第八分离变数法
- 格式:ppt
- 大小:468.50 KB
- 文档页数:54
《数学物理方法》课程考试大纲一、课程说明:本课程是物理学专业的一门重要基础课程,它是继高等数学后的一门数学基础课程。
本课程的教学目的是:(1) 掌握复变函数、数学物理方程、特殊函数的基本概念、基本原理、基本解题计算方法;(2) 掌握把物理问题归结成数学问题的方法,以及对数学结果做出物理解释。
为今后学习电动力学、量子力学和统计物理等理论物理课程打下必要的数学基础。
本课程的重点是解析函数、留数定理、傅里叶变换、数学物理方程、分离变数法、傅里叶级数法、本征值问题等。
本课程的难点是把物理问题归结成数学问题,以及各种数学物理方程的求解。
二、参考教材:必读书:《数学物理方法》,梁昆淼编,高等教育出版社,1998年6月第3版。
参考书:《数学物理方法》,汪德新编,科学出版社,2006年8月第3版;《数学物理方法》,赵蕙芬、陆全康编,高等教育出版社,2003年8月第2版。
三、考试要点:第一章复变函数(一)考核知识点1、复数及复数的运算2、复变函数及其导数3、解析函数的定义、柯西-黎曼条件(二)考核要求1、掌握复数三种形式的转换。
2、掌握复变函数的导数和解析等基本概念,并掌握判断导数是否存在和函数是否解析的方法。
u 。
3、了解解析函数与调和函数的关系,并能从已知调和函数u或v,求解析函数iv第二章复变函数的积分(一)考核知识点1、复变函数积分的运算2、柯西定理(二)考核要求1、理解单通区域和复通区域的柯西定理,并能用它们来计算复变函数的积分。
2、掌握应用原函数法计算积分。
3、掌握柯西公式计算积分。
第三章幂级数展开(一)考核知识点1、幂级数的收敛半径2、解析函数的泰勒展开3、解析函数的洛朗展开(二)考核要求1、理解幂级数收敛圆的性质。
2、掌握把解析函数展开成泰勒级数的方法。
3、掌握把环域中的解析函数展开成洛朗级数的方法。
4、理解孤立奇点的分类及其类型判断。
第四章留数定理(一)考核知识点1、留数的计算2、留数定理3、利用留数定理计算实变函数定积分(二)考核要求1、掌握留数定理和留数计算方法。
第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。
分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。
叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。
特点:(1)数学上 解的唯一性来做作保证。
(2)物理上 由叠加原理作保证。
例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。
第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。