36 分子的对称性和点群表示 点群表示
- 格式:pdf
- 大小:595.56 KB
- 文档页数:30
分子的对称性与点群摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。
分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。
例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。
关键词:对称性点群对称操作一.对称操作与点群如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。
一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。
描述分子的对称性时,常用到“点群”的概念。
所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
而全部对称元素的集合构成对称元素系。
每个点群具有一个持定的符号。
一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。
二.分子中的对称元素和对称操作2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
作分别用E、 E^表示。
这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。
2.2旋转轴和旋转操作分别用C n、C^n表示。
如果一个分子沿着某一轴旋转角度α能使分子复原,则该分子具有轴C n,α是使分子复原所旋转的最小角度,若一个分子中存在着几个旋转轴,则轴次高的为主轴(放在竖直位置),其余的为副轴。
分子沿顺时针方向绕某轴旋转角度α,α=360°/n (n=360°/α(n=1,2,3……)能使其构型成为等价构型或复原,即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分子具有 n 次对称轴。
n是使分子完全复原所旋转的次数,即为旋转轴的轴次,对应于次轴的对称操作有n个。
C n n=E﹙上标n表示操作的次数,下同﹚。
如NH3 (见图 1)旋转 2π/3 等价于旋转 2π (复原),基转角α=360°/n C3 - 三重轴;再如平面 BF3 分子,具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以上的旋转轴,则轴次最高的为主轴。
第四章 分子的对称性§4.1 对称性操作和对称元素§ <1>分子对称性概念原子组成分子构成有限的图形,具有对称性。
与晶体的对称性不同。
晶体的主要对称性是点阵结构,而分子的对称性主要是指分子骨架在空间的对称性以及分子轨道(波函数)的对称性。
○1分子对称性:指分子的几何图形(原子骨架和原子、分子轨道空间形状)中有相互等同的部分,而这些等同部分互相交换以后,与原来的状态相比,不发生可辨别的变化,即交换前后图形复原。
○2对称操作:不改变物体内部任何两点间的距离,使图形完全复原的一次或连续几次的操作。
(借助于一定几何实体)○3对称元素:对图形进行对称操作,所依赖的几何要素,如:点,线,面及其组合。
<2>对称元素及相应的对称操作○1恒等元素和恒等操作,(E ) ΛE 所有分子图形都具有。
○2旋转轴(对称轴)和旋转操作,Λn n C C ,;对称轴是一条特定的直线。
绕该线按一定方向(逆时针方向为正方面)进行一个角度θ旋转,nπθ2=如:H 2O : πθ21==n 。
分子中可能有 n 个对称轴,其中n 最大的称为主轴,其它称为非主轴,如:BF 3 ,主轴C 3 ,三个C 2垂直于C 3 与分子平面平行。
n C 将产生n 个旋转操作:E =-nn n n n n C C C C ,,,,12逆时旋转为正操作,k n C ;顺时旋转为逆操作,k n C -。
)(k n nk n C C --= 分子图形完全复原的最少次数称操作周期,旋转操作的周期为 n ;分子中,nC的轴次不受限制,n 为任意整数。
如: E =→332333,,C C C C○3对称和反映操作。
Λσσ, :对称面是一个特定的镜面,把分子图形分成两个完全相等的对称部分,两部分之间互为镜中映像,对称操作是镜面的一个反映。
图形中相等的部分互相交换位置,其反映的周期为2。
E =Λ2σ。
对称面可分为:v σ面:包含主轴; h σ面:垂直于主轴;d σ面:包含主轴且平分相邻'2C 轴的夹角(或两个v σ之间的夹角)。