抛物线的标准方程是y 2=-x 或x 2=-8y .答案:D2.(2018·重庆渝中区模拟)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,双曲线C 的渐近线与抛物线y 2=2px (p >0)交于A ,B 两点,△OAB (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=43x解析:∵双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴双曲线C 为等轴双曲线,即a =b ,∴双曲线的渐近线方程为y =±x .又∵双曲线C 的渐近线与抛物线y 2=2px 交于A ,B 两点,如图所示,设点A (x ,y ),∴|OM |=x ,|AM |=y .又 ∵△OAB 的面积为xy =4,∴x =2,y =2.又∵点A 在抛物线上,∴22=2p ·2.解得p =1,∴抛物线的方程为y 2=2x .故选C.答案:C3.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( )A.72B.52 C .3D .2 解析:∵FP →=4FQ →,∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C. 答案:C考点三 直线与抛物线综合问题|方法突破[例3] (2016·高考浙江卷) 如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值.(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.[解析] (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0, 故y 1y 2=-4,所以B ⎝⎛⎭⎫1t 2,-2t . 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2 t . 设M (m,0),由A ,M ,N 三点共线得2tt 2-m =2t +2t t 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). [方法提升][跟踪训练]如图,点O 为坐标原点,直线l 经过抛物线C :y 2=4x 的焦点F ,设点A 是直线l 与抛物线C 在第一象限的交点.以点F 为圆心,|F A |为半径的圆与x 轴负半轴的交点为点B ,与抛物线C 在第四象限的交点为点C .(1)若点O 到直线l 的距离为32,求直线l 的方程; (2)试判断直线AB 与抛物线C 的位置关系,并给出证明. 解析:(1)由题易知,抛物线C 的焦点为F (1,0), 当直线l 的斜率不存在时,即x =1,不符合题意.当直线l 的斜率存在时,设直线l 的方程为:y =k (x -1),即kx -y -k =0. 所以|-k |1+k 2=32,解得k =± 3. 即直线l 的方程为y =±3(x -1). (2)直线AB 与抛物线C 相切,证明如下: 设A (x 0,y 0),则y 20=4x 0.因为|BF |=|AF |=x 0+1,所以B (-x 0,0). 所以直线AB 的方程为:y =y 02x 0(x +x 0), 整理得,x =2x 0y y 0-x 0,把上式代入y 2=4x 得y 0y 2-8x 0y +4x 0y 0=0,Δ=64x 20-16x 0y 20=64x 20-64x 20=0,所以直线AB 与抛物线C 相切.1.[考点一](1)(2016·高考全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4,所以选B.答案:B2.[考点一、二](2016·高考全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2解析:由题意得点P 的坐标为(1,2).把点P 的坐标代入y =kx (k >0)得k =1×2=2,故选D.答案:D3.[考点二、三](2017·高考全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k (x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k 2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k 2+4+4k 2=8+4⎝⎛⎭⎫1k 2+k 2≥8+8=16,当且仅当1k 2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16,故选A.答案:A4.[考点二、三](2017·高考全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.解析:如图,过M 、N 分别作抛物线准线的垂线,垂足分别为M 1、N 1,设抛物线的准线与x 轴的交点为F 1,则|NN 1|=|OF 1|=2,|FF 1|=4.因为M 为FN 的中点,所以|MM 1|=3,由抛物线的定义知|FM |=|MM 1|=3,从而|FN |=2|FM |=6.答案:65.[考点二、三](2017·高考全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率:(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.解析:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1.(2)由y =x 24,得y ′=x2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1. 从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7. 所以直线AB 的方程为y =x +7.。
切线问题典型剖析【思维突破】1.按照过一点求切线方程的一般步骤,设切点、求斜率得切线方程、点代入,将切线的条数问题转化为方程解的个数问题;是否存在切线转化为方程有无解的问题.2.有时也可考虑相切为“临界状态”,利用参数的几何意义确定参数的取值范围.【典例分析】例1(2022·全国新高考Ⅰ卷·15)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是___________.【答案】(,4)(0,)-∞-⋃+∞【解析】易知曲线不过原点,故0a ≠设切点为()000,()x x x a e +,则切线的斜率为000()(1)x f x x a e '=++所以切线方程为00000()(1))(x x y x a e x a x e x -++=-+又因为切线过原点,所以00000()(1())x x x a e x a e x +++--=即2000x ax a -=+又因为切线有两条,故上方程有两不等实根所以204a a ∆=+>,解得4a <-0a >所以a 的取值范围是(,4)(0,)-∞-⋃+∞.例2(2022·江苏南京一中学情调研模拟检测·8)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是()A.1ln ,2e ⎛⎫+∞ ⎪⎝⎭B.()1,-+∞C.()1,+∞ D.()2,ln +∞【答案】B【分析】由于2()g x x x a =++中要求0x <,故考虑当=0x 时的公切线所对应的实数a 的值为临界值,当a 增大时,抛物线沿直线1=2x -上移,公切线与2()g x x x a =++相切的切点左移,横坐标减小,故所求大于此时a 的临界值.【解析】先求当=0x 时,曲线2()g x x x a =++的切线方程∵()21g x x '=+,(0)1g '=∴曲线2()g x x x a =++的切线在=0x 处的切线方程为y a x -=,即y x a=+再求当曲线()ln f x x =与直线y x a =+相切时(即直线y x a =+为公切线)a 的值设曲线()ln f x x =与直线y x a =+相切时切点为()00,ln x x 则由导数的几何意义得()0011f x x '==,解得01x =,切点为()1,0将()1,0代入y x a =+得1a =-∵当a 增大时,抛物线2()g x x x a =++沿直线1=2x -上移,公切线与2()g x x x a =++相切的切点左移,横坐标减小,即切点的横坐标小于0∴故所求a 大于此时a 的值,即1a >-.例3(2022·全国甲卷·文20改编)已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线,则实数a 的取值范围是.【答案】[)1,-+∞【分析一】由于2()g x x a =+中a 的几何意义为截距,故只需求出3()f x x x =-、2()g x x a =+相切时a 的值,将2()g x x a =+图象往上平移,即a 增大,即为所求.【分析二】设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【解析一】设公切点为()3000x x x -,则32000200+312x x x a x x ⎧-=⎪⎨-=⎪⎩,解之得011a x =-⎧⎨=⎩或052713a x ⎧=⎪⎪⎨⎪=-⎪⎩(不符合题意,舍去)故a 的取值范围为[)1,-+∞.【解析二】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.例4(2022·江苏南通期末·16)已知函数3()2f x x ax =-,若a ∈R 时,直线(2)y k x =-与曲线()y f x =相切,且满足条件的k 的值有且只有3个,则a 的取值范围为_________.【答案】(0,8)【分析】利用过点(2,0)的曲线的切线有3条,构造函数,借助函数有3个零点求解作答.【解析】由3()2f x x ax =-求导得:2()6f x x a '=-,设直线(2)y k x =-与曲线()y f x =相切的切点为3(,2)t t at -,于是得2()6k f t t a '==-,且32(2)t at k t -=-,则32k t =,显然函数32t 在R 上单调递增,因直线(2)y k x =-与曲线()y f x =相切的k 的值有且只有3个,则有直线(2)y k x =-与曲线()y f x =相切的切点横坐标t 值有且只有3个,即方程2362a t t =-有3个不等实根,令32()26g t t t a =-+,求导得:2()6126(2)g t t t t t '=-=-,当0t <或2t >时,()0g t '>,当02t <<时,()0g t '<,即函数()g t 在(,0)-∞,(2,)+∞上递增,在(0,2)上递减,当0=t 时,()g t 取得极大值(0)=g a ,当2t =时,()g t 取得极小值(2)8g a =-,方程2362a t t =-有3个不等实根,当且仅当函数()g t 有3个不同的零点,因此080a a >⎧⎨-<⎩,解得08a <<,所以a 的取值范围为(0,8).故答案为(0,8).例5若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为A .220,e ⎛⎤ ⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】本道题结合存在公共切线,建立切线方程,结合待定系数法,建立等式,构造新函数,将切线问题转化为交点问题,计算a 的范围,即可.【解析】设函数()f x 的切点为()200,1x x +,该切线斜率02k x =,所以切线方程为20021y x x x =-+,()g x 的切点为()11,21x x ae +,所以切线方程为111`12221x x x y ae x ae x ae =-++,由于该两切线方程为同一方程,利用待定系数法,可得111200122,1221x x x x ae x ae x ae =-+=-+,解得1001,22x x ae x x ==-得到新方程为1122x x ae -=,构造函数()()()2,1x h x e t x x a ==-解得()21x e x a=-,表示()h x 与()t x 存在着共同的交点,而()t x 过定点()1,0,得到()h x 过()1,0的切线方程,设切点为()22,x x e ,则()21x y e x =-,该切点在该直线上,代入,得到()2221x xe e x =-,解得22x =,所以直线斜率为2k e =,要使得()h x 与()t x 存在着交点,则22k e a =≤,结合0a >,所以a 的取值范围为220,e ⎛⎤⎥⎝⎦,故选A .例6(2021·全国Ⅰ卷)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a<B .e b a>C .0e ba <<D .0e ab <<【答案】D【分析】结合已知条件,利用导数的几何意义将问题转化成函数的交点问题,然后通过构造新函数,并求出新函数的单调区间以及最值,利用数形结合的方法即可求解.【解析】设切点()00,x y ,00y >,因为'e x y =,即00'|e x x x y ==,则切线方程为0e ()x y b x a -=-,由()00000e exx y b x a y ⎧-=-⎪⎨=⎪⎩得()00e 1x x a b -+=,则由题意知,关于0x 的方程()00e 1x x a b -+=有两个不同的解.设()()e 1xf x x a =-+,则()e (1)e e ()x x x f x x a x a '=-+-=--,由()0f x '=得x a =,所以当x a <时,()0f x '>,()f x 在(,)a -∞上单调递增;当x a >时,()0f x '<,()f x 在()a +∞上单调递减,所以()f x 的最大值为()f a =()e 1e 0a aa a -+=>,当x a <时,0a x ->,所以()0f x >,当x →-∞时,()0f x →;当x →+∞时,()f x →-∞,故()f x的图像如下图所示:故0e a b <<.故选:D .【巩固训练】1.过定点()1,P e 作曲线()0xy ae a =>的切线,恰有2条,则实数a 的取值范围是______.2.若函数()ln f x x =与函数2()2(0)g x x x a x =++<有公切线,则实数a 的取值范围是()A .1(ln,)2e+∞B .(1,)-+∞C .(1,)+∞D .(ln 2,)-+∞3.若存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最大值是()AB .2eC.D .24.若过点()1,P m 可以作三条直线与曲线:xC y xe =相切,则m 的取值范围是()A .25,0e ⎛⎫-⎪⎝⎭B .25,e e ⎛⎫-⎪⎝⎭C .()0,∞+D .231,ee ⎛⎫-- ⎪⎝⎭5.已知函数2()f x ax =,()g x lnx =,若曲线()y f x =与()y g x =有两条公切线,则实数a 的取值范围是.6.若曲线21C y x =:与曲线2(0)xe C y a a=>:存在公共切线,则实数a 的取值范围为.7.已知函数32()31f x x x =+-,若过点(1,)P m 可作曲线()y f x =的三条切线,则实数m 的取值范围是.8.已知函数3()f x x ax =+,若过点(1,1)P 只有一条直线与曲线()y f x =相切,则实数a 的取值范围是.【答案或提示】1.【答案】()1,+∞【分析】设切点为00(,)x x ae ,利用导数几何意义求得切线方程为00(1)x y ae x x =-+,由题意知00(2)x e a e x =-在02x ≠上有两个不同解,构造()(2)x eg x e x =-且2x ≠,利用导数研究单调性及值域,进而确定a 的范围.【解析】由x y ae '=,若切点为00(,)x x ae ,则00x y k ae '==>,∴切线方程为00(1)xy ae x x =-+,又()1,P e 在切线上,∴00(2)xae x e -=,即00(2)x ea e x =-在02x ≠上有两个不同解,令()(2)x e g x e x =-,即原问题转化为()g x 与y a =有两个交点,而2(1)()(2)x e x g x e x -'=-,(1)当2x >时,()0g x '>,()g x 递增,且lim ()0x g x -→+∞→,(2)当21x >>时,()0g x '>,()g x 递增;当1x <时,()0g x '<,()g x 递减;∴()()11g x g ≥=,又lim ()x g x →-∞→+∞,12x <<时()0>g x 且2lim ()x g x -→→+∞,∴要使00(2)x ea e x =-在02x ≠上有两个不同解,即()1,a ∈+∞.故答案为:()1,+∞点评:作为填空题,本着“小题小做”的策略,只需先求出点()1,P e 在曲线()0xy ae a =>上时a 的值为1a =,此时,过点()1,P e 曲线的切线洽有一条,从形上看,当a 增大时,切线就有两条,故答案为1a >.2.【答案】A【解析】设公切线与函数()ln f x x =切于点111(ln )(0)A x x x >,,则切线方程为1111ln ()-=-y x x x x ;设公切线与函数2()2g x x x a =++切于点22222(2)(0)B x x x a x ,++<,则切线方程为22222(2)2(1)()y x x a x x x -++=+-,所以有2121212(1)ln 1x x x x a⎧=+⎪⎨⎪-=-+⎩,∵210x x <<,∴1102x <<.又2211111111ln 11ln 2124a x x x x ⎛⎫⎛⎫=+--=-+-- ⎪ ⎪⎝⎭⎝⎭,令11t x =,∴2102ln 4t a t t t ,<<=--.设21()ln (02)4h t t t t t =--<<,则211(1)3()1022t h t t t t--=--'=<,∴()h t 在(0,2)上为减函数,则1()(2)ln 21ln 2h t h e >=--=,∴1ln2a e ⎛⎫∈+∞ ⎪⎝⎭,故选A .3.【答案】C【解析】存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立,要求a 的最大值,临界条件即为直线y ax b =+恰为函数21()=2ln ,()2f x e xg x x e =+的公切线.设()=2ln f x e x 的切点为111(,)(0)x y x >,122()=,e e f x a x x '∴=.设21()2g x x e =+的切点为222(,)(0)x y x >,2()g x x a x '=∴=,,所以21212=,2ea x x x e x =∴=.由题得21221212112ln 22,2ln 30e x x ee a x x x x x --==∴+-=-.设111212()2ln 3(0)eh x x x x =+->,所以211331112424()x e e h x x x x -'=-=,所以函数11212()2ln 3eh x x x =+-在上单调递减,在)+∞单调递增.又22ln 3=1+23=0eh e=--,当1x →+∞时,11212()2ln 30eh x x x =+->,所以方程另外一个零点一定大于.,所以max a==.故选:C.4.【答案】A【解析】设切点为()00,M x y ,∵e xy x =,∴()1e xy x '=+,∴M 处的切线斜率()001e xk x =+,则过点P 的切线方程为()()00001e e x xy x x x x =+-+,代入点P 的坐标,化简得()02001e xm x x =-++,∵过点()1,P m 可以作三条直线与曲线:e xC y x =相切,∴方程()02001e xm x x =-++有三个不等实根.令()()21e xf x x x =-++,求导得到()()22e xf x x x '=--+,可知()f x 在(),2-∞-上单调递减,在()2,1-上单调递增,在()1,+¥上单调递减,如图所示,故()20f m -<<,即250e m -<<.故选:A.5.【答案】1(2e,)+∞【解析一】根据二次函数和代数函数的性质得:当()()f x g x >时,曲线()y f x =与()y g x =有两条公切线,即2ax lnx >在(0,)+∞上恒成立,即2lnxa x >在(0,)+∞上恒成立,设2()lnx h x x =,312()lnx h x x -'=,令312()0lnxh x x -'==,x =即12max h h e ==,因此,12a e>,【解析二】取两个函数相切的临界条件:2000012ax lnx ax x⎧=⎪⎨=⎪⎩,解得0x =12a e =,由此可知,若两条曲线具有两条公切线时,12a e>,故a 的取值范围是1(2e,)+∞.6.【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭【提示】取对数转化为曲线2ln y x =与直线ln y x a =-有交点,临界状态是相切.7.【答案】()5,3-【解答】设切点为0(x ,32031)x x +-切线斜率为:2000()36k f x x x '==+∴切线方程为:3220000(31)(36)()y x x x x x x -+-=+-①又切线过点(1,)P m ,带入①化简为:300261m x x =-+-令y m =与3000()261h x x x =-+-(1)5h -=-,h (1)3=,(0)1h =-;200()66h x x '=-+,令01()01h x x '=⇒=-,21x =;0()h x 在(,1)-∞-,(1,)+∞单调递减,(1,1)-上单调递增;过点(1,)P m 可作曲线()y f x =的三条切线,即存在三个0x ,也即是y m =与()h x 有三个交点.故如图所知:53m -<<.118.【答案】()(),01,-∞⋃+∞【解析】设过点(1,1)P 的直线与曲线()y f x =相切于点0(x ,0)y ,则3000y x ax =+,且切线斜率为200()3f x x a '=+,所以切线方程为2000(3)()y y x a x x -=+-.因此3200001()(3)(1)x ax x a x -+=+-,整理得32002310x x a -+-=.设32()231g x x x a =-+-,则“过点(1,1)P 只有一条直线与曲线()y f x =相切”等价于“()g x 只有一个零点”.2()666(1)g x x x x x '=-=-.当x 变化时,()g x 与()g x '的变化情况如下:x(,0)-∞0(0,1)1(1,)+∞()f x '+0-0+()f x 1a - a - 所以,(0)1g a =-是()g x 的极大值,g (1)a =-是()g x 的极小值.当()g x 只有一个零点时,有(0)10g a =-<或g (1)0a =->,解得1a >或0a <.因此当过点(1,1)P 只有一条直线与曲线()y f x =相切时,a 的取值范围是1a >或0a <.。