高中数学 4_1_2 问题探索——求作抛物线的切线同步精练 湘教版选修2-21
- 格式:doc
- 大小:47.00 KB
- 文档页数:4
1设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-错误!,那么|PF|=().A.4错误!B.8 C.8错误!D.162若抛物线y2=2px(p>0)上横坐标为6的点到焦点的距离为8,则焦点到准线的距离为( ).A.1 B.2 C.4 D.63抛物线上一点A(-5,2错误!)到焦点F(x,0)的距离为6,则抛物线的标准方程是().A.y2=-2x,y2=-18x B.y2=-4x,y2=-36xC.y2=-4x D.y2=-36x4边长为1的等边△AOB,O为原点,AB⊥x轴,以O为顶点且过A,B的抛物线方程是().A.y2=错误!x B.y2=-错误!x C.y2=±错误!x D.y2=±错误!x5设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y 轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( ).A.y2=±4x B.y2=±8x C.y2=4x D.y2=8x6对于顶点在原点的抛物线,给出下列条件:①焦点在y轴上;②焦点在x轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这条抛物线方程为y2=10x的条件是________(要求填写合适条件的序号).7过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若线段AB的长为8,则p=__________.参考答案1。
解析:直线AF的方程为y=-3(x-2),联立错误!有y =4错误!,所以P(6,4错误!).由抛物线的性质可以知道|PF|=6+2=8.答案:B2.解析:依题意得p2+6=8,∴p=4,∴焦点到准线的距离为p=4.答案:C3。
解析:由已知错误!=6,∴x2+10x+9=0,∴x=-1或-9.∴F(-1,0),p=2,y2=-4x或F(-9,0),p=18,y2=-36x.显然,若抛物线为y2=-36x,则它的准线为x=9.由抛物线的定义知点A(-5,2错误!)到x=9的距离应是6,而点A(-5,25)到x=9的距离为14,矛盾.∴抛物线方程为y2=-4x。
3.1.2 问题探索—求作抛物线的切线1.若f (x )=3x ,则f (x )在x =1处的切线的斜率是( ).A .0B .1C .2D .32.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 的值是( ).A .1B .12C .-12D .-1 3.过点P (2,5)的曲线y =x 2+1的切线方程是( ).A .x -4y -3=0B .4x -y -3=0C .3x -y -4=0D .x -y -3=04.曲线y =1x 在点P (12,2)处的切线方程是( ). A .4x +y +4=0 B .x +4y +4=0C .4x +y -4=0D .x +4y -4=05.过点Q (3,5),且与曲线y =x 2相切的直线方程是( ).A .y =2x -1或y =10x -25B .y =2x -1C .y =10x -25D .y =2x +1或y =10x +256.抛物线y =f (x )=x 2+3x 在点A (2,10)处的切线的斜率k 是__________.7.曲线f (x )=x 3在点P (2,8)处的切线方程是__________.8.P 是抛物线y =x 2上一点,若过点P 的切线与直线y =-12x +1垂直,则过P 点的切线方程是__________.9.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程.(2)第(1)问中的切线与曲线C 是否还有其他的公共点?10.已知抛物线y =x 2+4与直线y =x +10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.参考答案1.D2.A 设f (x )=ax 2,则f (1+d )-f (1)d =a (1+d )2-a d =da +2a . 当d 趋于0时,da +2a 趋于2a .∴2a =2.∴a =1.3.B ∵点P (2,5)在曲线y =x 2+1上,∴(2+d )2+1-22-1d=d +4. 当d 趋于0时,d +4趋于4.∴所求切线的方程是y -5=4(x -2),即4x -y -3=0.4.C ∵点P (12,2)在曲线y =1x上, ∴112+d -112d =-41+2d . 当d 趋于0时,-41+2d趋于-4. ∴切线方程为y -2=-4(x -12),即4x +y -4=0. 5.A ∵Q (3,5)不在曲线y =x 2上,∴设所求切线的切点为A (x 0,y 0).∴y 0=x 02.又(x 0+d )2-x 02d=2x 0+d , 且当d 趋于0时,2x 0+d 趋于2x 0.∴y 0-5x 0-3=x 02-5x 0-3=2x 0.∴x 0=1或x 0=5. ∴切点为(1,1)或(5,25),∴所求切线的斜率为2或10.∴所求切线的方程是y -1=2(x -1)或y -25=10(x -5),即y =2x -1或y =10x -25.6.7 ∵A (2,10)在抛物线f (x )=x 2+3x 上, ∴f (2+d )-f (2)d =(2+d )2+3(2+d )-10d=7+d . 当d 趋于0时,7+d 趋于7.∴k =7.7.y =12x -16 ∵P (2,8)在曲线f (x )=x 3上, ∴f (2+d )-f (2)d =(2+d )3-23d=12+6d +d 2. 当d 趋于0时,12+6d +d 2趋于12.∴切线方程为y -8=12(x -2),即y =12x -16.8.y =2x -1 设P (x 0,x 02),则(x 0+d )2-x 02d=2x 0+d , 当d 趋于0时,2x 0+d 趋于2x 0.∵切线与直线y =-12x +1垂直, ∴2x 0×(-12)=-1. ∴x 0=1.∴切点为P (1,1),k =2.∴过P 点的切线方程是y -1=2(x -1),即y =2x -1.9.解:(1)将x =1代入y =x 3,得y =1,∴切点为P (1,1).又(1+d )3-13d=3+3d +d 2, 且当d 趋于0时,3+3d +d 2趋于3,∴k =3.∴过P 点的切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧ y =x 3,3x -y -2=0,得x 1=1,x 2=-2,∴公共点为P 1(1,1),P 2(-2,-8),说明切线与曲线C 的公共点除了切点P 1(1,1)外,还有另外一个公共点P 2(-2,-8).10.解:(1)由⎩⎪⎨⎪⎧ y =x 2+4,y =x +10,得x 2+4=10+x ,即x 2-x -6=0. ∴x =-2或x =3.代入直线的方程得y =8或y =13.∴抛物线与直线的交点坐标为(-2,8)和(3,13).(2)设抛物线上任意一点M (x ,x 2+4),再另任取一点N (x +d ,(x +d )2+4),d ≠0,则k MN =(x +d )2+4-(x 2+4)d=2x +d . 当d 趋于0时,k MN 趋于2x ,即过点M (x ,x 2+4)的切线斜率为2x .∴在点(-2,8)处的切线的斜率为-4,在点(3,13)处的切线的斜率为6.∴所求切线方程为y -8=-4(x +2)和y -13=6(x -3),即4x +y =0和6x -y -5=0.。
第4章导数及其应用4.1导数概念4.1.1问题探索——求自由落体的瞬时速度1.一质点的运动方程是s=4-2t2,则在时间段[1,1+d]内相应的平均速度为() A.2d+4 B.-2d+4C.2d-4 D.-2d-4答案 D解析v(1,d)=4-2(1+d)2-4+2×12d=-4d+2d2d=-2d-4.2.已知物体位移s与时间t的函数关系为s=f(t).下列叙述正确的是() A.在时间段[t0,t0+d]内的平均速度即是在t0时刻的瞬时速度B.在t1=1.1,t2=1.01,t3=1.001,t4=1.000 1,这四个时刻的速度都与t=1时刻的速度相等C.在时间段[t0-d,t0]与[t0,t0+d](d>0)内当d趋于0时,两时间段的平均速度相等D.以上三种说法都不正确答案 C解析两时间段的平均速度都是在t0时刻的瞬时速度.3.已知s=12gt2,从3秒到3.1秒的平均速度v=________.答案 3.05g解析v=12g·3.12-12g·323.1-3=3.05g.4.如果质点M的运动方程是s=2t2-2,则在时间段[2,2+d]内的平均速度是________.答案8+2d解析v(2,d)=s(2+d)-s(2)d=8+2d.1.平均速度与瞬时速度的区别与联系平均速度是运动物体在某一段时间内位移的平均值,即用时间除位移得到,而瞬时速度是物体在某一时间点的速度,当时间段越来越小的过程中,平均速度就越来越接近一个数值,这个数值就是瞬时速度,可以说,瞬时速度是平均速度在时间间隔无限趋于0时的“飞跃”.2.求瞬时速度的一般步骤设物体运动方程为s=f(t),则求物体在t时刻瞬时速度的步骤为:(1)从t到t+d这段时间内的平均速度为f(t+d)-f(t)d,其中f(t+d)-f(t)称为位移的增量;(2)对上式化简,并令d趋于0,得到极限数值即为物体在t时刻的瞬时速度.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321AC1FB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DF45°DBa +b-aa45°ABE1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DBa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DEa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°. (1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形;(3)求AE -CE 的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.AB CFEDCDC。
1已知5错误!=|3x+4y-12|是动点M所满足的坐标方程,则动点M的轨迹是().A.椭圆B.双曲线C.抛物线D.以上都不对2抛物线过点(-2,3),则它的标准方程是().A.x2=-错误!y或y2=错误!xB.y2=-错误!x或x2=错误!yC.x2=错误!yD.y2=-错误!x3抛物线y=4x2上一点M到焦点的距离为1,则点M的纵坐标为().A.错误!B.错误!C.错误!D.04抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是( ).A.错误!B.错误!C.错误!D.35以双曲线错误!-错误!=1的右顶点为焦点的抛物线的标准方程为__________.6经过点P(4,-2)的抛物线的标准方程为__________.7已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程是__________.8直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等,若△AMN为锐角三角形,|AM|=错误!,|AN|=3,且|BN|=6,建立适当的坐标系,求曲线段C的方程.9过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线,分别交抛物线于点A(x1,y1),B(x2,y2).(1)求该抛物线上纵坐标为错误!的点到其焦点F的距离;(2)当P A与P B的斜率存在且倾斜角互补时,求y1+y2y0的值,并证明直线AB的斜率是非零常数.参考答案1.解析:由题意得错误!=错误!,即动点M到直线3x+4y-12=0的距离等于它到原点(0,0)的距离.由抛物线定义可知,动点M的轨迹是以原点(0,0)为焦点,以直线3x+4y-12=0为准线的抛物线.答案:C2.解析:抛物线过点(-2,3),点(-2,3)在第二象限,由图象可知,方程可设为x2=2py或y2=-2px,代入点(-2, 3)求得p 的值分别为错误!和错误!,故y2=-错误!x或x2=错误!y。
第4章导数及其应用4.1导数概念4.1.1问题探索——求自由落体的瞬时速度一、基础达标1.设物体的运动方程s=f(t),在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2,则从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2,则在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0 D.4.1答案 D解析v=3+2.12-3-220.1=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2,则t=2时,此木块水平方向的瞬时速度为()A .2B .1 C.12 D.14 答案 C解析 Δs Δt =18(2+Δt )2-18×22Δt =12+18Δt →12(Δt →0).5.质点运动规律s =2t 2+1,则从t =1到t =1+d 时间段内运动距离对时间的变化率为________. 答案 4+2d解析 v =2(1+d )2+1-2×12-11+d -1=4+2d .6.已知某个物体走过的路程s (单位:m)是时间t (单位:s)的函数:s =-t 2+1. (1)t =2到t =2.1; (2)t =2到t =2.01; (3)t =2到t =2.001.则三个时间段内的平均速度分别为________,________,________,估计该物体在t =2时的瞬时速度为________.答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时,需在2 s 内完成刹车,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20,求: (1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2,则在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2,则从t =0到t =1时间段内的平均速度为________,在t =1到t =1+Δt 时间段内的平均速度为________,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g解析12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6,则g =________. 答案 9.8解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时,2g +12g Δt →2g . ∴2g =19.6,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2, ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs 为s 的增量)?解 (1)由题图①在(0,t ]时间段内,甲、乙跑过的路程s 甲<s 乙,故有s 甲t <s 乙t 即在任一时间段(0,t ]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快.(2)由题图②知,在终点附近[t -d ,t )时间段内,路程增量Δs 乙>Δs 甲,所以Δs 乙d >Δs 甲d 即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快. 三、探究与创新13.质量为10 kg 的物体按照s (t )=3t 2+t +4的规律做直线运动,求运动开始后4秒时物体的动能.解 s (Δt +4)-s (4)Δt=3(Δt+4)2+(Δt+4)+4-(3×42+4+4)Δt=3Δt+25,当Δt→0时,3Δt+25→25.即4秒时刻的瞬时速度为25.∴物质的动能为12m v 2=12×10×252=3 125(J)赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DAC1FDAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DF45°DBa+b-aa 45°A BE1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°DBa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DEa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.DE3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.DC变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DAB CFEDCDC。
抛物线中的切线问题一、考情分析对于抛物线特别是抛物线x 2=2py p ≠0 ,可以化为函数y =x 22p,从而可以借组导数研究求性质,这种关联使得可以把抛物线与导数的几何意义交汇,这是圆锥曲线中的一大亮点,也是圆锥曲线解答题的一个热点.二、解题秘籍(一)利用判别式求解抛物线中的切线问题求解直线抛物线相切问题,可以把直线方程与抛物线方程联立整理成一个一元二次方程,然后利用Δ=0求解.1.(2023届河南省新未来高三上学期联考)已知抛物线C :y 2=2px p >0 ,直线l 1,l 2都经过点P -p2,0 .当两条直线与抛物线相切时,两切点间的距离为4.(1)求抛物线C 的标准方程;(2)若直线l 1,l 2分别与抛物线C 依次交于点E ,F 和G ,H ,直线EH ,FG 与抛物线准线分别交于点A ,B ,证明:PA =PB .【解析】(1)设经过点P -p 2,0 的直线为l :y =k x +p 2,由y 2=2px y =k x +p2消去y ,得k 2x 2+k 2-2 px +k 2p 24=0,Δ=k 2-2 2p 2-4×k 2⋅k 2p 24=4p 2-k 2+1 ,当直线l 与抛物线C 相切时,Δ=0,∵p >0,∴k =±1,所以x 2-px +p 24=0,解得x =p 2,∴切点为p 2,p ,p2,-p ,又∵两切点间的距离为4,∴2p =4,即p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设点E x 1,y 1 ,F x 2,y 2 ,G x 3,y 3 ,H x 4,y 4 ,设直线l 1:x =k 1y -1,直线l 2:x =k 2y -1,联立y 2=4x x =k 1y -1 消去x ,得y 2-4k 1y +4=0,则y 1y 2=4,同理,y 3y 4=4,故y 1=4y 2,y 4=4y 3,直线EH 的方程为y -y 1y 4-y 1=x -x 1x 4-x 1,令x =-1,得y A -y 1y 4-y 1=1-y 214y 244-y 214,整理得y A =y 1y 4-4y 1+y 4,同理,y B =y 2y 3-4y 2+y 3,所以y A =4y 2⋅4y 3-44y 2+4y 3=4-y 2y 3y 2+y 3=-y B ,∴PA =PB .(二)利用导数几何意义求解抛物线中的切线问题求解抛物线x 2=2py 在其上一点P x 1,y 1 处的切线方程,可先把x 2=2py 化为y =x 22p ,则y =xp,则抛物线x 2=2py 在点P x 1,y 1 处的切线斜率为x 1p ,切线方程为y -y 1=x1px -x 1 .2.(2023届湖南省三湘名校教育联盟高三上学期联考)在直角坐标系xoy 中,已知抛物线C :x 2=2py p >0 ,P 为直线y =x -1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,当P 在y 轴上时,OA ⊥OB .(2)求点O 到直线AB 距离的最大值.【解析】(1)当P 在y 轴上时,即P 0,-1 ,由题意不妨设A x 0,y 0 x 0>0 则B -x 0,y 0 ,设过点P 的切线方程为y =kx -1,与x 2=2py 联立得x 2-2pkx +2p =0,由直线和抛物线相切可得Δ=4p 2k 2-8p =0,x 0x 0=x 20=2p ,所以x 0=2p 由x 20=2py 0得y 0=1,∴A 2p ,1 ,B -2p ,1 ,由OA ⊥OB 可得2p ⋅-2p +1×1=0,解得p =12,∴抛物线C 的方程为x 2=y ;(2)x 2=y ,∴y =2x ,设A x 1,y 1 ,B x 2,y 2 ,则y -y 1=2x 1x -x 1 ,又x 21=y 1,所以y -y 1=2x 1x -2y 1即2x 1x =y +y 1,同理可得2x 2x =y +y 2,又P 为直线y =x -1上的动点,设P t ,t -1 ,则2x 1t =t -1+y 1,2x 2t =t -1+y 2,由两点确定一条直线可得AB 的方程为2xt =t -1+y ,即y -1=2t x -12 ,∴直线AB 恒过定点M 12,1 ,∴点O 到直线AB 距离的最大值为OM =12 2+1=52.(三)抛物线中与切线有关的性质过抛物线焦点弦的两端点作抛物线的切线,则(1)切线交点在准线上(2)切线交点与弦中点连线平行于对称轴(3)切线交点与焦点弦的两端点连线垂直(4)切线交点与焦点连线与焦点弦垂直(5)弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.反之:(1)过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点,该点与焦点连线垂直于过两切点的弦(2)过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3.已知抛物线C :x 2=2py (p >0)的焦点为F ,过F 的直线l 与C 相交于A ,B 两点,PA ,PB 是C 的两条切线,A ,B 是切点.当AB ∥x 轴时,|AB |=2.(2)证明:|PF|2=|AF|⋅|FB|.【解析】(1)由题意,F0,p 2,当AB∥x轴时,将y=p2代入x2=2py有x2=p2,解得x=±p,又AB =2故2p=2,解得p=1.故抛物线C的方程为x2=2y.(2)由(1),设A x1,y1,B x2,y2,直线l的方程为y=kx+12,联立抛物线方程有x2-2kx-1=0,故x1+x2=2k,x1x2=-1.又抛物线方程y=12x2,故y =x,故切线PA的方程为y-12x21=x1x-x1,即y=x1x-12x21,同理可得切线PB的方程为y=x2x-12x22,联立y=x1x-12x21y=x2x-12x22可得x1-x2x=12x21-x22,解得x=1 2x1+x2,代入y=x1x-12x21有y=12x1x1+x2-12x21=12x1x2,代入韦达定理可得P k,-12.故当k=0时有l⊥PF,当k≠0时,因为k FP=-12-12k-0=-1k,故k FP⋅k l=-1,也满足l⊥PF.故l⊥PF恒成立.又k PA⋅k PB=x1x2=-1,故PA⊥PB.所以∠PAB+∠PBA=90°,∠PAF+∠APF=90°,故∠PBF=∠APF,故Rt△PBF∼Rt△APF,故BF PF =PFAF,即PF2=AF⋅BF,即得证.4.已知直线l过原点O,且与圆A交于M,N两点,MN=4,圆A与直线y=-2相切,OA与直线l垂直,记圆心A的轨迹为曲线C.(1)求C的方程;(2)过直线y=-1上任一点P作C的两条切线,切点分别为Q1,Q2,证明:①直线Q1Q2过定点;②PQ1⊥PQ2.【解析】(1)如图,设A(x,y),因为圆A与直线y=-2相切,所以圆A的半径为|y+2|.由圆的性质可得|OA|2+|ON|2=|AN|2,即x2+y2+4=(y+2)2,化简得x2=4y.因为O与A不重合,所以y≠0,所以C的方程为x2=4y(y≠0).(2)证明:①由题意可知Q1,Q2与O不重合.如图,设P(t,-1),Q1x1,y1,则x21=4y1,因为y =x2,所以切线PQ1的斜率为x12,故x12=y1+1x1-t,整理得tx1-2y1+2=0.设Q2x2,y2,同理可得tx2-2y2+2=0.所以直线Q1Q2的方程为tx-2y+2=0,所以直线Q1Q2过定点(0,1).②因为直线Q1Q2的方程为tx-2y+2=0,由tx -2y +2=0,x 2=4y ,消去y 得x 2-2tx -4=0,所以x 1+x 2=2t ,x 1x 2=-4.又PQ 1 ⋅PQ 2=x 1-t x 2-t +y 1+1 y 2+1=x 1x 2-t x 1+x 2 +t 2+tx 1+22+1 tx 2+22+1 =x 1x 2-t x 1+x 2 +t 2+t 2x 1+2 t2x 2+2 =x 1x 2-t x 1+x 2 +t 2+t 24x 1x 2+t x 1+x 2 +4=1+t 24x 1x 2+t 2+4=0,所以PQ 1⊥PQ 2.三、跟踪检测1.(2023届云南省名校高三上学期月考)已知抛物线E :x 2=2py p >0 的焦点为F ,斜率为k k ≠0 的直线l 与E 相切于点A .(1)当k =2,AF =5时,求E 的方程;(2)若直线l 与l 平行,l 与E 交于B ,C 两点,且∠BAC =π2,设点F 到l 的距离为d 1,到l 的距离为d 2,试问:d1d 2是否为定值?若是,求出定值;若不是,说明理由.【解析】(1)由x 2=2py 得y =x 22p ,则y =x p,令xp =2,则x =2p ,即x A =2p ,y A =2p 22p=2p 则AF =2p +p2=5,所以p =2,故抛物线E 的方程为x 2=4y .(2)设A 2pt 0,2pt 20 ,B 2pt 1,2pt 21 ,C 2pt 2,2pt 22 ,则切线l 的斜率k =2pt 0p=2t 0,则切线l 的方程为:y -2pt 02=2t 0x -2pt 0 ,即y =2t 0x -2pt 20,k BC =2pt 12-2pt 222pt 1-2pt 2=t 1+t 2.直线l 的方程为y -2pt 21=t 1+t 2 x -2pt 1 ,化简得y =t 1+t 2 x -2pt 1t 2,因为l ∥l ,所以t 1+t 2=2t 0,由∠BAC =π2得2pt 12-2pt 022pt 1-2pt 0⋅2pt 22-2pt 022pt 2-2pt 0=-1,则t 1+t 0 t 2+t 0 =-1,即t 1t 2=-1-3t 20,即l :2t 0x -y +2p +6pt 02=0.由F 0,p2,则d 1=3p 2+6pt 204t 20+1=3p 2+6pt 204t 20+1,d 2=-p2-2pt 24t 20+1=p 2+2pt 204t 2+1,所以d 1d 2=3p 12+2t 20 p 12+2t 20=3.故d1d 2是定值,定值为3.2.(2023届河南省北大公学禹州国际学校高三上学期月考)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,直线l :mx +y -1=0经过抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 相交于A ,B 两点,过A ,B 两点分别作抛物线C 的切线,两条切线相交于点P ,求△ABP 面积的最小值.【解析】(1)由题意,设抛物线C 的方程为x 2=2py p >0 ,因为直线l :mx +y -1=0经过0,1 ,即抛物线C 的焦点F 0,p 2,所以p2=1,解得p =2,所以抛物线C 的方程为x 2=4y .(2)设A x 1,y 1 、B x 2,y 2 ,联立方程组x 2=4ymx +y -1=0,整理得x 2+4mx -4=0,因为Δ=16m 2+16>0,且x 1+x 2=-4m ,x 1x 2=-4,y 1+y 2=x 214+x 224=x 1+x 2 2-2x 1x 24=4m 2+2,y 1y 2=x 214×x 224=-4 216=1所以AB =y 1+y 2+p =41+m 2 ,由x 2=4y ,可得y =x 24,则y =x2,所以抛物线C 经过点A 的切线方程是y -y 1=x 12x -x 1 ,将y 1=x 214代入上式整理得y =x 12x -x 214,同理可得抛物线C 经过点B 的切线方程为y =x 22x -x 224,联立方程组y =x 12x -x 214y =x 22x -x 224,解得x =x 1+x 22,y =x 1x24,所以x =-2m ,y =-1,所以P -2m ,-1 到直线mx +y -1=0的距离d =m ×-2m -1-1m 2+1=2m 2+1,所以△ABP 的面积S =12AB d =12×4×1+m 2 ×2m 2+1=4m 2+1 32,因为m 2+1≥1,所以S ≥4,即当m =0时,S =4,所以△ABP 面积的最小值为4.3.(2022届浙江省绍兴市高三上学期12月选考)已知抛物线C 的焦点是0,14,如图,过点D 22,t(t ≤0)作抛物线C 的两条切线,切点分别是A 和B ,线段AB 的中点为M .(1)求抛物线C 的标准方程;(2)求证:直线MD ⎳y 轴;(3)以线段MD 为直径作圆,交直线AB 于MN ,求|AB |-|MN ||AB |+|MN |的取值范围.【解析】(1)设抛物线的方程为x 2=2py p >0 ,由题意可得p 2=14,所以p =12,所以抛物线方程y =x 2.(2)由(1)y =x 2,因为y=2x ,设A (x 1,y 1),B (x 2,y 2),直线AD 的方程为y =2x 1x -x 21,直线BD 的方程为y =2x 2x -x 22,联立上述两直线方程,得D 点坐标D x 1+x22,x 1x 2 ,又因为M 点为线段AB 的中点,所以M 点坐标M x 1+x22,1-x 1x 2 ,因为x D =x M ,所以直线MD ⎳y 轴:(3)因为点D 22,t (t ≤0),所以x 1+x 22=22,x 1x 2=t ,则M 22,1-t ,圆心22,12,直线AB 的斜率为k =x 21-x 22x 1-x 2=x 1+x 2=2,直线AB 方程为y =2x -t ,y =x 2y =2x -t,得x 2-2x +t =0,Δ=2-4t ,|AB |=1+k 2⋅Δ=6(1-2t ),圆心到直线AB 的距离为d =1-2t 23,半径r =|MD |2=1-2t2,|MN |=2r 2-d 2=63(1-2t ),令1-2t =m ≥1,|AB |-|MN ||AB |+|MN |=3-m 3+m =-1+6m +3在m ≥1时单调递减,|AB |-|MN ||AB |+|MN |∈-1,12 .4.(2022届山东省济宁市高三上学期期末)已知抛物线E :y 2=2px (p >0)上一点C 1,y 0 到其焦点F 的距离为2.(1)求实数p 的值;(2)若过焦点F 的动直线l 与抛物线交于A 、B 两点,过A 、B 分别作抛物线的切线l 1、l 2,且l 1、l 2的交点为Q ,l 1、l 2与y 轴的交点分别为M 、N .求△QMN 面积的取值范围.【解析】(1)因为点C 1,y 0 到其焦点F 的距离为2,由抛物线的定义知1+p2=2解得p =2(2)由上问可知,抛物线方程E :y 2=4x 设A y 214,y 1 ,B y 224,y 2,(y 1≠0,y 2≠0),设l :x =ty +1,联立y 2=4xx =ty +1 ,得y 2-4ty -4=0,判别式Δ=16t 2+16>0,故t ∈R y 1+y 2=4t ,y 1y 2=-4设l 1:y -y 1=k x -y 214联立方程组y 2=4xy -y 1=k x -y 214,消x 得ky 2-4y +4y 1-ky 21=0,所以Δ=16-4k 4y 1-ky 21 =44-4ky 1+k 2y 21 =0所以k =2y 1则l 1:y -y 1=2y 1x -y 214,即y =2y 1x +y 12,令x =0,得M 0,y 12,同理l 2:y =2y 2x +y 22,N 0,y 22,联立y =2y 1x +y 12y =2y 2x +y 22,得交点Q 的横坐标为x Q =y 1y 24=-1,∴S △QMN =12MN ⋅x Q =12y 12-y 22×1=14y 1+y 22-4y 1y 2=t 2+1≥1∴△QMN 面积的取值范围是1,+∞ .5.(2022届百校联盟高三上学期12月联考)已知曲线C 上任意一点到F 1(-1,0),F 2(1,0)距离之和为433,抛物线E :y 2=2px 的焦点是点F 2.(1)求曲线C 和抛物线E 的方程;(2)点Q x 0,y 0 x 0<0 是曲线C 上的任意一点,过点Q 分别作抛物线E 的两条切线,切点分别为M ,N ,求△QMN 的面积的取值范围.【解析】(1)依题意,曲线C 是以F 1(-1,0),F 2(1,0)为左右焦点,长轴长为433的椭圆,则短半轴长b 有b 2=232-12=13,曲线C 的方程为:x 243+y 213=1,即3x 24+3y 2=1,在y 2=2px 中,p 2=1,即p =2,所以曲线C 的方程为:3x 24+3y 2=1,抛物线E 的方程为:y 2=4x .(2)显然,过点Q 的抛物线E 的切线斜率存在且不为0,设切线方程为:y -y 0=k (x -x 0),由y -y 0=k (x -x 0)y 2=4x消去x 并整理得:k4⋅y 2-y +y 0-kx 0=0,依题意,Δ=1-k (y 0-kx 0)=x 0k 2-y 0k +1=0,设二切线斜率为k 1,k 2,则k 1+k 2=y 0x 0,k 1k 2=1x 0,设斜率为k 1的切线所对切点M (x 1,y 1),斜率为k 2的切线所对切点N (x 2,y 2),因此,y 1=2k 1,y 2=2k 2,于是得M 1k 21,2k 1 ,N 1k 22,2k 2 ,NM =1k 21-1k 22,2k 1-2k 2,直线MN 上任意点P (x ,y ),MP =x -1k 21,y -2k 1,由MP ⎳NM 得:2k 1-2k 2x -1k 21 -1k 21-1k 22y -2k 1=0,化简整理得:2x -k 1+k 2k 1k 2y +2k 1k 2=0,则直线MN 的方程为:2x -y 0y +2x 0=0,点Q 到直线MN 的距离d =|4x 0-y 20|4+y 20,|MN |=1k 21-1k 222+2k 1-2k 22=1k 1-1k 221k 1+1k 22+4=k 1+k 2k 1k 22-4k 1k 2 k 1+k2k 1k 22+4=(y 20-4x 0)(y 20+4),则△QMN 的面积S △QMN =12|MN |⋅d =12⋅(y 20-4x 0)(y 20+4)⋅|4x 0-y 20|4+y 20=12(y 20-4x 0)32,而点Q x 0,y 0 x 0<0 在曲线C 上,即y 20=13-14x 20,-23≤x 0<0,y 20-4x 0=-14x 20-4x 0+13在x 0∈-23,0上单调递减,当x 0=0时,(y 20-4x 0)min =13,当x 0=-23时,(y 20-4x 0)max =83,于是有13<y 20-4x 0≤83,则39<(y 20-4x 0)32≤164123,有318<S △QMN ≤84123所以△QMN 的面积的取值范围是318,84123.6.(2022届四川省达州高三上学期诊断)过定点0,1 的动圆始终与直线l :y =-1相切.(1)求动圆圆心的轨迹C 的方程;(2)动点A 在直线l 上,过点A 作曲线C 的两条切线分别交x 轴于B ,D 两点,当△ABD 的面积是32时,求点A 坐标.【解析】(1)设动圆圆心坐标为x ,y ,因为过定点0,1 的动圆始终与直线l :y =-1相切,可得-x 2+y -1 2=y +1 ,化简得x 2=4y ,即动圆圆心的轨迹方程C :x 2=4y .(2)设动点A x 0,-1 ,根据题意过点A 作曲线C 的切线斜率存在,设为k k ≠0 ,所以切线方程为y =k x -x 0 -1,联立方程组x 2=4y ,y =k x -x 0 -1 ,整理得x 2-4kx +4kx 0+4=0,且Δ=k 2-kx 0-1=0,因为k 2-kx 0-1=0有两不等实根,所以有两条切线,斜率分别设为k 1,k 2,所以k 1+k 2=x 0,k 1k 2=-1,切线y =k 1x -x 0 -1交x 轴于点B x 0+1k 1,0,切线y =k 2x -x 0 -1交x 轴于点D x 0+1k 2,0,所以S △ABD =12x 0+1k 1-x 0-1k 2×1=12k 2-k 1k 1k 2=12k 1+k 22-4k 1k 2k 1k 2=32,即12x 02+41=32,解得x 0=±5,所以点A 坐标为5,-1 或-5,-1 .7.(2022届四川省成都市高三上学期考试)已知抛物线C :x 2=2py p >0 的焦点为F .且F 与圆M :x 2+y +4 2=1上点的距离的最小值为4.(1)求抛物线的方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线.A ,B 是切点,求△PAB 面积的最大值.【解析】(1)抛物线C 的焦点为F 0,p 2 ,FM =p2+4,所以,F 与圆M :x 2+(y +4)2=1上点的距离的最小值为p2+4-1=4,解得p =2;所以抛物线的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =x 24,对该函数求导得y =x2,设点A x 1,y 1 ,B x 2,y 2 ,P x 0,y 0 ,直线PA 的方程为y -y 1=x 12x -x 1 ,即y =x 1x2-y 1,即x 1x -2y 1-2y =0,同理可知,直线PB 的方程为x 2x -2y 2-2y =0,由于点P 为这两条直线的公共点,则x 1x 0-2y 1-2y 0=0x 2x 0-2y 2-2y 0=0,所以,点A 、B 的坐标满足方程x 0x -2y -2y 0=0,所以,直线AB 的方程为x 0x -2y -2y 0=0,联立x 0x -2y -2y 0=0y =x 24,可得x 2-2x 0x +4y 0=0,由韦达定理可得x 1+x 2=2x 0,x 1x 2=4y 0,所以AB =1+x 022⋅x 1+x 2 2-4x 1x 2=1+x 022⋅4x 20-16y 0=x 20+4 x 20-4y 0点P 到直线AB 的距离为d =x 20-4y 0x 20+4,所以,S △PAB =12AB ⋅d =12x 2+4 x 20-4y 0 ⋅x 20-4y 0x 20+4=12x 20-4y 0 32,∵x 20-4y 0=1-y 0+4 2-4y 0=-y 20-12y 0-15=-y 0+6 2+21,由已知可得-5≤y 0≤-3,所以,当y 0=-5时,△PAB 的面积取最大值12×2032=20 5.8.(2022届山西省怀仁市高三上学期期中)已知抛物线C :y 2=2px p >0 的焦点为F ,准线与x 轴交于D 点,过点F 的直线与抛物线C 交于A ,B 两点,且FA ⋅FB =FA +FB .(1)求抛物线C 的方程;(2)设P ,Q 是抛物线C 上的不同两点,且PF ⊥x 轴,直线PQ 与x 轴交于G 点,再在x 轴上截取线段GE =GD ,且点G 介于点E 点D 之间,连接PE ,过点Q 作直线PE 的平行线l ,证明l 是抛物线C 的切线.【解析】(1)解:设过点F 的直线方程为y =k x -p2,A x 1,y 1 ,B x 2,y 2 ,联立y =k x -p2 y 2=2px,得k 2x 2-pk 2+2p x +k 2p 24=0,则x 1+x 2=pk 2+2p k 2,x 1⋅x 2=p 24,所以FA +FB =x 1+p 2+x 2+p 2=2pk 2+2pk2,FA ⋅FB =x 1+p 2 x 2+p 2 =p 22+p 2k 2+2 2k 2,因为FA ⋅FB =FA +FB ,所以2pk 2+2p k 2=p 22+p 2k 2+2 2k 2,化简得p 2-2p 1+1k2=0,所以p =2,当过点F 的直线斜率不存在时,则FA =FB =p ,故FA +FB =2p ,FA ⋅FB =p 2,又因为FA ⋅FB =FA +FB ,则p 2=2p ,所以p =2,综上所述,p =2,所以y 2=4x ;(2)证明:不妨设点P 在第一象限,则P 1,2 ,D -1,0 ,F 1,0 ,设直线PQ 的方程为y -2=m x -1 ,m ≠0,Q x 3,y 3 ,联立y -2=m x -1 y 2=4x ,消元整理得m 24y 2-y -m +2=0,则2+y 3=4m ,即y 3=4-2mm 故x 3=2-m 2m 2,即Q 2-m 2m 2,4-2m m,当y =0时,x =-2m +1,则G -2m+1,0 ,又因GE =GD ,且点G 介于点E 点D 之间,则G 为DE 的中点,所以E -4m+3,0 ,则直线PE 的斜率为24m-2=m2-m ,因为直线PE 平行直线l ,所以直线l 的斜率为m2-m,故直线l 的方程为y -4-2m m =m 2-m x -2-m 2m 2 ,即y =m 2-m x +2-m m ,联立y =m 2-m x +2-mmy 2=4x,消元整理得m 42-my 2-y +2-mm =0,Δ=1-4×m 42-m⋅2-mm =0,所以直线l 与抛物线只有一个交点,有直线l 斜率不为0,所以l 是抛物线C 的切线.9.已知抛物线C :x 2=2py ,点M -4,4 在抛物线C 上,过点M 作抛物线C 的切线,交x 轴于点P ,点O 为坐标原点.(1)求P 点的坐标;(2)点E 的坐标为-2,-1 ,经过点P 的直线交抛物线于A ,B 两点,交线段OM 于点Q ,记EA ,EB ,EQ 的斜率分别为k 1,k 2,k 3,是否存在常数λ使得k 1+k 2=λk 3.若存在,求出λ的值,若不存在,请说明理由.【解析】(1)因为M -4,4 在抛物线C 上,所以-4 2=8p ,所以p =2所以抛物线C 的方程为x 2=4y ,即y =14x 2,则y =12x ,所以切线的斜率为12×(-4)=-2,所以过点M 的切线方程为y =-2x +4 +4,即y =-2x -4联立y =-2x -4y =0,解得P 点的坐标为-2,0(2)由题意可知过点P 的直线的斜率存在,设为y =kx +2k ,线段OM 所在的直线为y =-x ,联立y =kx +2k y =-x,解得Q 点坐标为-2k k +1,2kk +1,所以k 3=2kk +1+1-2k k +1+2=3k +12设A x 1,x 214 ,B x 2,x 224,联立y =kx +2k x 2=4y ,得x 2-4kx -8k =0,所以x 1+x 2=4k ,x 1x 2=-8k .则k 1+k 2=x 214+1x 1+2+x 224+1x 2+2=14x 1x 2x 1+x 2 +x 1+x 2 +12x 21+x 22 +4x 1x 2+2x 1+x 2 +4=-8k 2+4k +1216k 2+16k +4-8k +8k +4=12k +44=3k +1所以k 1+k 2=2k 3,即存在λ=2满足条件.10.如图,已知A x 1,y 1 、B x 2,y 2 为二次函数y =ax 2(a >0)的图像上异于顶点的两个点,曲线y =ax 2在点A x 1,y 1 、B x 2,y 2 处的切线相交于点P x 0,y 0 .(1)利用抛物线的定义证明:曲线y =ax 2上的每一个点都在一条抛物线上,并指出这条抛物线的焦点坐标和准线方程;(2)求证:x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)设抛物线y =ax 2焦点为F ,过P 作PH 垂直准线l ,垂足为H ,求证:∠BPH =∠APF .【解析】(1)证明:令F 0,14a ,直线l :y =-14a,曲线y =ax 2上任意一点P x 0,ax 02,又a >0,则点P x 0,ax 02 到直线l 的距离d =ax 02+14a,则PF =x 02+ax 02-14a 2=x 02+ax 02 2-x 022+14a 2=ax 02 2+x 022+14a 2=ax 02+14a 2=ax 02+14a =ax 02+14a=d ,即曲线y =ax 2上任意一点到点F 0,14a 的距离与到直线l :y =-14a的距离相等,且点F 0,14a 不在直线l :y =-14a上,所以曲线y =ax 2上的每一个点都在一条抛物线上,抛物线的方程即为y =ax 2,焦点坐标为F 0,14a ,准线方程为y =-14a ;(2)解:对于y =ax 2,则y =2ax ,所以y |x =x 1=2ax 1,y |x =x 2=2ax 2,即过点A x 1,y 1 、B x 2,y 2 的切线方程分别为y -y 1=2ax 1x -x 1 、y -y 2=2ax 2x -x 2 ,又y 1=ax 12,y 2=ax 22,所以y =2ax 1x -ax 12、y =2ax 2x -ax 22,由y =2ax 1x -ax 12y =2ax 2x -ax 22 ,解得x =x 1+x22y =ax 2x 1,即P x 1+x 22,ax 2x 1 ,即x 0=x 1+x 22,y 0=ax 2x 1,又y 02=a 2x 22x 12=y 1⋅y 2,所以x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)解:由(2)可知k BP =2ax 2,k AP =2ax 1,F 0,14a ,所以k PF =y 0-14a x 0=ax 2x 1-14a x 1+x 22,如图,设AP ,PF ,PB 与x 轴分别交于点C 、D 、E ,则tan ∠ACx =2ax 1,tan ∠BEx =2ax 2,tan ∠FDx =ax 2x 1-14ax 1+x 22,又∠BPH =π2-π-∠BEx =∠BEx -π2,∠FPA =∠FDx -∠ACx ,所以tan ∠BPH =tan ∠BEx -π2 =-1tan ∠BEx=-12ax 2,tan ∠FPA =tan ∠FDx -∠ACx =tan ∠FDx -tan ∠ACx1+tan ∠FDx tan ∠ACx =ax 2x 1-14ax 1+x 22-2ax 11+ax 2x 1-14ax 1+x 22⋅2ax 1=ax 2x 1-14a-2ax 1⋅x 1+x 22x 1+x 22+ax 2x 1-14a⋅2ax 1=-14a-ax 12x 1+x 22+2a 2x 12x 2-x12=-14a -ax 12x 22+2a 2x 12x 2=-14a -ax 1212x 2+4a 2x 12x 2 =-1+4a 2x 122ax 21++4a 2x 12=-12ax 2,即tan ∠BPH =tan ∠FPA ,所以∠BPH =∠FPA ;11.已知抛物线x 2=2py (p >0)上的任意一点到P (0,1)的距离比到x 轴的距离大1.(1)求抛物线的方程;(2)若过点(0,2)的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的切线,两条切线交于点Q ,求△QAB 重心G 的轨迹方程.【解析】(1)由抛物线的定义可得p =2,∴抛物线的方程为x 2=4y ;(2)由题意可得直线AB 的斜率存在,设其为k ,设A x 1,y 1 ,B x 2,y 2 ,则直线AB 的方程为y =kx +2;代入抛物线方程得x 2-4kx -8=0,则有x 1+x 2=4k ,x 1x 2=-8,∵y =x 24,∴y=x 2,∴l AQ :y -y 1=x 12x -x 1 ,即y =x 12x -x 214①同理可得l BQ :y =x 22x -x 224②,①-②有x 1-x 22 x =x 21-x 224,得x Q =x 1+x 22=2k ,∴y Q=kx 1-x 214=kx 1-y 1=-2.∴Q (2k ,-2)又y 1+y 2=k x 1+x 2 +4=4k 2+4,设G (x ,y ),则x =x 1+x 2+x Q3=2k y =y 1+y 2+y Q 3=4k 2+23,消k 得y =x 2+23,所以G 的轨迹方程为y =13x 2+23.12.已知抛物线C :x 2=2py p >0 的焦点为F ,点P -2,y 0 为抛物线上一点,抛物线C 在点P 处的切线与y 轴相交于点Q ,且△FPQ 的面积为2.(1)求抛物线的方程.(2)若斜率不为0的直线l 过焦点F ,且交抛物线C 于A ,B 两点,线段AB 的中垂线与y 轴交于点M ,证明:MF AB为定值.【解析】(1)将P -2,y 0 代入x 2=2py 得,y 0=2p 设抛物线的切线方程为y =k (x +2)+2p,代入x 2=2py 整理得:x 2-2pkx -(4pk +4)=0由题知Δ=4p 2k 2+4pk +4=0,解得k =-2p又y Q =2k +2p ,所以FQ =p 2-2k -2p 所以S △FPQ =p 2-2k -2p =p 2+2p=2,解得p =2所以抛物线C 的方程为x 2=4y (2)记AB 中点为N ,A (x 1,y 1),B (x 2,y 2),N (x 3,y 3)设直线AB 方程为y =mx +1,代入x 2=4y 整理得:x 2-4mx -4=0,则x 1+x 2=4m ,x 1x 2=-4所以AB =m 2+1(x 1+x 2)2-4x 1x 2=4(m 2+1)因为N 为AB 中点,所以x 3=x 1+x22=2m ,y 3=2m 2+1所以直线MN 的方程为y -(2m 2+1)=-1m(x -2m )则y M =2m 2+3所以MF =2m 2+2所以MF AB =2m 2+24(m 2+1)=1213.(2022届新未来4月联考)已知直线l :x -ky +k -1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,过A ,B 两点且与抛物线C 相切的两条直线相交于点D ,当直线l ⊥x 轴时,|AB |=4.(1)求抛物线C 的标准方程;(2)求|OD |的最小值.【解析】(1)当直线l ⊥x 轴时,x =1,代入y 2=2px 解得y =±2p ,∴|AB |=22p =4,得p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设A x A ,y A ,B x B ,y B ,D x D ,y D .联立x -ky +k -1=0,y 2=4x ,得y 2-4ky +4k -4=0.∴y A +y B =4k ,y A ⋅y B =4k -4①,∵直线l :x -ky +k -1=0恒过点(1,1),且与抛物线有两个交点,点(1,1)在抛物线上,∴k ≠0,当直线AD 和直线BD 斜率存在时,设直线AD :y =mx +n ,联立y =mx +n ,y 2=4x ,∴my 2-4y +4n =0,Δ=16-4m ⋅4n =0,∴m ⋅n =1,∴y A =2m ,同理,设直线BD :y =ax +b ,则ab =1,y B =2a,联立y =mx +n ,y =ax +b , ∴x D =1am ,y D=1a+1m . 由①可知2m +2a =4k ,2m ⋅2a =4k -4,∴1m +1a -2ma=2,即y D -2x D =2,∴点D 在直线2x -y +2=0上.当直线AD 或直线BD 斜率不存在时,即直线l 过原点时,k =1,过原点的切线方程为x =0,易知另外一点为(4,4),过点(4,4)的切线方程设为x -4=t (y -4),联立x -4=t (y -4)y 2=4x,得y 2-4ty +16t -16=0,Δ=16t 2-416t -16 =0,解得t =2,即切线方程y =12x +2.此时交点D 的坐标为(0,2),在直线2x -y +2=0上,故OD 的最小值为原点到直线2x -y +2=0的距离,即25=255.14.过原点O 的直线与拋物线C :y 2=2px (p >0)交于点A ,线段OA 的中点为M ,又点P 3p ,0 ,PM ⊥OA .在下面给出的三个条件中任选一个填在横线处,并解答下列问题:①OA =46,②PM =23;③△POM 的面积为62.(1),求拋物线C 的方程;(2)在(1)的条件下,过y 轴上的动点B 作拋物线C 的切线,切点为Q (不与原点O 重合),过点B 作直线l 与OQ 垂直,求证:直线l 过定点.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)由题意知直线OA 的斜率存在且不为0,设其方程为y =kx k ≠0 ,由y 2=2px ,y =kx得x =0,y =0 或x =2pk 2,y =2p k,即O 0,0 ,A2p k 2,2pk所以线段OA 的中点Mp k 2,p k.因为PM ⊥OA ,所以直线PM 的斜率存在,k PM =p k p k 2-3p=k1-3k 2.所以k 1-3k 2⋅k =-1,解得k =±22,所以直线OA 的方程为x ±2y =0,A 4p ,±22p .若选①,不妨令A 4p ,22p ,由OA =46,得4p2+22p 2=46,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选②,因为PM ⊥OA ,PM =23,所以点P 到直线OA 的距离为23,即3p12+±22=23,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选③,不妨令A 4p ,22p ,因为OM =12OA =124p 2+22p 2=6p ,点P 到直线OA 的距离PM =3p12+±22=3p ,所以S △POM =12OM ⋅PM =12×6p ×3p =62,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .(2)由题意可知切线BQ 的斜率存在且不为0.设B 0,b b ≠0 ,切线BQ 的方程为y =k 1x +b ,由y =k 1x +b ,y 2=4x得k 1y 2-4y +4b =0,(*)所以Δ=-4 2-4×k 1×4b =0,解得k 1=1b,所以方程(*)的根为y =2b ,代入y 2=4x 得x =b 2,所以切点b 2,2b ,于是k OQ =2b b2=2b ,则k l =-b2,所以直线l 的方程为y =-b 2x +b ,即y =-b2x -2 ,所以当b 变化时,直线l 恒过定点2,0 .15.已知抛物线x 2=2py (y >0),其焦点为F ,抛物线上有相异两点A x 1,y 1 ,B x 2,y 2 .(1)若AF ⎳x 轴,且经过点A 的抛物线的切线经过点(1,0),求抛物线方程;(2)若p =2,且|AF |+|BF |=4,线段AB 的中垂线交x 轴于点C ,求△ABC 面积的最大值.【解析】(1)抛物线x 2=2py (y >0),焦点坐标为0,p 2 ,因为AF ⎳x ,所以y A =p2,所以x A =p ,又y =x 22p ,所以y =xp ,所以过A 点的切线的斜率k =1,所以切线方程为y -p 2=x -p ,令y =0得x =p 2=1,所以p =2,所以x 2=4y(2)若p =2,则抛物线为x 2=4y ,焦点为0,1 ,准线方程为y =-1,因为|AF |+|BF |=4,所以y A +1+y B +1=4,所以y A +y B =2,设直线AB 的方程为y =kx +m ,联立x 2=4y 得x 2-4kx -4m =0,Δ=16k 2+16m >0所以x 1+x 2=4k ,x 1x 2=-4m ,所以y 1+y 2=kx 1+kx 2+2m =4k 2+2m =2,即m =1-2k 2,所以Δ=16k 2+161-2k 2 >0,解得-1<k <1,当k =0时,直线方程为y =1,则A 2,0 ,B -2,0 ,所以AB 的中垂线恰为y 轴,则C 0,0 ,所以S △ABC =12×4×1=2,当-1<k <1,且k ≠0时,又AB 的中点坐标为x 1+x 22,y 1+y 22 =2k ,1 ,所以AB 的中垂线l 的方程为y =-1kx -2k +1,令y =0得x =3k ,所以C 3k ,0 ,所以C 到AB 的距离d =3k 2+m k 2+1,又AB =k 2+116k 2+16m ,所以S △ABC =12AB d =2k 2+m ×3k 2+m =21-k 2×1+k 2 =21-k 2 1+k 2 2令1-k 2=t ,则t ∈0,1 ,f t =t 2-t 2=t 3-4t 2+4t ,因为f t =3t 2-8t +4=t -2 3t -2 ,所以当t ∈0,23 时f t >0,f t 在0,23 上单调递增,当t ∈23,1 时f t <0,f t 在23,1 上单调递减,所以f t max=f23=3227所以S△ABCmax=23227=869>2所以S△ABCmax=86 916.设抛物线C:x2=2py(p>0)的焦点为F,点P m,2(m>0)在抛物线C上,且满足PF=3.(1)求抛物线C的标准方程;(2)过点G0,4的直线l与抛物线C交于A,B两点,分别以A,B为切点的抛物线C的两条切线交于点Q,求三角形PQG周长的最小值.【解析】(1)由抛物线定义,得PF=2+p2=3,得p=2,∴抛物线C的标准方程为x2=4y;(2)设A x1,y1,B x2,y2,直线l的方程为y=kx+4,∴联立y=kx+4x2=4y,消掉x,得x2-4kx-16=0,Δ>0,∴x1+x2=4k,x1x2=-16,设A,B处的切线斜率分别为k1,k2,则k1=x12,k2=x22,∴在点A的切线方程为y-y1=x12x-x1,即y=x1x2-x124①,同理,在B的切线方程为y=x2x2-x224②,由①②得:x Q=x1+x22=2k,代入①或②中可得:y Q=kx1-x214=y1-4-y1=-4,∴Q2k,-4,即Q在定直线y=-4上,设点G关于直线y=-4的对称点为G ,则G 0,-12,由(1)知P22,2,∵PQ+GQ=PQ+G Q≥G P=251,即P,Q,G 三点共线时等号成立,∴三角形PQG周长最小值为GP+G P=251+23.17.已知圆C:x2+y-22=1与定直线l:y=-1,且动圆M与圆C外切并与直线l相切.(1)求动圆圆心M的轨迹E的方程;(2)已知点P是直线l1:y=-2上一个动点,过点P作轨迹E的两条切线,切点分别为A、B.①求证:直线AB过定点;②求证:∠PCA=∠PCB.【解析】(1)依题意知:M到C0,2的距离等于M到直线y=-2的距离,∴动点M的轨迹是以C为焦点,直线y=-2为准线的抛物线,设抛物线方程为x2=2py p>0,则p2=2,则p=4,即抛物线的方程为x2=8y,故:动圆圆心M的轨迹E的方程为:x2=8y;(2)①由x2=8y得:y=18x2,∴y =14x,设A x1,1 8 x21、B x2,18x22,P t,-2,其中x1≠x2,则切线PA的方程为y-18x21=x14x-x1,即y=14x1x-18x21,同理,切线PB 的方程为y =14x 2x -18x 22,由y =14x 1x -18x 21y =14x 2x -18x22,解得x =x 1+x 22y =x 1x 28,∴t =x 1+x 22-2=x 1x28,即x 1+x 2=2t x 1x 2=-16,∵A x 1,18x 21 、B x 2,18x 22 x 1≠x 2 ,∴直线AB 的方程为y -18x 21=18x 22-18x 21x 2-x 1x -x 1 ,化简得y =x 1+x 28x -x 1x 28,即y =t4x +2,故直线AB 过定点0,2 ;②由①知:直线AB 的斜率为k AB =t4,(i )当直线PC 的斜率不存在时,直线AB 的方程为y =2,∴PC ⊥AB ,∴∠PCA =∠PCB ;(ii )当直线PC 的斜率存在时,∵P t ,-2 、C 0,2 ,∴直线PC 的斜率k PC =-2-2t -0=-4t ,∴k AB ⋅k PC =t 4×-4t=-1,∴PC ⊥AB ,∴∠PCA =∠PCB .综上所述:∠PCA =∠PCB 得证.18.设抛物线C :x 2=2py p >0 ,其焦点为F ,准线为l ,点P 为C 上的一点,过点P 作直线l 的垂线,垂足为M ,且MF =FP ,FM ⋅FP=2.(1)求抛物线C 的方程;(2)设点Q 为C 外的一点且Q 点不在坐标轴上,过点Q 作抛物线C 的两条切线,切点分别为A ,B ,过点Q 作y 轴的垂线,垂足为S ,连接AS ,BS ,证明:直线AS 与直线BS 关于y 轴对称.【解析】(1)∵PM =PF =FM ,∴△PFM 为等边三角形,∴∠FMP =∠PFM =60°,又FM ⋅FP=FM ⋅FP cos ∠PFM =FM 2cos60°=2,∴FM =2设直线l 交y 轴于N 点,则在Rt △MNF 中∠NMF =30°,NF =1=p ,∴C 的方程为x 2=2y(2)设点Q a ,b a ≠0,b ≠0 ,A x 1,y 1 ,B x 2,y 2 ,又C 的方程为x 2=2y 可化为y =x 22,∴y =x所以过点A 且与C 相切的直线的斜率为x 1,过点B 且与C 相切的直线的斜率为x 2,所以直线QA 的方程为y -y 1=x 1x -x 1 ,直线QB 的方程为y -y 2=x 2x -x 2 .又直线QA 与QB 均过点Q ,b -y 1=x 1a -x 1 ,b -y 2=x 2a -x 2 ,又x 21=2y 1,x 22=2y 2,∴y 1=ax 1-b ,y 2=ax 2-b ,所以直线AB 的方程为y =ax -b ,联立方程y =ax -b 和x 2=2y 得方程组x 2=2y ,y =ax -b ,消去y 得x 2-2ax +2b =0,∵b ≠0,∴x 1≠0,x 2≠0,∵x 1x 2=2b ,又S 0,b ,则直线AS 的斜率k 1=y 1-b x 1;直线BS 的斜率k 2=y 2-bx 2,∴k 1+k 2=x 1+x 2 x 1x22-b x 1x 2,∵x1x22-b=0,∴k1+k2=0,所以直线AS与直线BS关于y轴对称.。
2.3抛__物__线2.3.1抛物线的定义与标准方程[读教材·填要点]1.抛物线的定义平面上到一定点F和定直线l(F∉l)距离相等的点的轨迹叫作抛物线.定点F叫作抛物线的焦点,定直线l叫作抛物线的准线.2.抛物线的标准方程[小问题·大思维]1.在抛物线定义中,若去掉条件“F∉l”,点的轨迹还是抛物线吗?提示:不一定是抛物线.当直线l经过点F时,点的轨迹是过定点F且垂直于定直线l 的一条直线;l不经过点F时,点的轨迹是抛物线.2.到定点A(3,0)和定直线l:x=-3距离相等的点的轨迹是什么?轨迹方程又是什么?提示:轨迹是抛物线,轨迹方程为:y2=12x.3.若抛物线的焦点坐标为(2,0),则它的标准方程是什么?提示:由焦点在x轴正半轴上,设抛物线的标准方程为y2=2px(p>0),其焦点坐标为⎝⎛⎭⎫p 2,0, 则p2=2,故p =4. 所以抛物线的标准方程是y 2=8x .求满足下列条件的抛物线的标准方程.(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.[自主解答] (1)当抛物线的焦点在x 轴上时, 可设抛物线方程为y 2=-2px (p >0), 把点(-3,2)代入得22=-2p ×(-3),∴p =23.∴所求抛物线方程为y 2=-43x .当抛物线的焦点在y 轴上时, 可设抛物线方程为x 2=2py (p >0), 把(-3,2)代入得(-3)2=2p ×2, ∴p =94.∴所求抛物线方程为x 2=92y .综上,所求抛物线的方程为y 2=-43x 或x 2=92y .(2)直线x -2y -4=0与x 轴的交点为(4,0),与y 轴的交点为(0,-2),故抛物线焦点为(4,0)或(0,-2), 当焦点为(4,0)时,设抛物线方程为y 2=2px (p >0), ∵p2=4,∴p =8,∴抛物线方程为y 2=16x , 当焦点为(0,-2)时,设抛物线方程为x 2=-2py (p >0), ∵-p2=-2,∴p =4,∴抛物线方程为x 2=-8y ,综上,所求抛物线方程为y 2=16x 或x 2=-8y .若把本例(2)中的“焦点”改为“准线与坐标轴的交点”,如何求解? 解:直线x -2y -4=0与x 轴的交点是(4,0),与y 轴的交点是(0,-2), 则抛物线的准线方程为x =4或y =-2.当准线方程为x =4时,可设方程为y 2=-2px , 则p2=4,∴p =8,∴抛物线方程为y 2=-16x . 当准线方程为y =-2时,可设方程为x 2=2py , 则-p2=-2,∴p =4,∴抛物线方程为x 2=8y . 综上,抛物线的标准方程为y 2=-16x 或x 2=8y .求抛物线标准方程的方法(1)当焦点位置确定时,可利用待定系数法,设出抛物线的标准方程,由已知条件建立关于参数p 的方程,求出p 的值,进而写出抛物线的标准方程.(2)当焦点位置不确定时,可设抛物线的方程为y 2=mx 或x 2=ny ,利用已知条件求出m ,n 的值.1.若抛物线y 2=2px 的焦点坐标为(1,0),则p =______,准线方程为________. 解析:因为抛物线的焦点坐标为(1,0),所以p 2=1,p =2,准线方程为x =-p2=-1.答案:2 x =-12.抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5,求抛物线的标准方程.解:设所求焦点在x 轴上的抛物线的标准方程为y 2=2ax (a ≠0),点A (m ,-3). 由抛物线的定义得|AF |=⎪⎪⎪⎪m +a2 =5, 又(-3)2=2am ,∴a =±1或a =±9.∴所求抛物线的标准方程为y 2=±2x 或y 2=±18x .根据下列抛物线方程,分别求出其焦点坐标和准线方程.(1)y 2=-4x ;(2)2y 2-x =0.[自主解答] (1)∵y 2=-4x ,∴抛物线的焦点在x 轴的负半轴上,又2p =4,∴p =2.∴焦点坐标为(-1,0),准线方程为x =1. (2)由2y 2-x =0,得y 2=12x .∴抛物线的焦点在x 轴的正半轴上, 又2p =12,∴p =14∴焦点坐标为⎝⎛⎭⎫18,0,准线方程为x =-18.此类问题是抛物线标准方程的应用,一是要理解抛物线标准方程的结构形式,二是要理解p 的几何意义,三是要注意焦点与坐标准线方程之间的关系.步骤:①化为标准方程;②明确开口方向;③求p 值;④写焦点坐标和准线方程.3.求下列抛物线的焦点坐标和准线方程: (1)y =-18x 2;(2)x 2=ay (a ≠0).解:(1)将抛物线方程y =-18x 2变形为x 2=-8y ,所以抛物线的焦点在y 轴的负半轴上,又2p =8,所以p =4.所以焦点坐标为(0,-2),准线方程为y =2.(2)当a >0时,抛物线的焦点在y 轴的正半轴上,又2p =a ,所以焦点坐标为⎝⎛⎭⎫0,a 4 ,准线方程为y =-a4;当a <0时,抛物线的焦点在y 轴的负半轴上,又2p =-a ,所以焦点坐标为⎝⎛⎭⎫0,a4 ,准线方程为y =-a4.综上,抛物线焦点坐标为⎝⎛⎭⎫0,a 4 ,准线方程为y =-a 4.抛物线定义的应用已知点P 是抛物线y 2=2x 上的一个动点,求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值.[自主解答] 由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知,点P ,点(0,2),和抛物线的焦点⎝⎛⎭⎫12,0三点共线时距离之和最小.所以最小距离d =⎝⎛⎭⎫0-122+(2-0)2=172.本例中若将点(0,2)改为点A (3,2),F 为抛物线的焦点,求|PA |+|PF |的最小值.解:将x =3代入y 2=2x , ∴y =±6.∴A 在抛物线内部.设P 为其上一点,P 到准线(设为l )x =-12的距离为d .则|PA |+|PF |=|PA |+d .由图可知,当PA ⊥l 时,|PA |+d 最小,最小值是72.即|PA |+|PF |的最小值是72.解此类最值、定值问题时,首先要注意抛物线定义的转化应用,其次是注意平面几何知识的应用,例如两点之间线段最短,三角形中三边之间的不等关系,点与直线的连线中垂线段最短等.4.已知抛物线的方程为x 2=8y ,F 是焦点,点A (-2,4),在此抛物线上求一点P ,使|PF |+|PA |的值最小.解:∵(-2)2<4×8,∴点A (-2,4)在抛物线x 2=8y 内部.如图,抛物线的准线为l ,过P 作P Q ⊥l 于Q ,过A 作AB ⊥l 于B ,由抛物线的定义可知|PF |+|PA |=|P Q |+|PA |≥|A Q |≥|AB |, 当且仅当A ,P ,Q 三点共线时, |PF |+|PA |的值最小,最小值为|AB |, ∵A (-2,4),∴|PF |+|PA |最小时点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12,故当点P 的坐标为⎝⎛⎭⎫-2,12时,|PF |+|PA |的值最小.解题高手 多解题 条条大路通罗马,换一个思路试一试已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.[解] 法一:设所求抛物线方程为x 2=-2py (p >0), 则焦点坐标为F ⎝⎛⎭⎫0,-p 2. ∵M (m ,-3)在抛物线上,且|MF |=5, 故⎩⎪⎨⎪⎧m 2=6p , m 2+⎝⎛⎭⎫-3+p 22=5,解得⎩⎨⎧p =4,m =±2 6.∴抛物线方程为x 2=-8y ,m =±26, 准线方程为y =2.法二:如图所示,设抛物线方程为 x 2=-2py (p >0),则焦点F ⎝⎛⎭⎫0,-p 2,准线l :y =p 2, 又|MF |=5, 由定义知3+p2=5,∴p =4.∴抛物线方程为x 2=-8y ,准线方程为y =2. 由m 2=(-8)×(-3),得m =±2 6.[点评] 抛物线的标准方程只有一个待定系数,故求抛物线的标准方程时, 应设法建立参数p 的关系式.还要注意抛物线上的点到焦点的距离和到准线的距离的相互转化.1.焦点是F (0,5)的抛物线的标准方程是( )A .y 2=20xB .x 2=20yC .y 2=120xD .x 2=120y 解析:由5=p2得p =10,且焦点在y 轴正半轴上,故方程形式为x 2=2py ,所以x 2=20y .答案:B2.过抛物线x 2=4y 的焦点F 作直线l 交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( )A .5B .6C .8D .10解析:由抛物线的定义知|P 1P 2|=y 1+y 2+p =6+2=8. 答案:C3.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=-4x C .y 2=8xD .y 2=4x解析:显然由准线方程x =-2,可知抛物线为焦点在x 轴正半轴上的标准方程,同时得p =4,所以标准方程为y 2=2px =8x .答案:C4.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 解析:由x 2+y 2-6x -7=0,得(x -3)2+y 2=16, ∴x =-p2=-1,即p =2.答案:25.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为________.解析:由双曲线方程x 216-y 29=1,可知其焦点在x 轴上,由a 2=16,得a =4, ∴该双曲线右顶点的坐标是(4,0).∴抛物线的焦点为F (4,0).设抛物线的标准方程为y 2=2px (p >0),则由p2=4,得p =8,故所求抛物线的标准方程为y 2=16x . 答案:y 2=16x6.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线方程和M 点的坐标.解:由抛物线定义,设焦点为F ⎝⎛⎭⎫-p2,0.则准线为x =p2,M 到准线的距离为d ,则d =|MF |=10.则p2-(-9)=10,∴p =2.故抛物线方程为y 2=-4x .将M (-9,y )代入抛物线方程得y =±6. ∴M (-9,6)或M (-9,-6).一、选择题1.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148D.124解析:将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148.答案:C 2.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4 解析:椭圆右焦点为(2,0),∴p2=2.∴p =4.答案:D3.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74解析:根据抛物线定义与梯形中位线定理,得线段AB 中点到y 轴的距离为12(|AF |+|BF |)-14=32-14=54. 答案:C4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y解析:双曲线的渐近线方程为y =±ba x ,由于c a =a 2+b 2a 2= 1+⎝⎛⎭⎫b a 2=2,所以b a =3,所以双曲线的渐近线方程为y =±3x .抛物线的焦点坐标为⎝⎛⎭⎫0,p2,所以p22=2,所以p =8,所以抛物线方程为x 2=16y .答案:D 二、填空题5.若抛物线y 2=8x 上的一点P 到其焦点的距离为10,则P 点的坐标为________. 解析:设P (x P ,y P ),∵点P 到焦点的距离等于它到准线x =-2的距离,∴x P =8,y P=±8.故P 点坐标为(8,±8).答案:(8,±8)6.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点________.解析:动圆恒与直线x +2=0相切,则动圆必过焦点,焦点坐标为(2,0). 答案:(2,0)7.已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为________.解析:如图,过点Q 作Q A 垂直准线l ,垂足为A ,则Q A 与抛物线的交点即为P 点.易求P ⎝⎛⎭⎫14,-1. 答案:⎝⎛⎭⎫14,-18.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=________.解析:如图,由直线AF 的斜率为-3,得∠AFH =60°,∠FAH =30°,∴∠PAF =60°. 又由抛物线的定义知|PA |=|PF |, ∴△PAF 为等边三角形. 由|HF |=4得|AF |=8,∴|PF |=8. 答案:8三、解答题9.求以原点为顶点,坐标轴为对称轴,并且经过P (-2,-4)的抛物线的标准方程及其对应的准线、焦点坐标.解:由已知设抛物线的标准方程是x 2=-2py ,(p >0)或y 2=-2px (p >0), 把P (-2,-4)代入x 2=-2py 或y 2=-2px 得 p =12或p =4, 故所求的抛物线的标准方程是x 2=-y 或y 2=-8x . 当抛物线方程是x 2=-y 时,焦点坐标是F ⎝⎛⎭⎫0,-14,准线方程是y =14. 当抛物线方程是y 2=-8x 时,焦点坐标是F (-2,0),准线方程是x =2.10.设P 是抛物线y 2=4x 上的一个动点,F 为抛物线的焦点. (1)若点P 到直线x =-1的距离为d ,A (-1,1),求|PA |+d 的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.解:(1)依题意,抛物线的焦点为F (1,0),准线方程为x =-1. 由抛物线的定义,知|PF |=d ,于是问题转化为求|PA |+|PF |的最小值.如图,连接AF ,交抛物线于点P ,则最小值为22+12= 5. (2)把点B 的横坐标代入y 2=4x 中,得y =±12, 因为12>2,所以点B 在抛物线内部.自点B 作B Q 垂直准线于点Q ,交抛物线于点P 1(如图). 由抛物线的定义,知|P 1Q |=|P 1F |, 则|PB |+|PF |≥|P 1B |+|P 1Q |=|B Q |=3+1=4. 即|PB |+|PF |的最小值为4.。
高中数学 4.1.2 问题探索——求作抛物线的切线同步精练 湘教版选修
2-2
1.若f (x )=3x ,则f (x )在x =1处的切线的斜率是( ).
A .0
B .1
C .2
D .3
2.设曲线y =ax 2
在点(1,a )处的切线与直线2x -y -6=0平行,则a 的值是( ).
A .1
B .12
C .-12
D .-1 3.过点P (2,5)的曲线y =x 2+1的切线方程是( ).
A .x -4y -3=0
B .4x -y -3=0
C .3x -y -4=0
D .x -y -3=0
4.双曲线y =1x 在点P ⎝ ⎛⎭
⎪⎫12,2处的切线方程是( ). A .4x +y +4=0 B .x +4y +4=0
C .4x +y -4=0
D .x +4y -4=0
5.过点Q (3,5),且与曲线y =x 2相切的直线方程是( ).
A .y =2x -1或y =10x -25
B .y =2x -1
C .y =10x -25
D .y =2x +1或y =10x +25
6.抛物线f (x )=x 2+3x 在点A (2,10)处的切线斜率k 是________.
7.曲线f (x )=x 3在点P (2,8)处的切线方程是______.
8.点P 是抛物线y =x 2上一点,若过点P 的切线与直线y =-12
x +1垂直,则切线方程是____________.
9.已知抛物线y =x 2+4与直线y =x +10,求:
(1)它们的交点;
(2)抛物线在交点处的切线方程.
10.已知曲线C :y =x 3.
(1)求曲线C 上横坐标为1的点处的切线方程.
(2)第(1)问中的切线与曲线C是否还有其他的公共点?
参考答案
1.D d 趋于0时,3(1+d )-3d
趋于3. 2.A 设f (x )=ax 2
,则f (1+d )-f (1)d =a (1+d )2-a d =da +2a . 当d 趋于0时,da +2a 趋于2a ,∴2a =2,
∴a =1.
3.B ∵点P (2,5)在抛物线y =x 2
+1上,
∴(2+d )2+1-22-1d
=d +4, ∴当d 趋于0时,d +4趋于4,
∴所求切线的方程是y -5=4(x -2),
即4x -y -3=0.
4.C ∵点P ⎝ ⎛⎭
⎪⎫12,2在双曲线y =1x 上, ∴1
12+d -
1
12d =-41+2d , ∴当d 趋于0时,-41+2d 趋于-4, ∴切线方程为y -2=-4⎝ ⎛⎭
⎪⎫x -12,即4x +y -4=0. 5.A ∵Q (3,5)不在抛物线y =x 2
上,
∴设所求切线的切点为A (x 0,x 20).
又(x 0+d )2-x 20d
=2x 0+d , ∴当d 趋于0时,2x 0+d 趋于2x 0,
∴x 2
0-5x 0-3
=2x 0,∴x 0=1或x 0=5. ∴A (1,1)或A (5,25).
∴所求切线的斜率为2或10,所求切线的方程是y -1=2(x -1)或y -25=10(x -5),
即y =2x -1或y =10x -25.
6.7 ∵A (2,10)在抛物线f (x )=x 2
+3x 上, ∴f (2+d )-f (2)d =(2+d )2+3(2+d )-10d
=7+d ,
当d 趋于0时,7+d 趋于7.∴k =7.
7.y =12x -16 ∵P (2,8)在曲线f (x )=x 3
上, ∴f (2+d )-f (2)d =(2+d )3-23d
=12+6d +d 2. ∴当d 趋于0时,12+6d +d 2趋于12,
∴切线方程为y -8=12(x -2),即y =12x -16.
8.y =2x -1 设P (x 0,x 2
0),则(x 0+d )2-x 20d
=2x 0+d , ∴当d 趋于0时,2x 0+d 趋于2x 0.
又切线与直线y =-12
x +1垂直, ∴2x 0×(-12
)=-1,∴x 0=1. ∴P (1,1),k =2,∴过点P 的切线方程是y -1=2(x -1),即y =2x -1.
9.解:(1)由⎩⎪⎨⎪⎧ y =x 2+4,y =x +10,得x 2+4=10+x ,即x 2
-x -6=0. ∴x =-2或x =3.代入直线的方程得y =8或y =13,
∴抛物线与直线的交点坐标为(-2,8)和(3,13).
(2)设抛物线上任意一点M (x ,x 2+4),再另任取一点N (x +d ,(x +d )2
+4)(d ≠0).则k MN =(x +d )2+4-(x 2+4)d
=2x +d . 当d 趋于0时,k MN 趋于2x ,即在点M (x ,x 2
+4)处的切线斜率为2x .
∴在点(-2,8)处的切线的斜率为-4,在点(3,13)处的切线的斜率为6.
∴切线方程为y -8=-4(x +2)和y -13=6(x -3),即4x +y =0和6x -y -5=0.
10.解:(1)将x =1代入y =x 3得y =1,∴切点为P (1,1).又(1+d )3-13d
=3+3d +d 2,∴当d 趋于0时,3+3d +d 2趋于3,∴k =3,∴在点P 处的切线方程为y -1=3(x -1),即3x -y -2=0.
(2)由⎩⎪⎨⎪⎧ y =x 3,3x -y -2=0,得x 1=1,x 2=-2,∴公共点为P 1(1,1),P 2(-2,-8),说明切线与曲线C 的公共点除了切点P 1(1,1)外,还有另外的一点P 2(-2,-8).。