规则三. 点群中不可约表示特征标间的正交关系:
k
hjr(Rj)*s(Rj)nrs
j1
对不可约表示: ( R ) 2 n
或
R
k 为群中所有共轭类的数目;
hj 为共轭类j中的群元素个数.
k
hj
(Rj)2
n
j1
对可约表示:
(R)2 n
R
如 D3 群在直角坐标系下的表示
A(R )290011112
a
17
2. Sn 点群 (n为偶数) S n,S 2 n,S 3 n,..S n n . .I, S2 i
3有. C一n个v 点C群n 轴和 n 个包含该轴的对称面 v
C
v
a
18
4. Dn点群 有一个Cn轴和n个垂直于该轴的C2轴. (暂没有实例)
5. Cnh点群 有一个Cn轴和一个垂直于该轴的对称h.
S3 hC3 S32 h2C32 C32 , S33 h3C33 hI h S34 h4C34 C34 C3,S35 h5C35 hC32, S36 h6C36 I
当n为偶数时, 当n为奇数时,
Sn nhnCn nI
S n n h n C n n h ,S 2 n n h 2 n C 2 n I n
例2. 数的集合 {1, -1, i, -i}, 乘法规则为代数乘法, 则构成一个群.
恒等元素为1. 数 (-1) 的逆元素为(-1).数 (i) 的逆 元素为 (-i).
例3. 空间反演群 {E,i}, i为空间反演操作.
i2 = E
a
10
• 例4. D3={e,d,f,a,b,c}
e: 恒等操作 d: 绕z轴顺时针转动 120º f: 绕z轴顺时针转动 240º a: 绕a轴顺时针转动 180º b: 绕b轴顺时针转动 180º c: 绕c轴顺时针转动 180º