第八章分离变量法_数学物理方法
- 格式:ppt
- 大小:3.00 MB
- 文档页数:87
第八章分离变量法_数学物理方法分离变量法是数学物理方法中的一种重要技术,通常用于求解偏微分方程。
在这一方法中,我们将多元函数表示为一系列单变量函数的乘积形式,然后将其代入到偏微分方程中,从而将多元偏微分方程转化为一系列常微分方程。
接下来,我将详细介绍分离变量法的思想和应用。
1.分离变量法的思想当我们面对一个多元偏微分方程时,通常很难找到它的解析解。
分离变量法的思想就是将多元函数表示为单变量函数的乘积形式,然后将其代入到偏微分方程中,从而将多元偏微分方程转化为一系列常微分方程。
具体来说,设有一个n元函数u(x1, x2, ..., xn),我们希望将其表示为n个单变量函数的乘积形式u(x1, x2, ..., xn) =u1(x1)u2(x2)...un(xn)。
代入偏微分方程后,我们可以得到一系列等式,将等式两边同时除以对应的单变量函数后,得到n个只依赖于一个变量的常微分方程。
然后我们可以分别求解这些常微分方程,得到对应的单变量函数的解析解。
2.分离变量法的应用分离变量法在物理学中有广泛的应用,特别是在描述传热、传质、波动等现象的偏微分方程的求解中。
以下是几个典型的例子:(1)热传导方程热传导方程是描述物体内部温度分布随时间变化的方程。
假设物体的温度分布函数为u(x,t),其中x表示位置,t表示时间。
热传导方程可以写成如下形式:∂u/∂t=a²∇²u其中a是热传导系数。
我们可以将温度分布函数表示为u(x,t)=X(x)T(t),然后代入热传导方程,得到两个常微分方程X''/X=T'/a²T。
分别解这两个方程,可以得到温度分布函数的解析解。
(2)线性波动方程线性波动方程是描述波动现象的方程。
假设波动函数为u(x,t),其中x表示位置,t表示时间。
∂²u/∂t²=v²∇²u其中v是波速。
我们可以将波动函数表示为u(x,t)=X(x)T(t),然后代入线性波动方程,得到两个常微分方程X''/X=v²T''/T。
分离变量法分离变量法又称Fourier 级数方法,而在波动方程情形也称为驻波法。
它是解决数学物理方程定解问题中的一种基本方法,这个方法建立在叠加原理的基础上,其基本出发点是物理学中的机械振动或电磁振动总可分解为一些简谐振动的叠加。
思想:把偏微分方程的求解问题转化为常微分方程的求解。
常微分方程求解:()()()()()P x dx P x dx P x dx y x Ce e Q x e dx−−∫∫∫=+∫一阶非齐次的常微分方程:()(),dy P x y Q x dx+=它的通解为二阶非齐次的常微分方程:()()()y P x y Q x y f x ′′′++=它的通解为21112212()y f y f y x C y C y y dx y dx W W=+−+∫∫其中1212,0.,y y W y y =≠′′12()()0.y P x y y Q x y y ′′′++=两个线性是无关的解和并且常系数齐次的常微分方程:0y py qy ′′′++=它的特征方程20r pr q ++=,假设特征方程的根为12.r r ,(1)特征方程有两个不等的实根:齐次方程通解为:12.r x r xy Ae Be =+(2)特征方程有两个相等的实根:(3)特征方程有一对共轭的复根:12,,r i r i αβαβ=+=−齐次方程通解为()(cos sin ).xy x e A x B x αββ=+1().r xy A Bx e =+第一节有界弦的自由振动22222,(0,),0(,0)(),(,0)(),[0,](0,)(,)0,0t u u a x l t t x u x x u x x x l u t u l t t ϕψ⎧∂∂=∈>⎪∂∂⎪⎪==∈⎨⎪==≥⎪⎪⎩一根长为l 的弦,两端固定,给定初始位移和速度,在没有强迫外力作用下的振动.物理解释:•求解的基本步骤2XT a X T′′′′=第一步:求满足齐次方程和齐次边界条件的变量分离形式的解(,)()()u x t X x T t =把分离形式的解代入方程可得即2()()()()T t X x a T t X x ′′′′=以及上述等式左端是t 的函数,右端是x 的函数,由此可得两端只能是常数,记为()()0(0)()0X x X x X X l λ′′+=⎧⎨==⎩X (x ):2()()0T t a T t λ′′+=T (t ):固有值问题(0)()()()0X T t X l T t ==.λ−从而有情形(A)下对λ的三种情况讨论固有值问题:0λ<(),x x X x AeBe λλ−−−=+0,A B +=其通解为代入边界条件可得0l l Ae Be λλ−−−+=0A B ==只有零解。
第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。
分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。
叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。
特点:(1)数学上 解的唯一性来做作保证。
(2)物理上 由叠加原理作保证。
例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。
第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。
数学物理方法(II)3、二维拉普拉斯方程—热传导二维矩形区域的稳态热传导问题:y uu 0b散热片的横截面为一矩形,长和宽分别a b 。
它的一边y=b 为和它的边y 处于较高的温度,其它三边保持零度。
求横截面上的xa 0(0,0)xx yy u u x a yb +=<<<<⎧稳恒的温度分布000|0,|0|0,|x x a y y b u u u u u ====⎪==⎨⎪==⎩=?求出任意点(x,y )的温度分布u (x,y )?(,)sin u x b u A C e D e x ==+01n n n n a=⎢⎥⎜⎟⎝⎠⎣⎦∑⎧再利用三角函数的正交性,可以得到:0 C D +=小结:(1)可以采用分离变量法(,)()()u r R r ϕϕ=Φ求解平面极坐标系中的拉普拉斯方程;(2)由周期性条件确定本征值和本征函数:2 (0,1,2,3...)()cos sin m m m m m A m B m λϕϕϕ==Φ=+在径向上的边界条件可以是非齐次的。
(3)拉普拉斯方程的通解为:00(,)ln u r C D rϕ∞=+叠加系数由径向上的非齐次边界条件确定()()1 +cos sin m m m m m m m C r D r A m B m ϕϕ−=++∑叠加系数由径向上的非齐次边界条件确定。
例2可以近似地认为带电云层与大地之间的静电场是均匀分布的,且电场强度E 0的方向竖直向下。
现将一个半径为a 的无限长直导线水平架设在该电场中,求导线周围的电场分布。
++带电云分析:轴其截面在平面++•取导体线的方向沿z 轴,其截面在xy 平面;•由于导体线是无线长的,可以取其一个界面进行分析另外导体线的截面个圆故y进行分析。
另外,导体线的截面一个圆,故可以采用平面极坐标系;(,)r ϕx•均匀电场的方向沿x 轴,即00xE =E e 大地/2π/2π−。