轴向拉压时杆件的变形
- 格式:pptx
- 大小:238.34 KB
- 文档页数:14
杆件的基本变形形式
杆件的基本变形形式有以下几种:
1. 拉伸和压缩:当杆件受到沿其轴向的力时,杆件会发生拉伸或压缩变形。
拉伸时杆件长度增加,压缩时杆件长度减小。
2. 剪切:当杆件受到垂直于其轴向的力时,杆件会发生剪切变形。
剪切变形表现为杆件的横截面发生相对错动。
3. 扭转:当杆件受到绕其轴线的力矩时,杆件会发生扭转变形。
扭转变形使得杆件的横截面绕轴线旋转。
4. 弯曲:当杆件受到垂直于其轴线的横向力时,杆件会发生弯曲变形。
弯曲变形导致杆件的轴线发生弯曲。
这些基本变形形式是杆件在不同加载条件下的主要响应方式。
在工程和力学领域中,了解杆件的基本变形形式对于设计和分析结构非常重要。
通过对这些变形形式的研究,可以确定杆件在负载下的应力、应变分布以及可能的破坏模式。
需要注意的是,实际工程结构中的杆件可能同时受到多种变形形式的组合作用。
例如,在一个梁的设计中,可能同时存在弯曲和剪切变形。
因此,在分析杆件的变形和应力时,需要综合考虑各种变形形式的影响。
希望这些信息对你有所帮助!如果你有其他问题,请随时提问。
简述轴向拉压杆的受力特点和变形特点
轴向拉压杆是一种受到拉力或压力作用的杆件。
其受力特点主要
有两点:
1. 受力方向:轴向拉压杆受力方向与其轴线方向相同或相反。
当受到拉力时,轴向拉压杆会向外展开;当受到压力时,轴向拉压杆
会向内收缩。
受力方向与轴线方向共线,使得杆件能够承受较大的拉
力或压力。
2. 受力均匀:轴向拉压杆受力均匀分布在其截面上。
由于受力
方向与轴线方向相同或相反,杆件内部的各个截面上的应力相对均匀。
这样的受力特点能够保证杆件的强度和刚度。
轴向拉压杆的变形特点主要有两点:
1. 长度变化:轴向拉压杆在受到拉力或压力作用时会发生长度
的变化。
当受到拉力时,轴向拉压杆会发生伸长变形;当受到压力时,轴向拉压杆会发生缩短变形。
杆件的长度变化与受力的大小成正比。
2. 弯曲变形:轴向拉压杆在受力作用下有可能发生弯曲变形。
当受到较大的压力或拉力时,杆件可能会产生塑性弯曲或弹性弯曲。
这种变形可能会影响杆件的稳定性和工作性能。
综上所述,轴向拉压杆的受力特点是受力方向与轴线方向相同或
相反,受力均匀;变形特点是发生长度变化和有可能出现弯曲变形。
这些特点需要在杆件的设计和使用过程中进行考虑,以保证其性能和
安全。
轴向拉压杆件的受力特点
轴向拉压杆件是指在受力时,受力方向与杆件轴线重合的杆件。
其受力特点主要表现为受力方向沿杆件轴线,因此其受力状态可以简化为拉力或压力。
在受拉力时,杆件会发生拉伸变形,而在受压力时,杆件会发生压缩变形。
此外,轴向拉压杆件的受力特点还包括以下几个方面:
1. 受力方向的集中性:轴向拉压杆件的受力方向集中在杆件轴线上,因此其受力状态相对简单,易于计算。
2. 受力方向的稳定性:由于受力方向与杆件轴线重合,因此轴向拉压杆件的受力方向相对稳定,不易发生偏转或扭曲。
3. 受力面积的小:轴向拉压杆件的受力面积相对较小,因此其承受的应力较大,需要选择合适的材料和截面形状以满足强度要求。
4. 受力方向的单一性:轴向拉压杆件的受力方向单一,因此其在设计和制造时需要考虑受力方向的影响,如选择合适的连接方式和加强措施等。
轴向拉压杆件的受力特点主要表现为受力方向沿杆件轴线,受力面积小,受力方向稳定且集中,需要选择合适的材料和截面形状以满足强度要求,并在设计和制造时考虑受力方向的影响。
轴向拉(压)杆的变形•胡克定理拉(压)杆受轴向力作用时,沿杆轴方向会产生伸长(或缩短),称为纵向变形;同时杆的横向尺寸将减小(或增大),称为横向变形。
如图(a )、(b )所示。
一、纵向变形设杆件变形前长为l ,变形后长为1l ,则杆件的纵向变形为 l l l -=∆1拉伸时纵向变形为正,压缩时纵向变形为负。
纵向变形l ∆的单位是m 或mm 。
纵向变形的大小与杆的原长l 有关,为了度量杆的变形程度,需用单位长度的变形量。
单位长度的变形称纵向线应变,简称线应变,以ε表示。
对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为ll∆=ε () 拉伸时ε为正,压缩时ε为负。
二、胡克定律实验证明,当杆的应力未超过某一限度,纵向变形l ∆与外力P 、杆长l 及横截面面积A 之间存在着如下的比例关系:EAPll =∆ () 在内力不变的杆段中,P N =,可将上式改写为用内力表达的形式 EANll =∆ () 式()称为胡克定律,表明当杆件应力不超过某一限度(比例极限)时,其纵向变形与轴力及杆长成正比,与横截面面积成反比。
P图 2.10(a)(b)将ε=∆l l 及σ=AN代入()式,可得 εσ⋅=E ()式()是胡克定律的另一表达形式,它表明当应力不超过比例极限时,应力与应变成正比。
比例系数E 称为材料的弹性模量,它与材料的性质有关,是衡量材料抵抗弹性变形能力的指标。
各种材料的E 值由试验测定,其单位与应力的单位相同。
EA 称为杆件的抗拉(压)刚度,它反映了杆件抵抗拉(压)变形的能力,对长度相同,受力相等的杆件,EA 越大,变形l ∆就越小;反之,EA 越小,变形l ∆就越大。
三、横向变形拉(压)杆产生纵向变形时,横向也产生变形。
设杆件变形前的横向尺寸为a ,变形后为1a (图)()(b a 、),则横向变形为 a a a -=∆1 横向应变为aa∆='ε () 杆件伸长时a ∆为负值,也为负值;杆件压缩时a ∆为正值,也为正值。
轴向拉压杆件的受力特点和变形特点哎呀,我的妈呀!什么是轴向拉压杆件呀?这名字听起来可真够复杂的!不过没关系,让我这个好奇宝宝来好好研究研究。
先来说说轴向拉压杆件的受力特点吧!你想想看,一根杆子,就像拔河比赛中的绳子一样,两边有人使劲儿拉或者使劲儿压。
要是两边都用力往两边拉,这杆子不就受到拉力了嘛?那要是两边都用力往中间压,这杆子不就受到压力了嘛?这多简单!
比如说,起重机吊起一个重物,那连接重物的那根杆子,不就是受到拉力了吗?这不就和我们拔河的时候,绳子被两边拉是一个道理嘛?再比如,我们用千斤顶把车子顶起来,那千斤顶里的杆子,不就是受到压力了吗?这不就和我们使劲儿把气球往里面压一样嘛?
那轴向拉压杆件的变形特点又是什么呢?当杆子受到拉力的时候,它会变长变细,就好像我们拉一根橡皮筋,它是不是就被拉长了,还变细了?当杆子受到压力的时候,它会变短变粗,这就好像我们把一块面团往一起压,面团是不是就变短变厚了?
我们来想象一下,如果有一根细细的竹子,当成轴向拉压杆件。
当我们用力拉它的时候,它是不是就会被拉得长长的,而且中间还会变得更细,感觉随时都会断掉似的?要是我们用力压它,它是不是就会被压得短短的,粗粗的,像个矮胖墩儿?
我再给你举个例子,假如有一根金属杆子,用来支撑大桥。
如果桥上的车太多太重了,这根杆子受到的压力太大,它可能就会被压得变形,说不定大桥都会变得不安全啦!这多可怕呀!
所以说呀,了解轴向拉压杆件的受力特点和变形特点可太重要啦!要是工程师们不明白这些,盖的房子、造的桥说不定哪天就出问题了,那得多危险呀!
总之,轴向拉压杆件的受力和变形特点虽然听起来有点复杂,但是只要我们多想想生活中的例子,就不难理解啦!。