向量组的秩的求法
- 格式:ppt
- 大小:112.00 KB
- 文档页数:5
求向量组的秩与最大无关组一、对于具体给出的向量组,求秩与最大无关组1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等)①把向量组的向量作为矩阵的列(或行)向量组成矩阵A;②对矩阵A进行初等行变换化为阶梯形矩阵B;③阶梯形B中非零行的个数即为所求向量组的秩.【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的列秩为2,所以向量组的秩为2.解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的行秩为2,所以向量组的秩为2.2、求向量组的最大线性无关组的方法方法1 逐个选录法给定一个非零向量组A:α1, α2,…, αn①设α1≠ 0,则α1线性相关,保留α1②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;③依次进行下去,最后求出的向量组就是所求的最大无关组【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T Tααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。
所以最大无关组为a 1,a 2 方法2 初等变换法【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立.向量组:α1=(1,2,3)T, α2=(-1,2,0)T, α3=(1,6,6)T由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ;③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组.【例3】求向量组 :α1=(2,1,3,-1)T, α2=(3,-1,2,0)T, α3=(1,3,4,-2)T, α4=(4,-3,1,1)T的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。
向量组的秩向量组秩的定义向量组秩的求法及相关结论向量组秩的定义满足12,,,αααr 定义:设有向量组,A 记作.A R =r 在中选取个向量A r (1) 向量组无关;012:,,,αααr A (2) 向量组中任意个向量(若存在)都线性相关,A 1r +则称向量组是向量组的一个最大线性无关向量0A A 组,简称最大无关组.最大无关组所含向量个数称r 为向量组的秩,A1230ααα,+-=例:向量组123123:303112,,ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,A 注:全部由零向量组成的向量组没有最大无关组,规定这样的向量组的秩为零.2A R =该向量组的秩为.为最大无关组,12,αα13,αα,23,αα注:1. 一个向量组的最大无关组是向量组中所含向量个数最多的线性无关的子组之一.2.一个向量组的最大无关组不一定是惟一的.3.一个向量组与它的最大无关组是等价的.证:线性相关,12,,,,r αααα向量组是向量组的部分组,0A A 故组可由0A 组线性表示.A 对中任一向量,αA 从而组可由组线性表示.0A A 从而可由线性表示,α12,,,r ααα部分组,且满足推论:(最大无关组的等价定义)线性表示,设向量组是向量组的一个012:,,,r A αααA (1) 向量组线性无关;012:,,,r A ααα(2) 向量组的任一向量都能由向量组A 0A 则向量组是向量组的一个最大无关组.A 0A证:于是有设是中任意个向量,121,,,,r r ββββ+1r +A 它们都能由组线性表示,0A ()()12112,,,,,,,,r r r R R r ββββααα+≤=所以中任意个向量线性相关.A 1r +的一个最大无关组及秩. 例:求维向量的全体构成的向量组n 1212,,,n n n a a a a a a ⎧⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪==∈⎨⎬ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎩⎭α解121000100,0,,0001n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭e e e 线性无关,.n R n =维单位坐标向量n 12n a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭αn ∀∈,α1122,n n a a a =+++e e e1234124123422023 0570x x x x x x x x x x x ++-=⎧⎪+-=⎨⎪--+=⎩例:设齐次线性方程组12123434231001x x c c x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的通解是,试求全体解向量构成的向量组的秩.S解2R .S =1122c c ξξx =+{}112212c c c c ξξ,S x ==+∈,线性无关,12ξξ,12123434231001x x c c x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭通解是向量组秩的求法及相关结论11121314342122232431323334a a a a a a a a a a a a ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭A ()1234,,,αααα=T1T 2T 3βββ⎛⎫= ⎪ ⎪ ⎪⎝⎭回顾,的列向量组,A 1234,,,αααα的行向量组.T T T 123,,βββA定理矩阵的秩等于它的列向量组的秩,也等于证它的行向量组的秩.设,,()R r A =12(,,)m ααα=A 阶子式.r 0r D ≠所在的列构成的矩阵的秩为,r D r r n r ⨯r 此列线性无关;又因为中所有阶子式均为零,A +1r A 所以中先证明:矩阵的秩等于它的列向量组的秩.任意个列向量构成的矩阵的秩小于,+1r (1)n r ⨯+r+1r 故此列线性相关.所在的列构成的列向r D r A 量组的一个最大无关组,所以列向量组的秩为.r 也等于它的行向量组的秩.的秩等于的列向量组的秩,TA TA 的列向量组就是的行向量组,TA A 而,()()TR R =AA 所以矩阵的秩例:求向量组的一个最大无关组, 并用最大123451241611314,,,,0002210203ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭解无关组表示其它向量.设,12345(,,,,)ααααα=A 并将矩阵化为行最简形.A1020301102~000110000r ⎛⎫⎪ ⎪⎪-⎪⎝⎭12416113140002210203⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭A ()12345βββββ,,,,,B =()3R .A ==B故由所以线性无关,124,,ααα()()124124,,,,rαααβββ可知,()124,,3R ααα=从而是列向量组的一个最大无关组.也就是方程0Ax =因为与同解,0Bx =1122334455x x x x x ααααα++++=01122334455x x x x x βββββ++++=0与同解,因此向量之间的线性关系12345,,,,ααααα与向量之间的线性关系是相同的.12345βββββ,,,,由于,,512432ββββ=+-3122βββ=+因此,.3122ααα=+512432αααα=+-关于向量组秩的结论,可以推广到所含向量个数无限的向量组.线性表示的充分必要条件是定理向量组能由向量组12,,mααα12,,l βββ()()121212,,,,,,,.m m l R R ααααααβββ=向量组的秩矩阵的秩例若向量组可由向量组线性表示,则.B A R R ≤B A 其中等号成立当且仅当向量组与向量组等价.A B 设,,A B R s R t ==证明并设向量组和的最大A B 无关组分别为和.012:,,,αααs A 012:,,,βββt B 由于向量组能由向量组线性表示,0B B 能由向量组线性表示,A B 向量组0A 向量组能由向量组AB A R R ≤.A B R R ≤并且向量组与向量组等价B A 向量组可由向量组线性表示.BA .A B R R=向量组可由向量组线性表示,并且B A 0A 因此向量组能由向量组线性表示.0B 线性表示,即.t s ≤于是,()()1212,,,,,,βββααα≤t s R R证明从而这两个向量组等价.的秩相等,证明:向量组与向量组等价.B A 例向量组可由向量组线性表示,且它们B AC 设向量组是由向量组与合并而成的,AB .AC R R =由向量组可由向量组线性表示知B A 又已知,A B R R =所以有,A B C R R R ==。
求向量组的秩的三种方法1. 向量秩的定义向量组的秩是指向量组中线性无关的向量的个数,用r(V)表示。
向量秩可以理解为向量组的维数,是一个表示向量组重要性和有效性的指标。
2. 第一种方法:高斯消元法高斯消元法是一种通过初等变换求解线性方程组的方法,也可以用来计算向量组的秩。
具体步骤如下:步骤1:将向量组表示成矩阵形式将向量组V表示成一个矩阵A,其中每个向量是矩阵的一列。
假设向量组V有m个向量,每个向量有n个分量,则矩阵A的大小为n×m。
步骤2:进行初等行变换利用高斯消元法的思想,对矩阵A进行一系列初等行变换,使得矩阵A化为行阶梯形。
步骤3:计算行阶梯形矩阵的秩行阶梯形矩阵的秩等于非零行的个数。
统计非零行的个数,即可得到向量组V的秩r(V)。
3. 第二种方法:矩阵的秩与行列式的关系矩阵的秩与矩阵的行列式之间存在一定的关系。
根据这个关系,我们可以通过计算矩阵的行列式来求解向量组的秩。
具体步骤如下:步骤1:将向量组表示成矩阵形式和上述方法一样,将向量组V表示成一个矩阵A,其中每个向量是矩阵的一列。
步骤2:计算矩阵的行列式计算矩阵A的行列式|A|。
步骤3:求解向量组的秩向量组的秩r(V)等于矩阵的秩r(A)等于矩阵的行列式|A|不等于零的最大阶数。
4. 第三种方法:向量组的线性相关性向量组的线性相关性也可以用来求解向量组的秩,即判断向量组中是否存在线性相关的向量。
具体步骤如下:步骤1:将向量组表示成矩阵形式同样地,将向量组V表示成一个矩阵A,其中每个向量是矩阵的一列。
步骤2:计算矩阵的秩计算矩阵A的秩r(A)。
步骤3:判断向量组的线性相关性如果矩阵A的秩r(A)等于向量组的维数,则向量组中的向量线性无关,秩r(V)等于向量组的维数。
否则,向量组中的向量线性相关,秩r(V)等于矩阵的秩r(A)。
5. 总结通过以上三种方法,我们可以求解向量组的秩。
高斯消元法通过初等变换得到行阶梯形矩阵,通过统计非零行的个数得到向量组的秩;矩阵的秩与行列式的关系可以通过计算矩阵的行列式来求解向量组的秩;向量组的线性相关性可以通过判断矩阵的秩和向量组的维数之间的关系来求解向量组的秩。
求向量组的秩的三种方法一、概述向量组的秩,即向量组中线性无关向量的个数。
秩是线性代数中非常重要的概念,涉及到向量组的基、解空间及解的唯一性等概念。
本文将详细介绍求向量组秩的三种方法:高斯消元、矩阵的秩和行列式的秩,同时附上实例说明。
二、高斯消元法高斯消元法是解决线性方程组的一种基本方法,用于消元、求解下三角矩阵和上三角矩阵。
在求向量组秩时,可以将向量组构成增广矩阵,通过高斯消元将其变为简化阶梯形矩阵,然后根据主元的数量,即非零行数,即可得到向量组的秩。
对于向量组:\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}1\\3\\5\end{bmatrix}构成增广矩阵:\begin{bmatrix} 1 & 2 & 3\\ 2 & 4 & 6\\ 1 & 3 & 5 \end{bmatrix}通过高斯消元可得简化阶梯形矩阵:\begin{bmatrix} 1 & 2 & 3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}可知主元是1,非零行数是1,因此向量组的秩是1。
三、矩阵的秩矩阵的秩是线性代数中非常基础的概念之一,也是求向量组秩的一种方法。
矩阵的秩是指在矩阵的行(或列)空间中,线性无关的向量的个数。
对于一个m\times n矩阵A,如果它的秩为r,则有以下三条性质:1. 行秩:A的行空间的秩为r;2. 列秩:A的列空间的秩为r;3. 行列式:A的任意r\times r子式的行列式不为0,而r+1阶子式的行列式为0。
由此可知,对于一个向量组,可以将其构成矩阵,然后求出矩阵的秩来得到向量组的秩。
对于向量组:\begin{bmatrix}1\\2\\3\end{bmatrix},\begin{bmatrix}2\\4\\6\end{bmatrix},\begin{bmatrix}1\\3\\5\end{bmatrix}构成矩阵:A=\begin{bmatrix} 1 & 2 & 3\\ 2 & 4 & 6\\ 1 & 3 & 5 \end{bmatrix}通过对A做初等行变换,得到简化阶梯形矩阵:R=\begin{bmatrix} 1 & 2 & 3\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}可知A的秩为1,因此向量组的秩也为1。
§2 向量组的秩回顾:矩阵的秩定义:在m×n 矩阵A中,任取k 行k 列(k≤m,k≤n),位于这些行列交叉处的k2 个元素,不改变它们在A中所处的位置次序而得的k 阶行列式,称为矩阵A的k 阶子式。
规定:零矩阵的秩等于零。
定义:设矩阵A 中有一个不等于零的r 阶子式D,且所有r+1 阶子式(如果存在的话)全等于零,那么D 称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。
结论:矩阵的秩= 矩阵中最高阶非零子式的阶数= 矩阵对应的行阶梯形矩阵的非零行的行数向量组的秩的概念定义1设向量组A中的一个部分组a, a2, …, a r ,满足1, a2, …, a r 线性无关;⑴a1⑵向量组A中任意r + 1个向量(如果有)都线性无关。
则称a, a2, …, a r 是向量组A的一个最大线性无关向量组(简称1最大无关组);最大无关组所含向量个数r 称为向量组A的秩,记作R(A)。
例:求矩阵的秩,并求A 的一个最高阶非零子式.21112112144622436979A --⎛⎫ ⎪-⎪= ⎪--⎪-⎝⎭第二步求A 的最高阶非零子式.选取行阶梯形矩阵中非零行的第一个非零元所在的列,与之对应的是选取矩阵A 的第一、二、四列.解:第一步先用初等行变换把矩阵化成行阶梯形矩阵.行阶梯形矩阵有3 个非零行,故R (A ) = 3.21112112141121401110~46224000133697900000r A ---⎛⎫⎛⎫⎪ ⎪--⎪ ⎪= ⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭0124211111(,,)~462367r A a a a -⎛⎫ ⎪ ⎪== ⎪-- ⎪⎝⎭0111011001000B ⎛⎫⎪ ⎪= ⎪⎪⎝⎭01240111011(,,)~462001367000r A a a a B ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=== ⎪ ⎪-- ⎪⎪⎝⎭⎝⎭R (A 0) = 3,计算A 0的前3 行构成的子式21111180462-=-≠--因此这就是A 的一个最高阶非零子式。
向量组秩的求解步骤在线性代数中,向量组的秩是一个非常重要的概念。
它可以帮助我们判断向量组的线性相关性和线性无关性,进而对矩阵的解法和性质进行分析。
那么,如何求向量组的秩呢?首先,我们需要了解什么是向量组的秩。
向量组的秩是指向量组中线性无关向量的个数,也就是说,秩是向量组中最大线性无关向量的个数。
例如,如果一个向量组中有3个向量,其中2个向量线性无关,那么这个向量组的秩就是2。
接下来,我们来介绍一些求向量组秩的方法。
方法一:高斯消元法高斯消元法是一种常用的求解线性方程组的方法,同时也可以用来求解向量组的秩。
具体步骤如下:1. 将向量组按照列向量的形式排成一个矩阵A。
2. 对矩阵A进行初等行变换,将其化为行阶梯形矩阵。
3. 统计行阶梯形矩阵中非零行的个数,即为向量组的秩。
方法二:矩阵的秩矩阵的秩也可以用来求解向量组的秩。
具体步骤如下:1. 将向量组按照列向量的形式排成一个矩阵A。
2. 求解矩阵A的秩,即为向量组的秩。
方法三:线性相关性判断法线性相关性判断法是一种简单直观的方法,可以用来判断向量组的线性相关性和线性无关性。
具体步骤如下:1. 将向量组按照列向量的形式排成一个矩阵A。
2. 对矩阵A进行初等行变换,将其化为行阶梯形矩阵。
3. 如果行阶梯形矩阵中存在全零行,则向量组线性相关,秩为非零行的个数。
4. 如果行阶梯形矩阵中不存在全零行,则向量组线性无关,秩为矩阵A的列数。
综上所述,求解向量组的秩可以采用高斯消元法、矩阵的秩和线性相关性判断法等方法。
在实际应用中,我们可以根据具体情况选择合适的方法来求解向量组的秩,以便更好地分析矩阵的性质和解法。