分数阶傅里叶变换的离散算法-Ozaktas
- 格式:ppt
- 大小:642.50 KB
- 文档页数:23
从头到尾彻底理解傅里叶变换算法、上前言第一部分、DFT第一章、傅立叶变换的由来第二章、实数形式离散傅立叶变换(Real DFT)从头到尾彻底理解傅里叶变换算法、下第三章、复数第四章、复数形式离散傅立叶变换/***************************************************************************************************/这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。
感谢原作者们(July、dznlong)的精心编写。
/**************************************************************************************************/前言:“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?傅里叶变换(Fourier transform)是一种线性的积分变换。
因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。
哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。
这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。
ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:以下就是傅里叶变换的4种变体(摘自,维基百科)连续傅里叶变换一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。
连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。
分数阶傅里叶变换的原理与应用一、分数阶傅里叶变换的原理1.1传统傅里叶变换的局限性传统的傅里叶变换可以将时域信号转换为频域信号,但其变换后的结果是旋转对称的,并且无法提供选择性的时频分辨率,即无法同时精确地描述信号的瞬时特性和频率特性。
1.2分数阶傅里叶变换的引入为了弥补传统傅里叶变换的不足,分数阶傅里叶变换被引入。
分数阶傅里叶变换是将传统傅里叶变换的旋转对称性由倾斜对称的情况首次引入到信号处理领域。
1.3 分数阶傅里叶变换的定义F(a,b) = ∫f(t)K(a,b,t)dt其中,a和b是变换的参数,f(t)是原始信号,K(a,b,t)为分数阶的核函数,核函数代表了信号在时域和频域中的变换关系,通过核函数可以实现对信号的不同时频特性的描述。
1.4分数阶傅里叶变换的数学表达式F(a,b) = ∫f(t)exp(-jπat²)exp(-jπb²/t²)dt其中,a和b分别代表旋转因子,通过调整a和b的取值,可以实现对信号的不同时频域特性的描述。
二、分数阶傅里叶变换的应用2.1信号处理2.2通信系统2.3图像处理2.4声音和视频处理2.5生物医学信号处理分数阶傅里叶变换在生物医学信号处理中也有广泛应用,如心电信号分析、脑电信号分析、磁共振成像分析等。
通过对生物医学信号进行分数阶傅里叶变换,可以实现对信号的精确分析和刻画,从而有助于疾病的早期诊断和治疗。
总结:分数阶傅里叶变换作为傅里叶变换的一种扩展形式,克服了传统傅里叶变换的不足,通过调整变换的参数,分数阶傅里叶变换可以实现对信号的精确时频分辨率分析,被广泛应用于信号处理、通信系统、图像处理、声音和视频处理、生物医学信号处理等领域。
随着对分数阶傅里叶变换的进一步研究和应用,相信将会有更多的应用场景被发现,为信号处理和通信领域带来更多创新和发展。
分数阶傅立叶变换分数阶傅立叶变换(Fractional Fourier Transform)是一种多阶数学变换,可以将一个函数的时域特征转换到频域特征,同时也具有快速的计算特性。
它能够提供更加准确的信息处理方法,能够在信号处理中有效地应用。
分数阶傅立叶变换是在标准傅立叶变换基础上进行改进,其基本思想是将原始信号的时间域特征转换到频域特征。
转换后的信号可以更好地反映信号的频率分布,并且可以更好地处理诸如正弦波、高斯函数等不同形态的信号。
分数阶傅立叶变换的基本概念是将原始信号的时域特征变换到频域特征,这样就可以有效地处理各种不同形态的信号,而不会损失信号的细节和特征。
分数阶傅立叶变换的基本原理是将一个函数的时域特征转换到频域特征。
它是由一组数学公式组成的,可以将时域信号转换为频域信号,从而使信号可以在频域进行处理。
接下来要介绍的是分数阶傅立叶变换的公式。
首先,变换的基本公式是:$$F_T (f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i 2 \pi f t}dt $$其中,$f$为一个函数,$t$是时间坐标。
要实现分数阶傅立叶变换,需要对这个公式作出改变:$$F_T (f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i 2 \pi f t + i \alpha}dt $$其中,$\alpha$为变换参数,可以改变信号在时域和频域之间的映射关系,从而实现对信号的更加准确处理。
另外,分数阶傅立叶变换也可以通过建立矩阵进行表示:$$F_T (f) = \frac{1}{2\pi} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \int_{-\infty}^{\infty} f(t) \cos(2 \pi f t) dt \\ \int_{-\infty}^{\infty} f(t) \sin(2 \pi f t) dt\end{bmatrix} $$可以看出,分数阶傅立叶变换的矩阵表示其实就是一个二维旋转矩阵。
分数傅里叶变换分数傅里叶定义:分数傅里叶变换的物理意义即做傅里叶变换次,其中不一定要为整数(比傅里叶变换更加广泛);通过分数傅里叶变换之后,图像或信号便会同时拥有时域与频域两者的特征。
1.1(维基百科)第一种定义:第二种定义:1.2从数学上分数傅立叶变换定义了积分形式:Wigner分布函数相空间定义的分数傅立叶变换A.W.Lohmann在1993 年利用傅里叶变换相当于在Wigner分布函数相空间中角度为π/2的旋转这一性质,说明分数傅里叶变换在Wigner分布函数空间中相当于角度是pπ/2的旋转,这里,p是分数傅里叶变换的级次。
分数傅里叶变换的定义在数学上是等价的。
当分数傅里叶变换的幂次p从0 连续增长到达1 时,分数傅里叶变换的结果相应地从原始信号的纯时间(空间)形式开始逐渐变化成为它的纯频域(谱)形式,幂次p在0到1之间的任何时刻对应的分数傅里叶变换采取了介乎于时(空)域和频域之间的一个过渡域的形式,形成一个既包含时(空)域信息同时也包含频(谱)域信息的混合信号。
因此,这样定义的分数傅里叶变换确实是一种时(空)-频描述和分析工具分数傅里叶的分类:1.一维分数傅里叶变换分数傅里叶变换的数学表达式有积分形式和级数表达式两种等价形式,1.积分形式2级数表达式形式其中2.二维分数傅里叶变换其中C为相应常系数。
当a=b时, 上式就是二维分数傅里叶变换的表达式; 当a=b=1时, 上式转化为常规二维傅里叶变换; 当a与b不相等时, 我们称这种情况的二维分数傅里叶变换为不对称分数傅里叶变换。
此时在x、y 方向实施的变换级次是不同的。
分数傅里叶变换的性质1周期性:(k为整数)2线性:(c1和c2是复常数)3阶数可加性:4尺度变换特性:5时移特性:6频移特性:7可逆性:对一个函数进行P 级分数傅里叶变换后,接着进行-P 级的分数傅里叶变换,则可得到原函数:分数傅里叶变换的数值算法(1) 基于傅立叶变换矩阵因子幂的离散化算法,利来计算离散的分数傅立叶变换的核矩阵,从而利用FFT来计算离散分数傅立叶。
离散分数阶傅里叶变换快速算法的DSP详细实现
陈鹏;侯朝焕;梁亦慧;马晓川
【期刊名称】《应用光学》
【年(卷),期】2007(28)2
【摘要】为满足在数字信号处理器DSP(digital signal processor)上进行离散分数阶傅里叶变换DFRFT(discrete fractional fourier transform) 实时计算的要求,通过对多种DFRFT计算方法进行比较,选择Ozaktas提出的DFRFT快速算法进行基于DSP的详细实现处理.在对该快速算法进行理论分析的基础上,将快速算法的计算过程进行优化配置,并给出完整的计算量统计结果.在保证精度要求的情况下,提出的详细实现方法将快速算法的实数乘法计算量减至最小.工程实际应用表明:该方法满足DSP运算精度和实时性要求.
【总页数】5页(P146-150)
【作者】陈鹏;侯朝焕;梁亦慧;马晓川
【作者单位】中国科学院,声学研究所,北京,100080;中国科学院,声学研究所,北京,100080;船舶系统工程部,北京,100036;中国科学院,声学研究所,北京,100080【正文语种】中文
【中图分类】TN91
【相关文献】
1.基于FPGA离散分数阶傅里叶变换算法的实现 [J], 史兆强;魏增辉;马壮
2.基于离散多项式相位变换和分数阶傅里叶变换的加速目标检测算法 [J], 庞存锁
3.用于计算离散分数阶傅里叶变换的MA-CDFRFT算法改进 [J], 陈鹏;侯朝焕;马晓川
4.基于TMS320C6201的离散分数阶傅立叶变换快速算法详细实现 [J], 陈鹏;侯朝焕;马晓川;梁亦慧
5.基于二维离散分数阶傅里叶变换的视觉注意力算法 [J], 徐海波;史步海
因版权原因,仅展示原文概要,查看原文内容请购买。
分数阶傅里叶变换
分数阶傅里叶变换(Fractional Fourier Transform,简称FrFT)是傅里叶变换(FFT)的一种变体,主要用于信号和图像的处理和分析,它能够重构信号或图像的频域特征。
跟FFT相比,它可以提供更多的
频域参数,它的使用可以减少信号、图像的处理的时间,提高处理的
速度。
分数阶傅里叶变换的原理是将时域信号和图像通过一定的欧拉角
旋转轴系变换到频域进行处理,此处欧拉角旋转轴系是指改变时域变
量t的旋转角度ω,表示为比率α。
对于某一序列的信号变换到频域,则可以写为:F(ω,α)=Ft(Aw,αω)。
当把FFT的轴系旋转,会到达一个新的傅里叶变换领域,可以构
建分数阶傅里叶变换。
分数阶傅里叶变换的关键参数是α ,α由下
式给出:(ω,α)=(t,αt)。
α参数越大,则傅里叶变换域的
缩放程度也就越大,即改变FFT轴系旋转的程度越大,最终能够把信
号变换到一个更大更远的领域,例如远离原点的时域。
分数阶傅里叶变换的基本运算是通过一组定义的参数,前面已介
绍的α的参数就是其中的关键参数,所有的运算都由这个参数决定,
而信号或图像则由傅里叶变换的子函数来完成变换。
分数阶傅里叶变换过程分为5步:第一步,先检查信号的长度;第二步,根据前面定义的α参数,计算轴系旋转的角度θ;第三步,在频域求解零级子函数来提取信号或图像的特征;第四步,计算转换后的特征值;第五步,对其进行融合,降低噪声等。
分数阶傅里叶变换用在信号和图像处理当中,有着很多应用,例如图像检测、图像压缩等,它能够提高处理效率,减少计算任务的复杂度,同时提供更多的频域参数来进行分析和处理。
基于FPGA离散分数阶傅里叶变换算法的实现史兆强;魏增辉;马壮【摘要】In order to implement the DFRFT (discrete fractional 傅里叶transform) algorithm on FPGA (field programmable gate array), some DFRFT methods are analyzed and the Ozaktas's DFRFT fast algorithm is selected to achieve the implementation on FPGA. On the basis of theoretical analysis for the algorithm, the computing process of fast algorithm is optimized, and the simulation results is given. Put forward a detailed program to achieve on FPGA under ensuring the accuracy of the request. The practical application of engineering shows that the solution has excellent performance.%为在可编程逻辑门阵列(FPGA)上实现离散分数阶傅里叶变换(DFRFT),对多种DFRFT算法进行比较分析,并选用Ozaktas提出的离散快速算法做了基于FPGA的实现。
在对该算法进行理论分析的基础上,对快速算法的计算过程做优化处理,并给出仿真结果比较。
在保证精度要求下,提出详细的FPGA实现方案。
工程实际应用表明:该方法具有优良性能。
【期刊名称】《河南机电高等专科学校学报》【年(卷),期】2012(020)002【总页数】3页(P17-19)【关键词】离散分数阶傅里叶变换;现场可编程逻辑阵列;FFT核【作者】史兆强;魏增辉;马壮【作者单位】河南机电高等专科学校电子通信工程系,河南新乡453000;黄河水利职业技术学院信息工程系,河南开封475003;中国电子科技集团公司第二十七研究所,河南郑州450047【正文语种】中文【中图分类】TN911.721 引言分数阶傅里叶变换是对经典傅里叶变换的推广,在分析和处理非平稳信号领域有着广泛的应用。
离散傅里叶变换公式离散傅里叶变换(DiscreteFourierTransform,简称DFT)是一种重要的数学工具,在生活中有广泛的应用。
它的发明者是法国数学家傅里叶,现在也被称为“傅里叶变换”。
本文的目的是提供有关离散傅里叶变换的概述,以及它的重要应用。
一、离散傅里叶变换的概念简单来说,离散傅里叶变换(DFT)是通过求解微积分方程来计算信号函数的值的一种数学工具。
它可以用来表示信号函数在时间域上的内容,也可以用来表示信号函数在频率域上的内容。
离散傅里叶变换对正交函数求值有很大的优势,因为它把正交函数分解为一个和平方和的形式。
DFT的计算公式如下:$$ X_k=sum_{n=0}^{N-1} x_ncdot e^{-frac{2{pi}ink}{N}} $$ 其中,$x_n$是信号函数的采样值,$X_k$是信号函数时域上和频率域上的系数,$N$是信号函数的采样频率,$k$是离散傅里叶变换后的频率系数,$n$是信号函数在时域上每个采样点的标号。
二、离散傅里叶变换的重要应用1.频处理离散傅里叶变换的强大的数学特性使它成为音频处理的理想工具。
它可以用来将音频信号从时域转换成频域。
换句话说,它可以用来把声音转换成不同的频率的峰值。
因此,离散傅里叶变换可以用来调节、增强或者减弱各个频率的信号,从而获得更好音质的音频信号。
2.像处理离散傅里叶变换也可以用来处理图像,比如,将图像从时域转换成频域。
它可以把图像拆分成不同的频率部分,从而将图像模糊处理、滤除噪声或增强图像。
三、结论离散傅里叶变换是一种强大的数学工具,它可以用来处理音频信号和图像信号,从而获得更好的效果。
它的应用范围可能会扩展到其他领域,例如信号处理,它将会成为更多的工程应用中的绝佳选择。
基于频域滤波的分数阶Fourier变换的目标检测尹德强;李文海;宋有为【摘要】A FRFT weak target detection method based on filtering in frequency-domain is proposed through analyzing the echo signal of the target in sea. The method intercalated a band-pass filter in frequency-domain to filter the echo signal in frequency-domain and filter clutter, and then transformed the signal from FRFT domain to time domain, at this time, FRFT detected the target preferably. Experiment using the IPIX data shows that the method has remarkably advantages in increasing the signal-clutter FRFT peak value difference and enhancing the SCR. When the SCR is reduced to -10 dB, the method can still detect targets easily.%在分析海面运动目标回波的基础上提出了一种基于频域滤波的FRFT海面运动弱目标检测方法.该方法通过在频域设置一带通滤波器,对频域回波信号进行滤波,滤除部分杂波,然后逆变换到时域,此时再进行FRFT检测,就能够较好地检测到目标.利用IPIX 实测数据实验表明,在相同信杂比条件下所提方法在增加目标与杂波FRFT峰值差方面都明显优于仅对回波作FRFT变换.设置适当的恒虚警检测门限,该检测方法能够达到更好的检测效果.【期刊名称】《现代电子技术》【年(卷),期】2011(034)019【总页数】4页(P7-10)【关键词】分数阶Fourier变换;杂波抑制;滤波;海杂波【作者】尹德强;李文海;宋有为【作者单位】海军航空工程学院,山东烟台 264001;海军航空工程学院,山东烟台264001;中南财经政法大学工商管理学院,湖北武汉 430060【正文语种】中文【中图分类】TN911-340 引言在信号处理领域中,传统的Fourier变换是一个研究最为成熟、应用最为广泛的数学工具。