(c)满足缔合性: Cˆ2σˆvσˆv Cˆ2σˆv σˆv σˆvσˆv Eˆ
Cˆ2σˆvσˆv Cˆ2 σˆvσˆv Cˆ2Cˆ2 Eˆ
(d)有逆元素: Cˆ21 Cˆ2 ,σˆv1 σˆv ,
0.0
22
(2) 群的乘法表
假若有一个有限群的h个元素的完全而不重复的名单,并
作时分子中至少有一点不动;(2) 分子的全部对称元
素至少通过一个公共点。 0.0
19
以H2O为例来说明: H2O分子的对称操作的完全集合为
G Eˆ,Cˆ2 ,σˆV ,σˆV
0.0
20
Cˆ 2
σv
C2
σˆ v σ v
σˆ v
σ v
0.0
21
(a)满足封闭性:如:Cˆ2σˆv σˆv
(b)有恒等元素:恒等操作 Eˆ
的夹角的对称面;
0.0
9
(2) 对称面和反映
H2O
σv
C2
0.0
σv
10
C2轴
主轴C4轴 σd σh
C2轴
0.0
11
C2(z)
d'
d
C2(x)
C2(y)
0.0
12
(3) 对称中心和反演
分子中若存在一点,将每个原子通过这一点引连线 并延长到反方向等距离处而使分子复原,这一点就是对 称中心 i ,这种操作就是反演.
一个偶数次的旋转轴C2n可以产生2n个对称操作:
Cˆ2n ,Cˆ22n ,Cˆ23n ,,Cˆ2nn ,,Cˆ22nn1 ,Cˆ22nn E
而
Cˆ
n 2n
n 0.220πn
2π 2
Cˆ 2
29
x, y, z