高三数学 课堂训练6-1人教版
- 格式:doc
- 大小:54.50 KB
- 文档页数:3
心尺引州丑巴孔市中潭学校(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1.用分析法证明:欲使①A >B ,只需②C <D ,这里①是②的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件解析: 分析法证明的本质是证明结论的充分条件成立,即②⇒①,所以①是②的必要条件. 答案: B2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 解析: 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,应选D.答案: D3.设a =lg 2+lg 5,b =e x(x <0),那么a 与b 大小关系为( ) A .a >bB .a <bC .a =bD .a ≤b解析: ∵a =lg 2+lg 5=lg 10=1,而b =e x <e 0=1,故a >b . 答案: A4.设a ,b ,c ∈(-∞,0),那么a +1b ,b +1c ,c +1a( ) A .都不大于-2 B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析: 因为a +1b +b +1c +c +1a≤-6,所以三者不能都大于-2. 答案: C5.对于平面α和共面的直线m 、nA .假设m ⊥α,m ⊥n ,那么n ∥αB .假设m ∥α,n ∥α,那么m ∥nC .假设m ⊂α,n ∥α,那么m ∥nD .假设m 、n 与α所成的角相等,那么m ∥n解析: 对于平面α和共面的直线m 、nm ⊂α,n ∥α,那么m ∥n 〞,选C.答案: C6.假设P =a +a +7,Q =a +3+a +4(a ≥0),那么P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值范围解析: ∵要证P <Q ,只需证P 2<Q 2, 只需证2a +7+2aa +7<2a +7+2a +3a +4, 只需证a 2+7a <a 2+7a +12,只需证0<12,∵0<12成立,∴P <Q 成立.答案: C二、填空题7.如果a a +b b >a b +b a ,那么a 、b 应满足的条件是______________.解析: ∵a a +b b >a b +b a ⇔(a -b )2(a +b )>0⇔a ≥0,b ≥0且a ≠b . 答案: a ≥0,b ≥0且a ≠b8.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足________.解析: 由余弦定理cos A =b 2+c 2-a 22bc<0, 所以b 2+c 2-a 2<0,即a 2>b 2+c 2. 答案: a 2>b 2+c 29.假设0<a <1,0<b <1,且a ≠b ,那么在a +b,2ab ,a 2+b 2和2ab 中最大的是________. 解析: 方法一:a +b >2ab ,a 2+b 2>2ab ,a +b -(a 2+b 2)=a (1-a )+b (1-b )>0,∴a +b 最大. 方法二:特值法,取a =12,b =18,计算比较大小. 答案: a +b三、解答题10.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和.(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?解析:(1)证明:假设数列{S n}是等比数列,那么S22=S1S3,即a21(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{S n}不是等比数列.(2)当q=1时,{S n}是等差数列;当q≠1时,{S n}不是等差数列,否那么2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.11.△ABC的三个内角A,B,C成等差数列,且三个内角A,B,C的对边分别为a,b,c.求证:1a+b+1 b+c =3a+b+c.【解析方法代码108001080】证明:要证原式,只需证a+b+ca+b+a+b+cb+c=3,即证ca+b+ab+c=1,即只需证bc+c2+a2+abab+b2+ac+bc=1,而A+C=2B,∴B=60°,∴b2=a2+c2-ac.∴bc+c2+a2+abab+b2+ac+bc=bc+c2+a2+abab+a2+c2-ac+ac+bc=bc+c2+a2+abab+a2+c2+bc=1.从而原式得证.12.{a n}是正数组成的数列,a1=1,且点(a n,a n+1)(n∈N*)在函数y=x2+1的图象上.(1)求数列{a n}的通项公式;(2)假设数列{b n}满足b1=1,b n+1=b n+2a n,求证:b n·b n+2<b2n+1.【解析方法代码108001081】解析:(1)由得a n+1=a n+1,那么a n+1-a n=1,又a1=1,所以数列{a n}是以1为首项,1为公差的等差数列.故a n=1+(n-1)×1=n.(2)证明:由(1)知,a n=n,从而b n+1-b n=2n.b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1=2n -1+2n -2+…+2+1=1-2n 1-2=2n -1. 因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2 =(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1) =-5·2n +4·2n=-2n<0, 所以b n ·b n +2<b 2n +1.。
第1节 平面向量的概念及线性运算[A 级 基础巩固]1.(多选题)已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的是()A .①B .②C .③D .④解析:由题知结果为零向量的是①④. 答案:AD2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是()A .a =2bB .a ∥bC .a =-13b D .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.观察选项,C 项中a ,b 共线且方向相反. 答案:C3.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是() A .A ,B ,C B .A ,B ,D C .B ,C ,D D .A ,C ,D解析:因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线.答案:B4.在△ABC 中,G 为重心,记AB →=a ,AC →=b ,则CG →=() A.13a -23b B.13a +23b C.23a -13b D.23a +13b 解析:因为G 为△ABC 的重心,所以AG →=13(AB →+AC →)=13a +13b ,所以CG →=CA →+AG →=-b +13a +13b =13a -23b .答案:A5.设a 是非零向量,λ是非零实数,下列结论中正确的是() A .a 与λa 的方向相反B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|·a解析:对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.答案:B6.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则() A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上. 答案:B7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .4解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.答案:B8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值X 围是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析:设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13, 因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 答案:D9.如图所示,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析:根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案:310.(2020·武邑中学质检)在锐角△ABC 中,CM →=3 MB →,AM →=xAB →+yAC →(x ,y ∈R),则xy=________.解析:由题设可得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →,亦即AM →=34AB →+14AC →,则x =34,y =14.故xy =3.答案:311.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为λa +b 与a +2b 平行,所以λa +b =t (a +2b ), 即λa +b =ta +2tb ,所以⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:1212.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,因为DE →=λ1AB →+λ2AC →, 所以λ1=-16,λ2=23,因此λ1+λ2=12.答案:12[B 级 能力提升]13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于()A.58B.14 C .1 D.516解析:DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58.答案:A14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值X 围是()A .(0,1)B .(1,+∞)C .(1, 2 ]D .(-1,0) 解析:设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线, 所以λm +μm=1,即λ+μ=m , 所以λ+μ>1. 答案:B15.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△ABC 与△AOC 的面积之比为________.解析:取AC 的中点D ,连接OD ,则OA →+OC →=2OD →,所以OB →=-OD →,所以O 是AC 边上的中线BD 的中点, 所以S △ABC =2S △OAC ,所以△ABC 与△AOC 面积之比为2∶1. 答案:2∶1[C 级 素养升华]16.(多选题)(2020·某某四校联考)如图所示,在△ABC 中,点D 在边BC 上,且CD =2DB ,点E 在边AD 上,且AD =3AE ,则()A.CE →=29AB →+89AC →B.CE →=29AB →-89AC →C.CE →=13AD →+AC →D.CE →=13AD →-AC →解析:因为CE →=CA →+AE →,AE →=13AD →,AD →=AB →+BD →,BD →=13BC →,BC →=BA →+AC →,所以CE →=13AD →-AC →,BD →=13(BA →+AC →),所以AD →=AB →+BD →=AB →+13BA →+13AC →, 所以AE →=13(AB →+13BA →+13AC →),所以CE →=CA →+13AB →+19BA →+19AC →=13AB →+19BA →+CA →+19AC →=29AB →-89AC →. 答案:BD素养培育直观想象——共线向量定理的推广(自主阅读)共线定理:已知PA →,PB →为平面内两个不共线的向量,设PC →=xPA →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.推广形式:如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xPA →+yPB →(x ,y ∈R).当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λPA →+μPB →(λ,μ∈R),则λ+μ=1.由△PAB 与△PED 相似,知必存在一个常数m ∈R ,使得PC →=mPF →,则PC →=mPF →=mλPA →+mμPB →.又PC →=xPA →+yPB →(x ,y ∈R), 所以x +y =mλ+mμ=m . 以上过程可逆.因此得到结论:PC →=xPA →+yPB →, 则x +y =m (定值),反之亦成立.[典例1] 如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R),则α+β的取值X 围是________.解析:当P 在△CDE 内时,直线EC 是最近的平行线,过D 点的平行线是最远的,所以α+β∈⎣⎢⎡⎦⎥⎤AN AM ,AD AM =[3,4].答案:[3,4][典例2] 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值X 围是________.解析:由点D 是圆O 外的一点,可设BD →=λBA →(λ>1),则OD →=OB →+BD →=OB →+λBA →=λOA →+(1-λ)OB →.因为C 、O 、D 三点共线,令OD →=-μOC →(μ>1).所以OC →=-λμOA →-1-λμOB →(λ>1,μ>1).因为OC →=mOA →+nOB →,所以m =-λμ,n =-1-λμ,所以m +n =-λμ-1-λμ=-1μ∈(-1,0).答案:(-1,0)。
新教材人教A版高中数学必修第一册全册课时练习1.1.1集合的概念 (2)1.1.2集合的表示 (3)1.2集合间的基本关系 (5)1.3.1并集与交集 (7)1.3.2补集及集合运算的综合应用 (8)1.4.1充分条件与必要条件 (11)1.4.2充要条件 (12)1.5.1全称量词与存在量词 (13)1.5.2全称量词命题与存在量词命题的否定 (14)2.1等式性质与不等式性质 (16)2.2.1基本不等式 (17)2.2.2利用基本不等式求最值 (18)2.3.1二次函数与一元二次方程、不等式 (19)2.3.2一元二次不等式的应用 (20)3.1.1.1函数的概念 (21)3.1.1.2函数概念的应用 (22)3.1.2.1函数的表示法 (24)3.1.2.2分段函数 (25)3.2.1.1函数的单调性 (26)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (32)3.3幂函数 (36)3.4函数的应用(一) (37)4.1.1根式 (40)4.1.2指数幂及其运算 (41)4.2.1指数函数及其图象性质 (43)4.2.2指数函数的性质及其应用 (44)4.3.1对数的概念 (47)4.3.2 对数的运算 (48)4.4.1对数函数及其图象 (49)4.2.2对数函数的性质及其应用 (51)4.4.3不同函数增长的差异 (53)4.5.1函数的零点与方程的解 (54)4.5.2用二分法求方程的近似解 (57)4.5.3函数模型的应用 (58)5.1.1任意角 (60)5.1.2弧度制 (61)5.2.1三角函数的概念 (62)5.2.2同角三角函数的基本关系 (64)5.3.1诱导公式二、三、四 (66)5.3.2诱导公式五、六 (67)5.4.1正弦函数、余弦函数的图象 (69)5.4.2.1正弦函数、余弦函数的性质(一) ...................................................................... 71 5.4.2.2正弦函数、余弦函数的性质(二) ...................................................................... 73 5.4.3正切函数的性质与图象 ........................................................................................ 75 5.5.1.1两角差的余弦公式 ............................................................................................. 76 5.5.1.2两角和与差的正弦、余弦公式 ......................................................................... 78 5.5.1.3两角和与差的正切公式 ..................................................................................... 80 5.5.1.4二倍角的正弦、余弦、正切公式 ..................................................................... 81 5.5.2.1简单的三角恒等变换 ......................................................................................... 83 5.5.2.2三角恒等变换的应用 ......................................................................................... 84 5.6.1函数y =A sin(ωx +φ)的图象(一) .......................................................................... 86 5.6.2函数y =A sin(ωx +φ)的图象(二) .......................................................................... 88 5.7三角函数的应用 . (90)1.1.1集合的概念1.已知a ∈R ,且a ∉Q ,则a 可以为( ) A . 2 B .12 C .-2 D .-13[解析]2是无理数,所以2∉Q ,2∈R .[答案] A2.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .a =0 B .a =2019 C .a =1D .a =0或a =2019[解析] 若集合M 中有两个元素,则a 2≠2019a .即a ≠0,且a ≠2019.故选C . [答案] C3.下列各组对象能构成集合的有( )①接近于0的实数;②小于0的实数;③(2019,1)与(1,2019);④1,2,3,1. A .1组 B .2组 C .3组D .4组[解析] ①中“接近于0”不是一个明确的标准,不满足集合中元素的确定性,所以不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2019,1)与(1,2019)是两个不同的对象,是确定的,能构成集合,注意该集合有两个元素;④中的对象是确定的,可以构成集合,根据集合中元素的互异性,可知构成的集合为{1,2,3}.[答案] C4.若方程ax2+ax+1=0的解构成的集合中只有一个元素,则a为( )A.4 B.2C.0 D.0或4[解析] 当a=0时,方程变为1=0不成立,故a=0不成立;当a≠0时,Δ=a2-4a =0,a=4,故选A.[答案] A5.下列说法正确的是________.①及第书业的全体员工形成一个集合;②2019年高考试卷中的难题形成一个集合;③方程x2-1=0与方程x+1=0所有解组成的集合中共有3个元素;④x,3x3,x2,|x|形成的集合中最多有2个元素.[解析] ①及第书业的全体员工是一个确定的集体,能形成一个集合,正确;②难题没有明确的标准,不能形成集合,错误;③方程x2-1=0的解为x=±1,方程x+1=0的解为x=-1,由集合中元素的互异性知,两方程所有解组成的集合中共有2个元素1,-1,故错误;④x=3x3,x2=|x|,故正确.[答案] ①④1.1.2集合的表示1.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}[解析] ∵x2-2x+1=0,即(x-1)2=0,∴x=1,选B.[答案] B2.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A[解析] ∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2. (3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课内拓展 课外探究 集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合: (1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.下列四个关系式:①{a,b}⊆{b,a};②∅={∅};③∅{0};④0∈{0}.其中正确的个数是( )A.4 B.3C.2 D.1[解析] 对于①,任何集合是其本身的子集,正确;对于②,相对于集合{∅}来说,∅∈{∅},也可以理解为∅⊆{∅},错误;对于③,空集是非空集合的真子集,故∅{0}正确;对于④,0是集合{0}的元素,故0∈{0}正确.[答案] B2.集合A={x|-1≤x<2,x∈N}的真子集的个数为( )A .4B .7C .8D .16[解析] A ={-1,0,1},其真子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},共有22-1=4(个).[答案] A3.已知集合A ={3,-1},集合B ={|x -1|,-1},且A =B ,则实数x 等于( ) A .4 B .-2 C .4或-2D .2[解析] ∵A =B ,∴|x -1|=3,解得x =4或x =-2. [答案] C4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.[解析] 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.[答案] 65.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A . (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.[解] (1)当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴(如图),得⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-2或0≤m ≤52. (2)当x ∈N 时,A ={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3.1并集与交集1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( ) A .{2} B .{2,3} C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D. [答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3}, 故P ∩M ={0,1,2}. [答案] B3.已知集合A ={x |x >2或x <0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-k 2,且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N . (2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N . ∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.1.3.2补集及集合运算的综合应用1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析] ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.[答案] D2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}[解析] 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.[答案] C3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=( )A.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}[解析] ∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.[答案] C4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.[解析] ∁U A={x|5≤x<10},如图所示.[答案] {x|5≤x<10}5.设全集U={2,3,a2+2a-3},A={|2a-1|,2},且∁U A={5},求实数a的值.[解] ∵∁U A={5},∴5∈U,但5∉A,∴a2+2a-3=5,解得a=2或a=-4.当a=2时,|2a-1|=3,这时A={3,2},U={2,3,5}.∴∁U A={5},适合题意.∴a=2.当a=-4时,|2a-1|=9,这时A={9,2},U={2,3,5},A⃘U,∴∁U A无意义,故a =-4应舍去.综上所述,a=2.课内拓展课外探究空集对集合关系的影响空集是不含任何元素的集合,它既不是有限集,也不是无限集.空集就像一个无处不在的幽灵,解题时需处处设防,提高警惕.空集是任何集合的子集,其中“任何集合”当然也包括了∅,故将会出现∅⊆∅.而此时按子集理解不能成立,原因是前面空集中无元素,不符合定义,因此知道这一条是课本“规定”.空集是任何非空集合的真子集,即∅A(而A≠∅).既然A≠∅,即必存在a∈A而a∉∅,∴∅A.由于空集的存在,关于子集定义的下列说法有误,如“A⊆B,即A为B中的部分元素所组成的集合”.因为从“部分元素”的含义无法理解“空集是任何集合的子集”、“A是A 的子集”、“∅⊆∅”等结论.在解决诸如A⊆B或A B类问题时,必须优先考虑A=∅时是否满足题意.【典例1】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a的值组成的集合.[解] 由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)根的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a <-4或a >4.此时B ⊆A .(2)若B ≠∅,则B ={-2}或{4}或{-2,4}.①若B ={-2},则方程(*)有两个相等的实数根x =-2, ∴(-2)2+(-2)a +a 2-12=0,即a 2-2a -8=0. 解得a =4或a =-2.当a =4时,恰有Δ=0; 当a =-2时,Δ>0,舍去.∴当a =4时,B ⊆A . ②若B ={4},则方程(*)有两个相等的实数根x =4, ∴42+4a +a 2-12=0,解得a =-2,此时Δ>0,舍去.③若B ={-2,4},则方程(*)有两个不相等的实数根x =-2或x =4,由①②知a =-2,此时Δ>0,-2与4恰是方程的两根.∴当a =-2时,B ⊆A .综上所述,满足B ⊆A 的a 值组成的集合是{a |a <-4或a =-2或a ≥4}.[点评] ∅有两个独特的性质,即:(1)对于任意集合A ,皆有A ∩∅=∅;(2)对于任意集合A ,皆有A ∪∅=A .正因如此,如果A ∩B =∅,就要考虑集合A 或B 可能是∅;如果A ∪B =A ,就要考虑集合B 可能是∅.【典例2】 设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆(∁UM ),求实数a 的取值集合.[解] 根据题意可知:N ≠∅,又∵N ⊆(∁U M ). ①当M =∅,即3a -1≥2a 时,a ≥1. 此时∁U M =R ,N ⊆(∁U M )显然成立. ②当M ≠∅,即3a -1<2a 时,a <1.由M ={x |3a -1<x <2a },知∁U M ={x |x ≤3a -1或x ≥2a }.又∵N ⊆(∁U M ),∴结合数轴分析可知⎩⎪⎨⎪⎧a <1,3≤3a -1,或⎩⎪⎨⎪⎧a <1,2a ≤-1,得a ≤-12.综上可知,a 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥1或a ≤-12. [点评] 集合的包含关系是集合知识重要的一部分,在后续内容中应用特别广泛,涉及集合包含关系的开放性题目都以子集的有关性质为主,因此需要对相关的性质有深刻的理解.对于有限集,在处理包含关系时可列出所有的元素,然后依条件讨论各种情况,找到符合条件的结果.1.4.1充分条件与必要条件1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不是充分条件,也不是必要条件D.无法判断[解析] 因为a=2⇒(a-1)(a-2)=0,而(a-1)(a-2)=0不能推出a=2,故a=2是(a-1)(a-2)=0的充分条件,应选A.[答案] A2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3[解析] 因为x>2⇒x>1,所以选A.[答案] A3.下列命题中,是真命题的是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件[解析] A中,x2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x2>0,故x2>0是x>0的必要条件.B中,xy=0⇒x=0或y=0,不能推出x=0,而x=0⇒xy=0,故xy=0是x=0的必要条件.C中,|a|=|b|⇒a=b或a=-b,不能推出a=b,而a=b⇒|a|=|b|,故|a|=|b|是a=b的必要条件.D中,|x|>1⇒x2不小于1,而x2不小于1不能推出|x|>1,故|x|>1是x2不小于1的充分条件,故本题应选B.[答案] B4.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的____________条件.[答案] 不必要(填必要、不必要)5.(1)若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.(2)已知M={x|a-1<x<a+1},N={x|-3<x<8},若N是M的必要条件,求a的取值范围.[解] (1)记A={x|x>2或x<1},B={x|x<m}由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m ≤1.故m 的取值范围为{m |m ≤1}. (2)因为N 是M 的必要条件,所以M ⊆N .于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为{a |-2≤a ≤7}.1.4.2充要条件1.设x ∈R ,则“x <-1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为x <-1⇒|x |>1,而|x |>1⇒x <-1或x >1,故“x <-1”是“|x |>1”的充分不必要条件.[答案] A2.“x 2+(y -2)2=0”是“x (y -2)=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件[解析] x 2+(y -2)2=0,即x =0且y =2,∴x (y -2)=0.反之,x (y -2)=0,即x =0或y =2,x 2+(y -2)2=0不一定成立.[答案] B3.已知A ,B 是非空集合,命题p :A ∪B =B ,命题q :A B ,则p 是q 的( ) A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件[解析] 由A ∪B =B ,得A B 或A =B ;反之,由A B ,得A ∪B =B ,所以p 是q 的必要不充分条件.[答案] D4.关于x 的不等式|x |>a 的解集为R 的充要条件是________. [解析] 由题意知|x |>a 恒成立,∵|x |≥0,∴a <0. [答案] a <05.已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 证法一:①充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y.②必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.5.1全称量词与存在量词1.下列命题中,不是全称量词命题的是( ) A .任何一个实数乘0都等于0 B .自然数都是正整数C .对于任意x ∈Z,2x +1是奇数D .一定存在没有最大值的二次函数 [解析] D 选项是存在量词命题. [答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x ∈R ,y ∈R ,都有x 2+|y |>0.A .0B .1C .2D .3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.1.5.2全称量词命题与存在量词命题的否定1.命题“∃x ∈R ,x 2-2x -3≤0”的否定是( ) A .∀x ∈R ,x 2-2x -3≤0 B .∃x ∈R ,x 2-2x -3≥0 C .∃x 0∈R ,x 2-2x -3>0 D .∀x ∈R ,x 2-2x -3>0[解析] 存在量词命题的否定是全称量词命题,一方面要改量词即“∃”改为“∀”;另一方面要否定结论,即“≤”改为“>”.故选D.[答案] D2.已知命题p :∀x >0,x 2≥2,则它的否定为( )A .∀x >0,x 2<2 B .∀x ≤0,x 2<2 C .∃x ≤0,x 2<2 D .∃x >0,x 2<2[答案] D3.全称量词命题“所有能被5整除的整数都是奇数”的否定是( ) A .所有能被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个能被5整除的整数不是奇数D .存在一个奇数,不能被5整除[解析] 全称量词命题的否定是存在量词命题,而选项A ,B 是全称量词命题,所以选项A ,B 错误.因为“所有能被5整除的整数都是奇数”的否定是“存在一个能被5整除的整数不是奇数”,所以选项D 错误,选项C 正确,故选C.[答案] C4.对下列命题的否定,其中说法错误的是( )A .p :∀x ≥3,x 2-2x -3≥0;p 的否定:∃x ≥3,x 2-2x -3<0B .p :存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆C .p :有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形D .p :∃x ∈R ,x 2+2x +2≤0;p 的否定:∀x ∈R ,x 2+2x +2>0[解析] 若p :有的三角形为正三角形,则p 的否定:所有的三角形都不是正三角形,故C 错误.[答案] C5.写出下列命题的否定,并判断其真假. (1)菱形是平行四边形;(2)与圆只有一个公共点的直线是圆的切线; (3)存在一个三角形,它的内角和大于180°; (4)∃x ∈R ,使得x 2+x +1≤0.[解] (1)题中命题的否定为“存在一个菱形不是平行四边形”,这个命题为假命题. (2)是全称量词命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线;这个命题为假命题.(3)题中命题的否定为“所有三角形的内角和都小于或等于180°”,这个命题为真命题.(4)题中命题的否定为“∀x ∈R ,x 2+x +1>0”,这个命题为真命题.因为x 2+x +1=x 2+x +14+34=⎝⎛⎭⎪⎫x +122+34>0.2.1等式性质与不等式性质1.下列说法正确的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2[解析] ∵1x =1y,且x ≠0,y ≠0,两边同乘以xy ,得x =y .[答案] A2.设a ,b 为非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2B .ab 2<a 2b C .1ab 2<1a 2bD .b a <a b[解析] 用a =-1,b =1,试之,易排除A ,D.再取a =1,b =2,易排除B. [答案] C3.下列命题中正确的个数是( ) ①若a >b ,b ≠0,则a b>1; ②若a >b ,且a +c >b +d ,则c >d ; ③若a >b ,且ac >bd ,则c >d . A .0 B .1 C .2 D .3[解析] ①若a =2,b =-1,则不符合;②取a =10,b =2,c =1,d =3,虽然满足a >b 且a +c >b +d ,但不满足c >d ,故错;③当a =-2,b =-3,取c =-1,d =2,则不成立.[答案] A4.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系为________. [解析] ∵x ≠2或y ≠-1,∴M -N =x 2+y 2-4x +2y +5=(x -2)2+(y +1)2>0,∴M >N . [答案] M >N5.若-1≤a ≤3,1≤b ≤2,则a -b 的范围为________. [解析] ∵-1≤a ≤3,-2≤-b ≤-1, ∴-3≤a -b ≤2. [答案] -3≤a -b ≤22.2.1基本不等式1.若ab >0,则下列不等式不一定能成立的是( ) A .a 2+b 2≥2ab B .a 2+b 2≥-2ab C .a +b2≥abD .b a +a b≥2[解析] C 选项由条件可得到a 、b 同号,当a 、b 均为负号时,不成立. [答案] C 2.已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( ) A.a +12<a <2a a +1 B.a <a +12<2aa +1C.2a a +1<a <a +12 D.a <2a a +1≤a +12 [解析] 当a ,b 是正数时,2ab a +b ≤ab ≤a +b2≤a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C.[答案] C3.b a +ab≥2成立的条件是________.[解析] 只要b a 与a b都为正,即a 、b 同号即可. [答案] a 与b 同号4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立.所以b +c a +c +a b +a +bc≥6.2.2.2利用基本不等式求最值1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( ) A.13 B.12 C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. [解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.2.3.1二次函数与一元二次方程、不等式1.不等式-x 2-5x +6≤0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}[解析] 由-x 2-5x +6≤0得x 2+5x -6≥0, 即(x +6)(x -1)≥0, ∴x ≥1或x ≤-6. [答案] D2.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}[解析] 结合二次函数y =ax 2+bx +c (a <0)的图象可得{x |-1≤x ≤2},故选D. [答案] D3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .4[解析] 由题可知-7和-1为ax 2+8ax +21=0的两个根,∴-7×(-1)=21a,a =3.[答案] C4.不等式x 2-4x +5≥0的解集为________. [解析] ∵Δ=(-4)2-4×5=-4<0, ∴不等式x 2-4x +5≥0的解集为R . [答案] R5.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________. [解析] 原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. [答案] {x |x <-a 或x >1}2.3.2一元二次不等式的应用1.不等式x -2x +3>0的解集是( ) A .{x |-3<x <2} B .{x |x >2} C .{x |x <-3或x >2} D .{x |x <-2或x >3}[解析] 不等式x -2x +3>0⇔(x -2)(x +3)>0的解集是{x |x <-3或x >2},所以C 选项是正确的.[答案] C2.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}[解析] ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. [答案] B3.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2[解析] 由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.[答案] D4.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A. [答案] A5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈R ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时最低产量是( )A .100台B .120台C .150台D .180台 [解析] 3000+20x -0.1x 2≤25x ⇔x 2+50x -30000≥0,解得x ≤-200(舍去)或x ≥150. [答案] C3.1.1.1函数的概念1.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)[解析] 由题意可知,要使函数有意义,需满足{ x -1≥0,x -2≠0,即x ≥1且x ≠2.[答案] A2.函数y =1-x 2+x 的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤-1}D .{x |0≤x ≤1}[解析] 由题意可知⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,解得0≤x ≤1.[答案] D 3.函数f (x )=(x +2)(1-x )x +2的定义域为( )A .{x |-2≤x ≤1}B .{x |-2<x <1}C .{x |-2<x ≤1}D .{x |x ≤1}[解析] 要使函数有意义,需⎩⎪⎨⎪⎧(x +2)(1-x )≥0,x +2≠0,解得-2≤x ≤1,且x ≠-2,所以函数的定义域是{x |-2<x ≤1}.[答案] C4.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. [解析] 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. [答案] [-1,0)∪(1,2]5.已知矩形的周长为1,它的面积S 是其一边长为x 的函数,则其定义域为________(结果用区间表示).[解析] 由实际意义知x >0,又矩形的周长为1,所以x <12,所以定义域为⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,123.1.1.2函数概念的应用1.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (m )=m(m )2[解析] A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.[答案] D2.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35 D .-35[解析] f (2)f ⎝ ⎛⎭⎪⎫12=22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1.[答案] B3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1[解析] y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B4.已知函数f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)[解析] 由f (x )的定义域是[0,2]知,{ 0≤2x ≤2,x -1≠0, 解得0≤x <1,所以g (x )=f (2x )x -1的定义域为[0,1). [答案] B5.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. [解析] ∵x ∈{1,2,3,4,5} ∴f (x )=2x -3∈{-1,1,3,5,7}. ∴f (x )的值域为{-1,1,3,5,7}. [答案] {-1,1,3,5,7}3.1.2.1函数的表示法1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,当x =2时,y =1,所以1=k 2,得k =2.故y =2x.[答案] C2.由下表给出函数y =f (x ),则f [f (1)]等于( )x 1 2 3 4 5 y45321A.1 B .2 C .4 D .[解析] 由题意得f (1)=4,所以f [f (1)]=f (4)=2. [答案] B3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )[解析] 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.[答案] C4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为__________________. [解析] (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25.[答案] f (x )=2x +255.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. [解] 由f (x )=x +b ,得f (ax +1)=ax +1+b . ∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.3.1.2.2分段函数1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100. [答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点⎝ ⎛⎭⎪⎫1,32代入,排除D 项. [答案] B5.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.[答案] 23.2.1.1函数的单调性1.如图所示,函数y =f (x )在下列哪个区间上是增函数( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 观察题中图象知,函数在[-3,1]上是增函数. [答案] C2.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)2[解析] 选项A ,B 在(-∞,0)上为减函数,选项D 在(-2,0]上为减函数,只有选项C 满足在(-∞,0]内为增函数.故选C.[答案] C3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,12 [解析] 由一次函数的性质得2a -1<0,即a <12.故选D.[答案] D4.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.[解析] 因为f (x )在区间[-1,1]上为增函数,且f (x )<f ⎝ ⎛⎭⎪⎫12,所以⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.[答案] ⎣⎢⎡⎭⎪⎫-1,125.已知函数f (x )=x -1x +1,判断f (x )在(0,+∞)上的单调性并用定义证明. [解] f (x )在(0,+∞)上单调递增. 证明如下:任取x 1>x 2>0,f (x 1)-f (x 2)=x 1-1x 1+1-x 2-1x 2+1=2(x 1-x 2)(x 1+1)(x 2+1),由x 1>x 2>0知x 1+1>0,x 2+1>0,x 1-x 2>0,故f (x 1)-f (x 2)>0,即f (x )在(0,+∞)上单调递增.3.2.1.2函数的最大(小)值1.函数f (x )在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2[解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.[答案] C2.已知函数f (x )=|x |,x ∈[-1,3],则f (x )的最大值为( ) A .0 B .1 C .2 D .3[解析] 作出函数f (x )=|x |,x ∈[-1,3]的图象,如图所示.根据函数图象可知,f (x )的最大值为3.[答案] D3.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.[答案] A4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).[解析] 设矩形花园的宽为y m ,则x 40=40-y 40, 即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.[答案] 205.已知二次函数y =x 2-4x +5,分别求下列条件下函数的最小值: (1)x ∈[-1,0];(2)x ∈[a ,a +1].[解] (1)∵二次函数y =x 2-4x +5的对称轴为x =2且开口向上, ∴二次函数在x ∈[-1,0]上是单调递减的. ∴y min =02-4×0+5=5.(2)当a ≥2时,函数在x ∈[a ,a +1]上是单调递增的,y min =a 2-4a +5;当a +1≤2即a ≤1时,函数在[a ,a +1]上是单调递减的,y min =(a +1)2-4(a +1)+5=a 2-2a +2;当a <2<a +1即1<a <2时,y min =22-4×2+5=1.故函数的最小值为⎩⎪⎨⎪⎧a 2-2a +2,a ≤1,1,1<a <2,a 2-4a +5,a ≥2.3.2.2.1函数奇偶性的概念1.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1D .无法确定[解析] 由-1+a =0,得a =1.选C. [答案] C2.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1][解析] A 项中的函数为奇函数;C 、D 选项中的函数定义域不关于原点对称,既不是奇函数,也不是偶函数;B 项中的函数为偶函数.故选B.[答案] B3.函数f (x )=1x-x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称[解析] 函数f (x )=1x-x 的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x=-f (x ),所以f (x )是奇函数,图象关于原点对称.[答案] C4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.[解析] 由f (x )=(x +a )(x -4)得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.[答案] 45.已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-3,3],且它们在[0,3]上的图象如图所示,求不等式f (x )g (x )<0的解集.[解] 由题知,y =f (x )是偶函数,y =g (x )是奇函数. 根据函数图象的对称性画出y =f (x ),y =g (x )在[-3,0]上的图象如图所示.由图可知f (x )>0⇔0<x <2或-2<x <0,g (x )>0⇔1<x <3或-1<x <0.f (x )g (x )<0⇔⎩⎪⎨⎪⎧f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0,可求得其解集是{x |-2<x <-1或0<x <1或2<x <3}.3.2.2.2函数奇偶性的应用1.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1[解析] 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). [答案] B2.设f (x )是R 上的偶函数,且在[0,+∞)上单凋递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2) [解析] ∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π), 又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)<f (2), 即f (-π)>f (3)>f (-2). [答案] A3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 [解析] 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.。
第10章 第8节时间:45分钟 满分:100分一、选择题(每小题7分,共42分) 1.随机变量ξ的分布列为,则E (5ξ+4)等于( ) A .13 B .11 C .2.2 D .2.3 答案:A 解析:由已知得E (ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E (5ξ+4)=5E (ξ)+4=5×1.8+4=13. 2. [2012·荆州质检]随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)的值是( )A. 13B. 23 C. 59 D. 79答案:C解析:∵a ,b ,c 成等差数列,∴2b =a +c ,又a +b +c =1,且E (ξ)=-1×a +1×c =c -a =13,∴a =16,b =13,c =12,∴D (ξ)=(-1-13)2×16+(0-13)2×13+(1-13)2×12=59.3. 设ξ是离散型随机变量,P (ξ=x 1)=23,P (ξ=x 2)=13,且x 1<x 2,又已知E (ξ)=43,D (ξ)=29,则x 1+x 2的值为( ) A. 53 B. 73 C. 3 D. 113答案:C解析:由E (ξ)=43,D (ξ)=29得:⎩⎨⎧23x 1+13x 2=43(x 1-43)2·23+(x 2-43)2·13=29,解得:⎩⎨⎧x 1=53x 2=23或⎩⎪⎨⎪⎧ x 1=1x 2=2,由于x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1x 2=2, ∴x 1+x 2=3.4. [2012·浙江嘉兴]甲乙两人分别独立参加某高校自主招生面试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数ξ的期望是( )A. 43B. 119C. 1D. 89答案:A解析:依题意,ξ的取值为0,1,2. 且P (ξ=0)=(1-23)×(1-23)=19,P (ξ=1)=23×(1-23)+(1-23)×23=49,P (ξ=2)=23×23=49.故ξ的期望E (ξ)=0×19+1×49+2×49=129=43.5.已知三个正态分布密度函数φi (x )=12πσie -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图像如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3 答案:D解析:正态分布密度函数φ2(x )和φ3(x )的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数φ1(x )和φ2(x )的图像一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.6. 若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数,则2D (ξ)-1E (ξ)的最大值为( )A. 2+2 2B. 2 2C. 2- 2D. 2-2 2答案:D解析:随机变量ξ的所有可能取值为0,1,且有P (ξ=1)=p ,P (ξ=0)=1-p ,∴E (ξ)=0×(1-p )+1×p =p ,D (ξ)=(0-p )2·(1-p )+(1-p )2·p =p -p 2,∴2D (ξ)-1E (ξ)=2-(2p +1p ),∵0<p <1,∴2p +1p ≥22,当且仅当2p =1p ,即p =22时等号成立,因此当p =22时,2D (ξ)-1E (ξ)取最大值2-2 2. 二、填空题(每小题7分,共21分)7.[2011·上海]马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=__________.答案:2解析:设P (ξ=1)=x ,则P (ξ=2)=1-2x ,P (ξ=3)=x , ∴E (ξ)=1·x +2·(1-2x )+3·x =2.8.[2012·广东江门]已知X ~N (μ,σ2),P (μ-σ<X ≤μ+σ)=0.68,P (μ-2σ<X ≤μ+2σ)=0.95,某次全市20000人参加的考试,数学成绩大致服从正态分布N (100,100),则本次考试120分以上的学生约有__________.答案:500解析:依题意可知μ=100,σ=10, 由于P (μ-2σ<X ≤μ+2σ)=0.95, 所以P (80<X ≤120)=0.95,因此本次考试120分以上的学生约有 20000×(1-0.95)2=500.9.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是________. 答案:乙解析:甲、乙的均值分别为Eξ=0×0.4+1×0.3+2×0.2+3×0.1=1, Eη=0×0.3+1×0.5+2×0.2=0.9,所以Eξ>Eη, 故乙的技术较好.三、解答题(10、11题12分、12题13分)10.设ξ是一个离散型随机变量,其分布列如下表,求q 的值,并求E (ξ),D(ξ)的值.解:(1)0≤P i ≤1 i =1,2,...; (2)p 1+p 2+ (1)所以有⎩⎪⎨⎪⎧12+1-2q +q 2=1,0≤1-2q ≤1,q 2≤1,解得q =1-12. 故ξ的分布列应为:所以E (ξ)=(-1)×12+0×(2-1)+1×(32-2)=1-2,D (ξ)=[-1-(1-2)]2×12+[0-(1-2)]2×(2-1)+[1-(1-2)]2×(32-2)=2-1.11. [2011·天津]学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 解:(1)设A i =“在1次游戏中摸出i 个白球”(i =0,1,2,3),则①P (A 3)=C 23C 25·C 12C 23=15,②P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12.又A 2与A 3互斥,∴P (A 2+A 3)=P (A 2)+P (A 3)=12+15=710.即获奖的概率为710.(2)X 的可能取值为0,1,2. P (X =0)=(1-710)2=9100,P (X =1)=C 12·710·(1-710)=2150, P (X =2)=C 22(710)2=49100. 所以X 的分布列是∴X 的数学期望E (X )=0×9100+1×2150+2×49100=75.12. [2011·福建]某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:且X 1的数学期望E (X 1)(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.解:(1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1, 即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得 ⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:X 2的概率分布列如下:所以E (X 2)=3P 222227)+8P (X 2=8) =3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.现由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.。
第5章 第3节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江模拟]在各项都是正数的等比数列{a n }中,a 1=3,a 1+a 2+a 3=21,则a 4+a 5+a 6等于( )A. 63B. 168C. 84D. 189答案:B解析:设等比数列{a n }的公比为q , 则a 1+a 2+a 3=3(1+q +q 2)=21,∴q 2+q -6=0,解得q =2或q =-3(舍去).∴a 4+a 5+a 6=a 1q 3(1+q +q 2)=3×23×7=168,故选B.本题还可以这样求解:a 4+a 5+a 6=S 6-S 3=3(1-26)1-2-21=168,故选B.2. [2012·浙江杭州]正项等比数列{a n }中,若log 2(a 2a 98)=4,则a 40a 60等于( ) A. -16 B. 10 C. 16 D. 256答案:C解析:由log 2(a 2a 98)=4,得a 2a 98=24=16,则a 40a 60=a 2a 98=16.3. 数列{a n }的前n 项和S n =3n -c ,则c =1是数列{a n }为等比数列的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件答案:C解析:数列{a n }的前n 项和为S n =3n-c ,则a n =⎩⎪⎨⎪⎧3-c (n =1)2·3n -1 (n ≥2).由等比数列的定义可知:c =1⇔数列{a n }为等比数列.4. [2012·浙江金华联考]已知正项数列{a n }为等比数列,且5a 2是a 4与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A. 3312 B. 31C. 314D. 以上都不正确答案:B解析:设{a n }的公比为q ,q >0.由已知得a 4+3a 3=2×5a 2=10a 2, 即a 2q 2+3a 2q =10a 2,2q 2+6q =20, 解得q =2或q =-5(舍去),则a 1=1,所以S 5=a 1(1-q 5)1-q =1×(1-25)1-2=31.5. 已知数列{a n }是正项等比数列,若a 1=32,a 3+a 4=12,则数列{log 2a n }的前n 项和S n 的最大值为( )A. 15B. 12C. 9D. 6答案:A解析:依题意,设数列{a n }的公比为q ,因为a 1=32,a 3+a 4=12,则32q 2+32q 3=12,即8q 2+8q 3-3=0,也即8(q 3-18)+8(q 2-14)=0,解得q =12,因此a n =32×(12)n -1=26-n ,log 2a n=6-n .设数列{log 2a n }的前m 项和最大,则⎩⎪⎨⎪⎧6-m ≥06-(m +1)≤0,∴5≤m ≤6,故数列{log 2a n }的前5项和或前6项和最大,而S 5=S 6=15,故选A.6. [原创题]已知正项等比数列{a n }的前n 项和为S n ,b n =a 3na 2n +1,且{b n }的前n 项和为T n ,若对一切正整数n 都有S n >T n ,则数列{a n }的公比q 的取值范围是( )A. 0<q <1B. q >1C. q > 2D. 1<q < 2答案:B解析:由于{a n }是等比数列,公比为q ,所以b n =a 3na 2n +1=1q 2a n ,于是b 1+b 2+…+b n =1q 2(a 1+a 2+…+a n ),即T n =1q 2·S n .又S n >T n ,且T n >0,所以q 2=S nT n >1.因为a n >0对任意n ∈N *都成立,所以q >0,因此公比q 的取值范围是q >1.二、填空题(每小题7分,共21分)7. [2012·辽宁鞍山]数列{a n }的前n 项之和为S n ,S n =1-23a n ,则a n =__________.答案:35·(25)n -1解析:n =1时,a 1=S 1=1-23a 1,得a 1=35,n ≥2时,S n =1-23a n ,S n -1=1-23a n -1.两式相减得a n =23a n -1-23a n ,即53a n =23a n -1,a n a n -1=25. 所以{a n }是等比数列,首项为a 1=35,公比为25,所以a n =35·(25)n -1.8.在正数等比数列{a n }中,若a 1+a 2+a 3=1,a 7+a 8+a 9=4,则此等比数列的前15项的和为________.答案:31解析:设数列{a n }的公比为q (q >0),则有q 6=a 7+a 8+a 9a 1+a 2+a 3=4,注意到数列S 3,S 6-S 3,S 9-S 6,S 12-S 9,S 15-S 12是以q 3=2为公比的等比数列,因此S 15=1×(1-25)1-2=31,即正数等比数列{a n }的前15项和为31.9. [2012·南京一模]已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为__________.答案:4解析:设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4,又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a a+2>19的最大正整数n 的值为4. 三、解答题(10、11题12分、12题13分)10.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值. 解:(1)∵a 3·a 4=a 1·a 6=329,由条件知:a 1,a 6是方程x 2-11x +329=0的两根,解得x =13或x =323.又0<q <1,∴a 1=323,a 6=13,∴q 5=a 6a 1=132,q =12,从而a n =a 6·q n -6=13·(12)n -6.(2)∵323[1-(12)n ]1-12=21,得(12)n =164,∴n =6.11. [2012·宁夏模拟]在各项均为负数的数列{a n }中,已知点(a n ,a n +1)(n ∈N *)在函数y =23x 的图像上,且a 2·a 5=827.(1)求证:数列{a n }是等比数列,并求出其通项; (2)若数列{b n }的前n 项和为S n ,且b n =a n +n ,求S n . (1)证明:因为点(a n ,a n +1)(n ∈N *)在函数y =23x 的图像上.所以a n +1=23a n ,即a n +1a n =23,故数列{a n }是公比q =23的等比数列.因为a 2a 5=827,则a 1q ·a 1q 4=827,即a 21(23)5=(23)3, 由于数列{a n }的各项均为负数,则a 1=-32,所以a n =-(23)n -2.(2)解:由(1)知,a n =-(23)n -2,b n =-(23)n -2+n ,S n =b 1+b 2+…+b n=-[(23)-1+(23)0+(23)1+…+(23)n -2]+1+2+…+n =-(23)-1[1-(23)n ]1-23+1+n 2·n所以S n =3·(23)n -1+n 2+n -92.12. [2011·山东卷]等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,a 1=2,a 2=6,a 3=18, ∵{a n }为等比数列,q =3, ∴{a n }的通项公式为a n =2·3n -1(2)∵b n =a n +(-1)n ln a n∴S n =(a 1+a 2+…+a n )+(-ln a 1+ln a 2-ln a 3+ln a 4+…+(-1)n ln a n ) =2(1-3n )1-3+[(ln a 2-ln a 1)+(ln a 4-ln a 3)+…]=3n -1+(ln a 2a 1+ln a 4a 3+…)∴当n =2k (k ∈N *)时,S 2k =32k -1+(ln a 2a 1+ln a 4a 3+…+ln a 2ka 2k -1)=32k -1+(ln3+ln3+…+ln3)=32k -1+k ln3.当n =2k +1(n ∈N )时,S 2k +1=32k +1-1+(ln a 2a 1+ln a 4a 3+…+ln a 2k a 2k -1-ln a 2k +1)=32k +1-1+k ln3-ln a 2k +1=32k +1-1+k ln3-ln(2·32k )=32k +1-1-k ln3-ln2.∴S n=⎩⎨⎧3n -1+n2ln3(n 为偶数)3n-1-n -12ln3-ln2(n 为奇数)。
2013年高考数学总复习 高效课时作业6-1 理 新人教版一、选择题1.(2012年济南3月)若a >b >0,则下列不等式不成立的是( )A .a +b <2abB .a 12>b 12C .ln a >ln bD .0.3a<0.3b解析:由不等式的性质知a +b >2ab ,所以不成立的不等式为A ,答案选A. 答案:A2.如果a >b ,则下列各式正确的是( )A .a ·lg x >b ·lg x (x >0)B .ax 2>bx 2C .a 2>b 2D .a ·2x >b ·2x解析:当lg x ≤0时A 错,当x =0时B 错,当0>a >b 时a 2<b 2,C 错,只有D 正确. 答案:D3.已知a ,b ,x ∈R,若bca 2>1.b a +c a≥-2,则下列结论成立的是( )A .a ,b ,c 同号B .a 、c 同号,b 与它们异号C .b 、c 同号,a 与它们异号D .b 、c 同号,a 与b 、c 的符号关系不确定 解析:令x 1=b a ,x 2=c a,则x 1x 2>1且x 1+x 2≥-2, 显然x 1、x 2同号,即b 、c 同号, 当a 与b 、c 异号时,x 1<0,x 2<0, ∴(-x 1)+(-x 2)≥2(-x 1)(-x 2)>2, 即x 1+x 2<-2, 故a 与b 、c 同号, 即a 、b 、c 同号,选A. 答案:A4.若不等式[(1-a )n -a ]lg a <0对于任意正整数n 恒成立,则实数a 的取值范围是( )A .{a |a >1}B .{a |0<a <12}C .{a |0<a <12或a >1}D .{a |0<a <13或a >1}解析:依题意知⎩⎪⎨⎪⎧lg a <0,(1-a )n -a >0,或⎩⎪⎨⎪⎧lg a >0,(1-a )n -a <0.∴⎩⎪⎨⎪⎧0<a <1,a <n n +1.或⎩⎪⎨⎪⎧a >1,a >n n +1.对任意正整数n 恒成立,∴0<a <12或a >1.答案: C5.设[x ]表示不超过x 的最大整数,又设x ,y 满足方程组⎩⎪⎨⎪⎧y =3[x ]+13y =4[x -3]+5,如果x 不是整数,那么x +y 的取值范围是( ) A .(35,39) B .(49,51) C .(71,75)D .(93,94)解析:∵[x -3]=[x ]-3,解⎩⎪⎨⎪⎧y =3[x ]+13,y =4[x -3]+5得[x ]=20,∴20≤x <21,y =3[x ]+13=73. ∵x 不是整数, ∴20<x <21,y =73, ∴93<x +y <94,选D. 答案:D 二、填空题6.设x , y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.解析:设A =xy 2,B =x 2y ,则x =5AB 2,y =5A 2B,∴x 3y 4=5B 10A 5=B 2A. ∵4≤B ≤9,而18≤1A ≤13,∴最大值是923=27.答案:277.某高校在2012年9月初共有m 名在校学生,其中有n 名新生,在9月底,又补录了b 名学生,则新生占学生的比例__________(选填“变大”、“变小”或“不变”),其理论依据用数学形式表达为________________________. 解析:利用表格分析:答案:变大 若m >n >0,b >0,则m <m +b8.写出一个介于a b 和c d (a b ≠cd且bd >0)之间的代数式:______________(只要写出一个即可).解析:∵(a b -a +c b +d )(a +c b +d -c d )=ad -bc b (b +d )·ad -bc d (b +d )=(ad -bc )2bd (b +d )2(*),∵a b ≠cd,∴ad ≠bc 又∵bd >0, ∴(*)式大于0,即a +c b +d 介于a b 与cd之间. 答案:a +cb +d9.给出下列四个命题:①若a <b ,则a 2<b 2;②若a ≥b >-1,则a 1+a ≥b1+b;③若正整数m 和n 满足:m <n ,则m (n -m )≤n 2;④若x >0,且x ≠1,则ln x +1ln x≥2.其中真命题的序号是________.(请把真命题的序号都填上) 解析:对于①,a =-2<b =-1,a 2>b 2,故①错. 对于④,ln x 不一定为正数,0<x <1时,ln x +1ln x≤-2. x >1时,ln x +1ln x≥2,故④错. 答案:②③ 三、解答题10.(1)已知12<a <60,15<b <36,求a -b ,a b的取值范围;(2)已知一次函数f (x )=ax +b 满足-1<f (1)<3且2<f (2)<5,求f (3)的范围. 解析:(1)12<a <60,① -36<-b <-15,②①+②得:-24<a -b <45. 又∵136<1b <115,③①×③得:13<ab<4.(2)令f (3)=pf (1)+qf (2).解得p =-1,q =2,则-3<-f (1)<1,4<2f (2)<10, ∴1<f (3)<11.11.已知函数f (x )=x 2+2x sin θ-1,x ∈[-32,12]. (1)当θ=π6时,求f (x )的最值.(2)若f (x )在x ∈[-32,12]上是单调函数,且 θ∈[0,2π],求θ的取值范围.解析:(1)θ=π6时,f (x )=x 2+x -1=(x +12)2-54,由x ∈[-32,12], ∴当x =-12时,f (x )min =f (-12)=-54,当x =12时,f (x )max =f (12)=-14.(2)函数f (x )=x 2+2x sin θ-1的对称轴为x =-2sin θ2=-sin θ. 又∵f (x )在x ∈[-32,12]上是单调函数, ∴-sin θ≤-32或-sin θ≥12. 即sin θ≥32或sin θ≤-12利用单位圆中的正弦线解上述不等式得: π3≤θ≤2π3或7π6≤θ≤11π6. ∴θ∈[π3,2π3]∪[7π6,11π6].12.若实数x 、y 、m 满足|x -m |>|y -m |,则称x 比y 接近m .(1)若x 2-1比3接近0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:a 2b +ab 2比a 3+b 3接近2ab ab .(3)已知函数f (x )的定义域D ={x |x ≠k π,k ∈Z,x ∈R},任取x ∈D ,f (x )等于1+sin x 和1-sin x 中接近0的那个值.写出函数f (x )的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).解析:(1)由题意得|x 2-1-0|<|3-0|,即|x 2-1|<3, 解得-2<x <2.(2)证明:∵a >0,b >0,且a ≠b , ∴a 2b +ab 2>2ab ab ,a 3+b 3>2ab ab . ∴a 2b +ab 2-2ab ab >0,a 3+b 3-2ab ab >0.∴|a 2b +ab 2-2ab ab |-|a 3+b 3-2ab ab | =a 2b +ab 2-2ab ab -a 3-b 3+2ab ab =a 2b +ab 2-a 3-b 3=a 2(b -a )2+b 2(a -b ). =(a -b )(b 2-a 2) =-(a -b )2(a +b )<0.∴|a 2b +ab 2-2ab ab |<|a 3+b 3-2ab ab |, ∴a 2b +ab 2比a 3+b 3接近2ab ab . (3)∵x ≠k π,k ∈Z, ∴sin x ≠0.若sin x <0,即当2k π-π<x <2k π,k ∈Z 时,1+sin x <1-sin x , 此时f (x )=1+sin x .若sin x >0,即当2k π<x <2k π+π,k ∈Z 时,1-sin x <1+sin x , 此时f (x )=1-sin x .画出f (x )的图象如图所示,由图象可知f (x )为偶函数,最小正周期为π,最小值为0,单调增区间为⎝ ⎛⎭⎪⎫k π-π2,k π,k ∈Z,单调减区间为⎝⎛⎭⎪⎫k π,k π+π2,k ∈Z.。
课后提升训练(六) 充分条件与必要条件[对应学生用书P 188]1.(2020·山东临沂高一上期中)设a ∈R ,则“a >1”是“a 2>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A2.“(2x -1)x =0”是“x =0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B3.若a ∈R ,则“a =1”是“|a |=1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A4.(2020·山东济宁高一上期中)已知a ∈R ,则“a >1”是“1a<1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A5.(2020·淄博实验中学高一第一次诊断)如果丙是乙的充要条件,甲是乙的充分条件但不是乙的必要条件,那么( )A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙既不是甲的充分条件,也不是甲的必要条件答案:B6.下面四个条件中,使a >b 成立的充分不必要条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3 答案:A7.设A ,B 是两个非空集合,则“A ∩B =A ”是“A =B ”的____________条件(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”).必要不充分 解析:由A ∩B =A ,得A ⊆B ,但推不出A =B ;反过来,由A =B ,得A ⊆B ,能推出A ∩B =A ,故“A ∩B =A ”是“A =B ”的必要不充分条件.8.(2020·山东枣庄高一上期中)已知使不等式a -1<x <a +1成立的充分不必要条件是 12 <x <32 ,则实数a 的取值范围是________. ⎩⎨⎧⎭⎬⎫a |12≤a ≤32 解析:因为使不等式a -1<x <a +1成立的充分不必要条件是12 <x <32 , 所以⎩⎨⎧⎭⎬⎫x |12<x <32 {x |a -1<x <a +1}.所以⎩⎨⎧a -1≤12,a +1≥32, 解得12 ≤a ≤32 . 即实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a ≤32 . 9.判断下列命题中p 是q 的什么条件(请用“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”回答).(1)p :数a 能被6整除,q :数a 能被3整除;(2)p :x >1,q :x 2>1;(3)p :△ABC 有两个角相等,q :△ABC 是正三角形.解:(1)因为“数a 能被6整除”能推出“数a 能被3整除”,即p ⇒q ,但“数a 能被3整除”推不出“数a 能被6整除”,如a =9,即qp ,所以p 是q 的充分不必要条件.(2)因为“x >1”能推出“x 2>1”,即p ⇒q ,但当“x 2>1”时,如x =-2,推不出“x >1”,即q p ,所以p 是q 的充分不必要条件.(3)因为“△ABC 有两个角相等”推不出“△ABC 是正三角形”,即p /⇒q ,但“△ABC 是正三角形”能推出“△ABC 有两个角相等”,即q ⇒p ,所以p 是q 的必要不充分条件.10.已知p :a ≤x ≤a +1,q :0<x <4,若p 是q 的充分条件但不是必要条件,求实数a 的取值范围.解:令M ={x |a ≤x ≤a +1},N ={x |0<x <4}.∵p 是q 的充分条件但不是必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4, 解得0<a <3. 即实数a 的取值范围是{a |0<a <3}.11.(多选)(2020·山东日照高一上期中) 一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根的充分不必要条件是( )A .a <0B .a <-2C .a <-1D .a <1BC 解析:若方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根,则⎩⎪⎨⎪⎧Δ=16-12a >0,3a <0,解得a <0, 则所求充分不必要条件应为{a |a <0}的真子集.故选BC .12.已知a >0,设p :-a ≤x ≤3a ;q :-1<x <6.若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .{a |1<a <2}B .{a |1≤a ≤2}C .{a |0<a <1}D .{a |0<a ≤2}C 解析:因为p 是q 的充分不必要条件,所以⎩⎨⎧-a >-1,3a <6,a >0.解得0<a <1,所以实数a的取值范围是{a |0<a <1}.故选C .13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的________条件(填“充要”“充分不必要”“必要不充分”或“既不充分又不必要”).充分不必要 解析:一元二次方程x 2+x +m =0有实数解等价于Δ=1-4m ≥0,解得m ≤14 .由条件“m <14 ”可以推出结论“m ≤14 ”;反过来,由结论“m ≤14”推不出条件“m <14 ”,因此“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件. 14.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,34≤x ≤2 ,B ={x |x +m 2≥1},p :x ∈A ,q :x ∈B ,并且p 是q 的充分条件,求实数m 的取值范围. 解:因为二次函数y =x 2-32 x +1的图象开口向上,图象的对称轴为直线x =34. 当x =34 时,函数y =x 2-32 x +1取最小值,即y min =⎝⎛⎭⎫34 2 -32 ×34 +1=716; 当x =2时,函数y =x 2-32 x +1取最大值,即y max =22-32×2+1=2. 因此A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,34≤x ≤2 =⎩⎨⎧⎭⎬⎫y |916≤y ≤2 , 由于p 是q 的充分条件,所以A ⊆B ,又B ={x |x +m 2≥1}={x |x ≥1-m 2},所以1-m 2≤716, 解得m ≤-34 或m ≥34, 故实数m 的取值范围是⎩⎨⎧⎭⎬⎫m |m ≤-34或m ≥34 .15.已知命题p :“对任意的-1≤x ≤1,不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围.解:(1)由题意知m >x 2-x 在-1≤x ≤1上恒成立,所以m >(x 2-x )max (-1≤x ≤1),因为x 2-x =⎝⎛⎭⎫x -12 2-14 , 所以-14≤x 2-x ≤2,即(x2-x)max=2,则m>2,所以实数m的取值范围是{m|m>2}.(2)由q得a-4<m<a+4,因为q是p的充分不必要条件,所以a-4≥2,即a≥6,所以实数a的取值范围是{a|a≥6}.。
课时知能训练一、选择题1.(2012·梅州模拟)已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( )A.c a <b aB.b -a c>0 C.b 2c <a 2c D.a -c ac<0 2.若0<a <1,则下列不等式中正确的是( )A .(1-a )13>(1-a )12B .log (1-a )(1+a )>0C .(1-a )3>(1+a )2D .(1-a )1+a >13.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( ) A .(0,5π6) B .(-π6,5π6) C .(0,π) D .(-π6,π) 4.若a ,b ,x ,y ∈R ,则⎩⎨⎧ x >a y >b 是⎩⎨⎧x +y >a +b (x -a )(y -b )>0成立的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若a >b >0,则下列不等式中一定成立的是( )A .a +1b >b +1a B.b a >b +1a +1C .a -1b >b -1a D.2a +b a +2b >a b二、填空题6.x 2+y 2+1与2(x +y -1)的大小关系是________.7.(2012·潮州模拟)设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是________.8.如果一辆汽车每天行驶的路程比原来多19 km ,那么8天的行程就超过2 200 km ;如果它每天行驶的路程比原来少12 km ,那么它行驶同样的路程就得花9天多的时间,则这辆汽车原来每天行驶的路程(单位:km)的范围是______.三、解答题9.已知b >a >0,x >y >0,求证:x x +a >y y +b. 10.若实数a 、b 、c 满足b +c =5a 2-8a +11,b -c =a 2-6a +9,试比较a 、b 、c 的大小.11.下表为广州全运会官方票务网站分布的几种球类比赛的门票价格,某球迷赛前准备1 200元,预订15张下表中球类比赛的门票.该球迷想预订上表中三种球类比赛门票,其中篮球比赛门票数与乒乓球比赛门票数相同,且篮球比赛门票的费用不超过足球比赛门票的费用,求可以预订的足球比赛门票数.答案及解析1.【解析】 ∵c <b <a ,且ac <0,∴c <0,a >0,∴c a <b a ,b -a c >0,a -c ac<0, 但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立. 【答案】 C2.【解析】 ∵0<a <1,∴0<1-a <1,∴(1-a )13>(1-a )12. 【答案】 A2.【解析】 由已知得0<2α<π,0≤β3≤π6∴-π6≤-β3≤0,∴-π6<2α-β3<π. 【答案】 D4.【解析】 ⎩⎨⎧ x >a ,y >b ,⇒⎩⎨⎧ x +y >a +b ,(x -a )(y -b )>0, 且⎩⎨⎧ x +y >a +b ,(x -a )(y -b )>0,⇒⎩⎨⎧x >a ,y >b .【答案】 C5.【解析】 ∵a >b >0,∴1b >1a >0,∴a +1b >b +1a. 【答案】 A6.【解析】 ∵(x 2+y 2+1)-2(x +y -1)=(x -1)2+(y -1)2+1>0,∴x 2+y 2+1>2(x +y -1).【答案】 x 2+y 2+1>2(x +y -1)7.【解析】 ∵3≤xy 2≤8,∴18≤1xy 213, ∵4≤x 2y ≤9,∴16≤x 4y 2≤81, ∴2≤x 3y 4≤27,故x 3y 4的最大值是27. 【答案】 278.【解析】 设原来每天行驶的路程为x km ,则⎩⎨⎧ 8(x +19)>2 200,8(x +19)>9(x -12),解得256<x <260. 【答案】 (256,260)9.【证明】x x +a -y y +b =x (y +b )-y (x +a )(x +a )(y +b ) =bx -ay (x +a )(y +b ). ∵b >a >0,x >y >0,∴bx >ay ,x +a >0,y +b >0,∴bx -ay (x +a )(y +b )>0, ∴x x +a >y y +b. 10.【解】 ∵b -c =a 2-6a +9=(a -3)2≥0,∴b ≥c .①又⎩⎨⎧b +c =5a 2-8a +11,b -c =a 2-6a +9.∴c =2a 2-a +1, 则c -a =2a 2-2a +1=2(a -12)2+12>0, ∴c >a .②由①②得b ≥c >a .11.【解】 设预订篮球比赛门票数与乒乓球比赛门票数都是n 张,则足球比赛门票预订(15-2n )张,由题意得 ⎩⎨⎧ 80n +60n +100(15-2n )≤1 200,80n ≤100(15-2n ),n ∈N *.解得5≤n ≤5514, 由n ∈N *知,n =5,∴15-2n =5,故可预订足球比赛门票5张.。
6-1数列的概念与简单表示法A级基础达标演练(时间:40分钟满分:60分)一、选择题(每小题5分,共25分)1.已知数列,1,3,5,7,…,2n-1,…,则35是它的().A.第22项B.第23项C.第24项D.第28项2.(2011·福州一模)把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).则第七个三角形数是().A.27 B.28 C.29 D.303.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的().A.必要不充分条件B.充分不必要条件C.必要条件D.既不充分也不必要条件4.(2011·绵阳模拟)在数列{a n}中,a n=-2n2+29n+3,则此数列最大项的值是().A.103 B.8658 C.8258D.1085.(2011·四川)数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8=().A.0 B.3 C.8 D.11二、填空题(每小题4分,共12分)6.在函数f(x)=x中,令x=1,2,3,…,得到一个数列,则这个数列的前5项是________.7.数列1,2,4,7,11,16,…的一个通项公式a n=________.8.已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k的值为________.三、解答题(共23分)9.(11分)已知数列{a n}的通项公式为a n=n2-5n+4.(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.10.(★)(12分)已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *.求{a n }的通项公式.B 级 综合创新备选(时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·惠州二模)已知整数按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( ).A .(5,5)B .(5,6)C .(5,7)D .(5,8)2.已知数列{a n }的通项公式是a n =n 2+kn +2,若对所有的n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( ).A .(0,+∞)B .(-1,+∞)C .(-2,+∞)D .(-3,+∞) 二、填空题(每小题4分,共8分)3.(2011·合肥三检)在数列{a n }中,a 1=12,a n +1=1-1a n(n ≥2),则a 16=________. 4.已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =________.三、解答题(共22分)5.(10分)在数列{a n }中,a 1=1,a n +1=a n +2n -1,求a n .6.(12分)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式;(2)判断数列{c n }的增减性.。
第6章 第1节
时间:45分钟 满分:100分
一、选择题(每小题7分,共42分)
1. 若1a <1b
<0,给出下列不等式: (1)a +b <ab ;(2)|a |>|b |;(3)a <b ;(4)b a +a b
>2,则正确不等式的序号是( ) A. (1)(2)
B. (2)(3)
C. (3)(4)
D. (1)(4)
答案:D
解析:由1a <1b
<0可得a <0,b <0,a >b ,所以a +b <ab 成立,|a |>|b |不成立,a <b 不成立,而b a >0,a b >0,所以b a +a b >2b a ·a b =2,故b a +a b >2成立. 2. 已知a <0,-1<b <0,那么下列不等式成立的是 ( )
A .a >ab >ab 2
B .ab 2>ab >a
C .ab >a >ab 2
D .ab >ab 2>a
答案:D
解析:由-1<b <0,可得b <b 2<1,又a <0,所以ab >ab 2>a ,故选D.
3. 已知a >b >0,且ab =1,设c =2a +b
,P =log c a ,N =log c b ,M =log c ab ,则有( ) A. P <M <N
B. M <P <N
C. N <P <M
D. P <N <M 答案:A
解析:因为a >b >0,且ab =1,所以a >1,0<b <1,a +b >2ab =2,c =
2a +b <1,所以log c a <log c ab <log c b ,即P <M <N ,选A.
4. [改编题]已知a >b ≥2,对于下列不等式;①b 2>3b -a ;②1+4ab >2(1a +1b
);③ab >a +b ;④log a 3>log b 3,其中正确的有( )
A. ②④
B. ①②
C. ③④
D. ①③ 答案:D
解析:由a >b ≥2知,log 3a >log 3b >0,由对数的换底公式知log a 3<log b 3,故④不正确,
排除A 、C.而对于②,当b =2时,1+4ab =1+2a ,2(1a +1b )=1+2a ,即1+4ab =2(1a +1b ),所以
②不正确,排除B.故选D.
5. 某商店在节前进行商品降价酬宾销售活动,拟分两次降价.有三种降价方案:甲方案是第一次打a 折销售,第二次打b 折销售;乙方案是第一次打b 折销售,第二次打a 折销
售;丙方案是两次都打a +b 2
折销售,且a ≠b .则下列说法正确的是( ) A .甲、乙方案降价较多
B .乙、丙方案降价较多
C .甲、丙方案降价较多
D .三种方案降价一样多
答案:A
解析:甲方案、乙方案降价后的价格都是ab 折,而丙方案降价后的价格是(a +b 2
)2折,因为(a +b 2)2-ab =(a +b )2-4ab 4=(a -b 2)2>0,所以(a +b 2
)2>ab ,所以甲、乙方案降价较多. 6. [2012·广州一模]已知a ,b ∈R 且a >b ,则下列不等式中一定成立的是( )
A. a b
>1 B. a 2>b 2 C. lg(a -b )>0
D. (12)a <(12
)b 答案:D
解析:令a =2,b =-1,则a >b ,a b =-2,故a b
>1不成立,排除A ;令a =1,b =-2,则a 2=1,b 2=4,故a 2>b 2不成立,排除B ;当a -b 在区间(0,1)内时,lg(a -b )<0,排除C ;
f (x )=(12)x 在R 上是减函数,∵a >b ,∴f (a )<f (b ),即(12)a <(12
)b ,故选D. 二、填空题(每小题7分,共21分)
7. 若1<α<3,-4<β<2,则α-|β|的取值范围是________.
答案:(-3,3)
解析:∵-4<β<2,∴0≤|β|<4.
∴-4<-|β|≤0.∴-3<α-|β|<3.
8. 下列四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a ,其中能使1a <1b
成立的充分条件有________.
答案:①②④
解析:1a <1b ⇔b -a ab
<0⇔b -a 与ab 异号,因此①②④能使b -a 与ab 异号. 9. 已知a =20.3,b =0.32,c =log m (m 2+0.3)(m >1),设f (x )=bx 2-2bx +1b ,则f (a )与f (c )
的大小关系为__________.
答案:f (a )<f (c )
解析:易知1<a <2,c =log m (m 2+0.3)>log m m 2=2,∴1<a <2<c .
∵b =0.32>0,∴f (x )=bx 2-2bx +1b =b (x -1)2+1b
-b 在[1,+∞)上是增函数,∴f (a )<f (c ). 三、解答题(10、11题12分、12题13分)
10. 已知-1<a +b <3且2<a -b <4,求2a +3b 的取值范围.
解:设2a +3b =x (a +b )+y (a -b )
=(x +y )a +(x -y )b .
由⎩⎪⎨⎪⎧
x +y =2,x -y =3,得x =52,y =-12. ∴-52<52(a +b )<152,-2<-12
(a -b )<-1, ∴-92<52(a +b )-12(a -b )<132
, 即-92<2a +3b <132
. 11.设实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,试确定a 、b 、c 的大小关系.
解:∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b .
又∵b +c -(c -b )=2+2a 2,∴b =1+a 2.
∴b -a =1+a 2-a =(a -12)2+34≥34
>0,∴b >a . 综上所述,c ≥b >a .
12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).
(1)若m =-1,n =2,求不等式F (x )>0的解集;
(2)若a >0,且0<x <m <n <1a
,比较f (x )与m 的大小. 解:(1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ),当m =-1,n =2时,不等式F (x )>0, 即为a (x +1)(x -2)>0.
当a >0时,不等式f (x )>0的解集为{x |x <-1或x >2};
当a <0时,不等式f (x )>0的解集为{x |-1<x <2}.
(2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),∵a >0,且0<x <m <n <1a
, ∴x -m <0,1-an +ax >0.
∴f (x )-m <0,即f (x )<m .。