2.2.5 拉(压)杆横截面上的应力
当等直杆受几个轴向外力作用时, 由轴力图求出最大轴 力FN,max, 进一步可求得杆内的最大正应力为
σ max
=
FN,max A
最大轴力所在的截面称为危险截面, 危险截面上的正应 力称为最大工作应力。
例: 如图所示右端固定的阶梯形圆截面杆, 同时承受轴向载荷F1 与F2作用。试计算杆的轴力与横截面上的正应力。已知F1= 20 kN, F2= 50 kN杆件AB段与BC段的直径分别为d1=20 mm与d2=30 mm。
2.应力计算
AB段内任一横截面1-1上的正应力为: d2
σ1
=
FN1 A1
=
4× 2.0×104
π × 0.0202
= 6.37 ×107 Pa
= 63.7
MPa
同理, 得 BC 段内任一横截面 2-2 上的正应力为:
σ2
=
FN 2 A2
=
4× (−3.0×104 )
π × 0.0302
=
−4.24×107 Pa
现在求与横截面成a角的任一斜截面k-k上的应力。
k
F
F
α
k
2.3 直杆轴向拉伸或压缩时斜截面上的应力
k
F
F
α
k
设直杆的轴向拉力为F, 横截面面积为A, 由公式(2.1), 横截面上的正应力为
σ = FN = F
AA
设与横截面成α角的斜截面k-k的面积为Aα, Aα与A之间
的关系应为
Aα
=
A
cosα
2.2.5 拉(压)杆横截面上的应力
推导公式 由结论可知, 在横截面上作用着均匀分布的正应力。