轴向拉伸与压缩
- 格式:ppt
- 大小:3.19 MB
- 文档页数:50
第七章轴向拉伸和压缩一、内容提要轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。
(一)、基本概念1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。
这里要注意产生内力的前提条件是构件受到外力的作用。
2. 轴力 轴向拉(压)时,杆件横截面上的内力。
它通过截面形心,与横截面相垂直。
拉力为正,压力为负。
3. 应力 截面上任一点处的分布内力集度称为该点的应力。
与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。
轴拉(压)杆横截面上只有正应力。
4. 应变 单位尺寸上构件的变形量。
5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。
6. 极限应力 材料固有的能承受应力的上限,用σ0表示。
7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。
极限应力与许用应力的比值称为安全系数。
8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。
(二)、基本计算1. 轴向拉(压)杆的轴力计算求轴力的基本方法是截面法。
用截面法求轴力的三个步骤:截开、代替和平衡。
求出轴力后要能准确地画出杆件的轴力图。
画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。
2. 轴向拉(压)杆横截面上应力的计算任一截面的应力计算公式 AF N =σ 等直杆的最大应力计算公式 AF max N max =σ 3. 轴向拉(压)杆的变形计算虎克定律 A E l F l N =∆εσE =或 虎克定律的适用范围为弹性范围。
泊松比 εε=μ'4. 轴向拉(压)杆的强度计算强度条件塑性材料:σma x ≤[σ] 脆性材料: σt ma x ≤[σt ]σ c ma x ≤[σc ]强度条件在工程中的三类应用(1)对杆进行强度校核在已知材料、荷载、截面的情况下,判断σma x是否不超过许用值[σ],杆是否能安全工作。
第五章 轴向拉伸与压缩一、轴向拉伸与压缩承受拉伸或压缩杆件的外力(或外力的合力)作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。
这种杆件称为拉压杆。
二、轴力及轴力图杆件在外力作用下将发生变形,同时杆件内部各部分之间产生相互作用力,此相互作用力称为内力。
对于轴向拉压杆,其内力作用线与轴线重合,此内力称为轴力。
轴力拉为正,压为负。
为了表现轴向拉压杆各横截面上轴力的变化情况,工程上常以轴力图表示杆件轴力沿杆长的变化。
三、横截面上的应力根据圣文南原理,在离杆端一定距离之外,横截面上各点的变形是均匀的,各点的应力也应是均匀的,并垂直于横截面,此即为正应力。
设杆的横截面面积为A,则有AF N =σ 工程计算中设定拉应力为正,压应力为负。
四、强度条件工程中为各种材料规定了设计构件时工作应力的最高限度,称为许用应力,用[σ]表示。
轴向拉伸(压缩)强度条件为[]σσ≤=AF N用强度条件可解决工程中三个方面的强度计算问题,即:(1)强度校核;(2)设计截面;(3)确定许可载荷。
五、斜截面上的应力与横截面成θ角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:⎪⎪⎩⎪⎪⎨⎧=+=θστθσσθθ2sin 2)2cos 1(2 由上式可知,当θ=0°时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。
当θ=±45°时,切应力达到极值。
六、拉压变形与胡克定律等值杆受轴向拉力F作用,杆的原长为l ,横截面积为A,变形后杆长由l 变为l +△l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAl F l N =∆ 上式为杆件拉伸(压缩)时的胡克定律。
式中的E称为材料的拉伸(压缩)弹性摸量,EA称为抗拉(压)刚度。
用应力与应变表示的胡克定律为σ=Eε在弹性范围内,杆件的横向应变ε‘和轴向应变ε有如下的关系:μεε-='式中的μ称为泊松比。
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。