横截面
受载后
b´ d´
平面假设:原为平面的横截面在变形后仍为平面。
纵向纤维变形相同。
2. 拉伸应力: 由平截面假定,变形均匀,内力分布均匀。 轴力引起的正应力 —— : 在横截面上均布分布。 P
N(x)
N ( x) A
规定:N为拉力,则σ为拉应力;N为压力,则σ为压应力 ;拉应力为正,压应力为负 3. Saint-Venant(圣维南)原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作 用方式的影响。
12
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
5kN 5kN
8kN
3kN
+
8kN
–
3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。 解:x 坐标向右为正,坐标原点在
p
N
N N>0 p N N N<0 p
N 与外法线同向,为正轴力(拉力) N与外法线反向,为负轴力(压力) p
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定出最大轴力的数值 N 及其所在横截面的位置, P + x
即确定危险截面位置,为
强度计算提供依据。
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。 O A PA N1 A PA B PB B PB C PC C PC
D
PD D PD
解: 求OA段内力N1:设置截面如图
X 0 N1 PA P B P C P D 0