指数与指数函数.板块二.学生版
- 格式:doc
- 大小:677.00 KB
- 文档页数:13
《指数函数》学历案(第一课时)一、学习主题本节课的主题是中职数学课程中的《指数函数》。
我们将围绕指数函数的定义、性质及图像等方面进行学习和探究,帮助学生建立对指数函数的基本认识和掌握其基本应用。
二、学习目标1. 理解指数函数的定义,掌握其基本形式。
2. 了解指数函数的性质,包括单调性、值域等。
3. 掌握指数函数图像的绘制方法,能够根据函数表达式绘制大致图像。
4. 学会利用指数函数解决简单的实际问题。
三、评价任务1. 通过课堂提问和小组讨论,评价学生对指数函数定义及性质的掌握情况。
2. 通过学生独立绘制指数函数图像的过程及结果,评价其图像绘制技能。
3. 通过解决实际问题的作业,评价学生对指数函数应用能力的掌握程度。
四、学习过程1. 导入新课:通过复习之前学过的幂的概念,引导学生理解指数函数的来源及基本形式。
2. 定义与性质:通过教师讲解及课件演示,使学生明确指数函数的定义,并理解其基本性质,如单调性、值域等。
3. 图像绘制:通过具体实例,指导学生掌握指数函数图像的绘制方法,并尝试自己绘制。
4. 实际应用:结合实际问题,引导学生运用指数函数解决实际问题,如放射性物质衰变等。
5. 课堂小结:总结本节课的重点内容,强调指数函数的重要性及其在实际生活中的应用。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对指数函数定义及性质的掌握情况。
2. 作业布置:布置相关练习题,包括指数函数的简单计算、图像绘制及实际问题解决等,要求学生独立完成并提交。
3. 作业评价:教师批改作业,了解学生掌握情况,并进行针对性指导。
六、学后反思1. 反思教学方法:教师反思本节课的教学过程,总结优点及不足,为今后的教学提供借鉴。
2. 反思学生学习情况:教师通过观察学生课堂表现、作业完成情况等,了解学生学习情况,进行个性化指导。
3. 学生自我反思:学生回顾本节课的学习过程,总结自己的收获及不足,为今后的学习制定改进措施。
通过本节课的学习,学生应该能够更加深入地理解指数函数的概念和性质,掌握其基本应用。
【考点预测】1.指数及指数运算(1)高中数学53个题型归纳与方法技巧总结篇专题09指数与指数函数根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈,n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠;③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义.(5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈;③()(0mm mab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈.2.指数函数⑥既不是奇函数,也不是偶函数【方法技巧与总结】1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快.当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()xy a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式题型二:指数函数的图像及性质题型三:指数函数中的恒成立问题题型四:指数函数的综合问题【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是()A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为()A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞例5.(2022·全国·高三专题练习)化简:(1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0).(3)312211122211111a a aa a a a a -+--++++-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++ 的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则()A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a 例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是()A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是()A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+D .()f x 是增函数例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为()A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.例12.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为()A .m 1≥B .1mC .01m <<D .01m <≤例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.例15.(2022·全国·高三专题练习(文))已知函数()3(21xf x a a =-+为实常数).(1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值.例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+ .(1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值;(2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围.【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为()A .3B .4C .5D .6例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是()A .(]0,1B .()0,1C .()1,4D .()2,4例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x =++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.【过关测试】一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783≈)()A .5.4倍B .5.5倍C .5.6倍D .5.7倍3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!nxx x x x n =+++++++ ,其中R,N x n ∈∈的近似值为(精确到0.01)()A .1.63B .1.64C .1.65D .1.664.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=()A .26B .16C .-16D .-265.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .26.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .[)1,+∞D .[)2,+∞7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ()A .19B .19-C .1727D .1727-8.(2022·上海宝山·二模)关于函数131()(22xx f x x =-⋅和实数,m n 的下列结论中正确的是()A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是()A .B .C .D .10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为()A 1=,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有()A .0a b ->B .22a b>C .ac bc>D .22a b >12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则()A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.16.(2022·山西·二模(理))已知函数()322x xx f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0, +上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______.四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a a a a --++++的值.19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数;(1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集;(2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.(1)设12,2a b ==,求方程()2f x =的根;(2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.。
题型一 指数函数的定义与表示【例1】 求下列函数的定义域(1)32xy -= (2)213x y += (3)512xy ⎛⎫= ⎪⎝⎭(4)()10.7xy =【例2】 求下列函数的定义域、值域⑴112x y -= ; ⑵3x y -=; ⑶2120.5x x y +-=【例3】 求下列函数的定义域和值域:1.xa y -=1 2.31)21(+=x y【例4】 求下列函数的定义域、值域(1)110.4x y -=; (2)513x y -=. (3)21x y =+典例分析板块二.指数函数【例5】 求下列函数的定义域(1)13xy =;(2)51y x =-【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f ,(3)f -的值.【例7】 若1a >,0b >,且22b b a a -+=b b a a --的值为( )A 6B .2或2-C .2-D .2题型二 指数函数的图象与性质【例8】 已知1a b c >>>,比较下列各组数的大小:①___bca a ;②1ba ⎛⎫⎪⎝⎭1ca ⎛⎫ ⎪⎝⎭;③11___b ca a ;④__a abc .【例9】 比较下列各题中两个值的大小:⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9.【例10】 比较下列各题中两个值的大小(1)0.80.733,(2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01,(4) 3.3 4.50.990.99,【例11】 已知下列不等式,比较m 、n 的大小(1) 22m n<(2)0.20.2m n >(3)()01m n a a a <<<(4)()1m n a a a >>【例12】 图中的曲线是指数函数x y a =的图象,已知a 4133,,,3105四个值,则相应于曲线1234,,,c c c c 的a 依次为_______________.c 4c 3c 2c 1P 4P 3P 2P 11Oy x【例13】 已知51a -=函数()x f x a =,若实数m n ,满足()()f m f n >,则m n ,的大小关系为 .【例14】 设424a 312b =6c a ,b ,c 的大小关系是【例15】 若对[1,2]x ∈,不等式22x m +>恒成立,求实数m 的取值范围.【例16】 判断函数11()3x y -=的单调性.【例17】 函数||()x f x e =( )A .是奇函数,在(,0]-∞上是减函数B .是偶函数,在(,0]-∞上是减函数C .是奇函数,在[0,)+∞上是增函数D .是偶函数,在(,)-∞+∞上是增函数【例18】 已知函数f (x )为偶函数,当()0x ∈+∞,时,()12x f x +=-,求当()0x ∈-∞,时,()f x 的解析式.【例19】 证明函数x a y =和x a y -= )10(≠>a a 且的图象关于y 轴对称。
2023年高考数学总复习第二章函数概念与基本初等函数第5节指数与指数函数考试要求1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像;4.体会指数函数是一类重要的函数模型.1.根式的概念及性质(1)概念:式子na 叫作根式,其中n 叫作根指数,a 叫作被开方数.(2)性质:(na )n =a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R .4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫作指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图像与性质a >10<a <1图像定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.画指数函数y =a x (a >0,且a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),12.指数函数y =a x (a >0,且a ≠1)的图像和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.3.在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大.1.思考辨析(在括号内打“√”或“×”)(1)4(-4)4=-4.()(2)分数指数幂a mn 可以理解为mn 个a 相乘.()(3)函数y =2x -1是指数函数.()(4)函数y =a x2+1(a >1)的值域是(0,+∞).()2.(易错题)若函数f (x )=(a 2-3)·a x 为指数函数,则a =________.3.(易错题)函数y =21x -1的值域是________.4.函数f (x )=a x -1+2(a >0且a ≠1)的图像恒过定点________.5.(2021·贵阳一中月考)3213-76+814×42--2323________.6.已知a 35-13,b 35-14,c =3234,则a ,b ,c 的大小关系是________.考点一指数幂的运算1.计算:823--780+4(3-π)4+[(-2)6]12=________.2.[(0.06415)-2.5]23-3338-π0=________.3.(2021·沧州七校联考1412·(4ab -1)3(0.1)-1·(a 3·b -3)12(a >0,b >0)=________.4.已知f (x )=3x +3-x ,f (b )=4,则f (2b )=________.考点二指数函数的图像及应用例1(1)已知实数a ,b 满足等式2022a =2023b ,下列等式一定不成立的是()A.a =b =0B.a <b <0C.0<a <bD.0<b <a(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.训练1(1)函数f (x )=a x -b 的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)如果函数y =|3x -1|+m 的图像不经过第二象限,则实数m 的取值范围是________.考点三解决与指数函数性质有关的问题角度1比较指数式的大小例2(1)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<cD.b<c<a(2)若e a+πb≥e-b+π-a,下列结论一定成立的是()A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0角度2解简单的指数方程或不等式例3(1)已知实数a≠1,函数f(x)4x,x≥0,2a-x,x<0,若f(1-a)=f(a-1),则a的值为________.(2)若2x2+114x-2,则函数y=2x的值域是()A.18,2 B.18,2C.-∞,18 D.[2,+∞)角度3指数函数性质的综合应用例4(1)不等式4x-2x+1+a>0,对任意x∈R都成立,则实数a的取值范围是________.(2)已知定义域为R的函数f(x)=-12+12x+1,则关于t的不等式f(t2-2t)+f(2t2-1)<0的解集为________.训练2(1)(2021·郑州调研)已知函数f(x)=4x-12x,a=f(20.3),b=f(0.20.3),c=f(log0.32),则a,b,c的大小关系为()A.c<b<aB.b<a<cC.b<c<aD.c<a<b(2)若函数f (x )2+2x +3,19,则f (x )的单调递增区间是______.(3)函数y +1在区间[-3,2]上的值域是________.1.若函数f (x )=a x (a >0,且a ≠1)f (-1)=()A.1B.2C.3D.32.(2021·成都诊断)不论a 为何值,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是()113.(2022·哈尔滨质检)函数y =a x -1a(a >0,且a ≠1)的图像可能是()4.(2020·天津卷)设a =30.7,b 0.8,c =log 0.70.8,则a ,b ,c 的大小关系为()A.a <b <cB.b <a <cC.b <c <aD.c <a <b5.(2021·衡水中学检测)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是()A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)6.(2020·新高考山东卷)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.化简:(a23·b-1)-12·a-12·b136a·b5(a>0,b>0)=________.8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是____________.9.已知函数f(x),a≤x<0,x2+2x,0≤x≤4的值域是[-8,1],则实数a的取值范围是________.10.已知定义域为R的函数f(x)=-2x+b2x+1+2为奇函数.(1)求b的值;(2)任意t∈R,f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.11.已知函数f(x)=4x+m2x是奇函数.(1)求实数m的值;(2)设g(x)=2x+1-a,若函数f(x)与g(x)的图像有公共点,求实数a的取值范围.12.若关于x的方程|a x-1|=2a(a>0,且a≠1)有两个不相等的实根,则a的取值范围是()A.0,12(1,+∞) B.0,12C.12,1 D.(1,+∞)13.(2022·邯郸模拟)设f(x)|2x-1|,x≤2,-x+5,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)14.已知定义在R上的函数f(x)=2x-12|x|.(1)若f(x)=32,求x的值;(2)若2t f(2t)+mf(t)≥0对任意t∈[1,2]恒成立,求实数m的取值范围.。
第二章:指数函数、对数函数、幂函数(学生版)指数与指数幂的运算(二——三课时)第一课时一、阅读本章导言(47、48页)了解本章学习的内容、体会指、对数函数在实际生活中的作用 二、复习回顾:当,m n 都为正整数,,a b 为任意实数时我们知道: (1)*)nn aa a a n N =⋅∈个(;(2)m nm n m n a a a aa aa +⋅=⋅⋅⋅=个个;(3)()n m nmmm m mn a a aa +++=⋅=个个;(4)()()()()nn n n n n ab ab aba ab b a b =⋅=⋅⋅⋅=⋅个个个三、推进新课提出问题:以上的运算规律能否推广,即,m n 为任意实数时是否还能使后三个等式成立? (一)负整数、零次幂的探讨:0a = ; n a -= ;→n m a a ÷= ;()m ab= .探究过程:(二)分数指数幂——根式的探讨: 问题思考:1na 表示的含义应该如何? 1、根式定义(1)n 次方根的定义:一般地,如果nx a =,那么x 叫做a 的n 次方根,其中1n >,且n N *∈; (2)n 次方根的表示:研究下面的问题,并总结其中的规律:例题1.根据n 次方根的概念,分别求出27的3次方根,-32的5次方根; 例题2.根据n 次方根的概念,分别求出16的4次方根,-81的4次方根。
例题3.根据n 次方根的概念,分别求出0的3次方根,0的4次方根。
研究结论总结:问题思考:n例题4、求33)2(- , 552 , 443 , 2)3(-2、课堂练习巩固:练习1、求下列各式的值:(1)5 2(33、应用提高: 例题5、化简(1= ; (2= ;例题61a =-,则a 的取值范围为 .4、尝试提高练习:练习2、(1= ;= ;5、作业:(1)总结本节课的主要知识方法;(2)若a b ==a b += ;(3= ;(4)预习分数指数幂分数指数幂(第二、三课时)一、新课引入:23a a ==,结果的指数与被开方数的指数、根指数有什么关系?50-52页,总结回答下列问题:(1)正数分数指数幂的意义为 ;(根式与分式可以进行互化)(2)0的分数指数幂的意义为 ; (3)分数指数幂的运算规律:m na-= (*,,0m n N a ∈>)思考:观察下列运算,分析若分数指数幂不加条件0a >是否可行?1236(8)2,(8)2-==--==;0的正分数指数幂为0,0的负分数指数幂会如何?(4)可以验证当底数大于0时,整数指数幂的运算性质,对于有理数幂也同样适用:r s a a = (0,,)a r s Q >∈;()r s a = (0,,)a r s Q >∈;()r ab = (0,0,)a b r Q >>∈;(5)阅读教材52——53页,理解:①当底数大于0时,无理数指数幂是通过用有理数无限逼近的办法来理解的;②当底数大于0时,无理数指数幂是一个确定的实数,大小用接近的有理指数幂来估计; ③当底数大于0时,上述有理指数幂的运算性质,对于无理数指数幂都适用; ④当底数大于0时,指数概念可以扩充到实数指数.二、基础巩固型例题例题1.求值:43321328116411008---),(),(,例题2.用分数指数幂的形式表示下列各式:(1)2a (0)a >; (2(0)a >; (3)2(,0)ab >.例题3、化简(使结果不能同时含有根式和分数指数,不能同时含有分母和负指数)下列各式(式中字母都是正数)(1)211133221566(2)(6)3a b a b a b⋅--; (2)31884()m n -⋅; (32;三、基础型练习题:练习1、求值(1)133241116162--()-()= ; (2)024[53()]15--+⨯= ; (3)21123321[125()343]2-++= ;练习2、化简:(1= ; (20)a >= ;四、探索提高性例题:例题4.若11*1(99),(),2n n x n N -=-∈则(n x = ;例题5、(1)已知13x x-+=,则22x x -+= ;33x x -+= ;1122x x -+= ;1133x x -+= .(提示:33223322()(),()()a b a b a ab b a b a b a ab b -=-+++=+-+) (2)化简113322338(2)4a b a b b a-÷-+= ;例题6、(1(5x =-x 的取值范围为 ;五、探索提高性练习:练习3、;练习4、(1)已知,0x a >化简2⋅= ;(2)若21,xa 则33x xx xa a a a --++= ;(3)已知221)x x x -+=>,则22x x --= ;练习5、化简y ==(提示:3(1)x +=32331x x x +++) 六、作业:(1)总结本节课的主要知识方法;(2)求值:= ; (3)化简:,0)xy z >=;44⋅= ; 12121(2)()248n n n ++-⨯⨯= ; 222222223333x y x y x y x y ----+--+-= ; (4)已知11225x x-+=(0x >),则21x x+= ;1122x x --= ; 22x x -+= ;3322x x-+= .(5)预习指数函数; 七、补充探究题(实验班): 1= ;(使其分母无根式)2、若941x y +=,令3xt =,若12132()x y f t --+=,则()f t = (用t 表示),函数()f t 的最指数函数及其性质(第一课时)一、引入:某人编辑了一条吉祥短信,短信中说,若你将该短信不多不少发给另外的8人,就会带来好运气;假设收短信的人都如此做了,记编短信的人发出(也发给8人)为第1次,设经过x 次发出后,收到短信的人为y ,通过填写下表,总结出,x y 的关系式:()y f x == .二、新课讲解: 1.指数函数定义:一般地,函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数定义域为 . 思考:若没有0a >且1a ≠的约束,情况如何? 2、概念巩固理解性例题:例题1、(1)下列函数是指数函数的是:( )填序号①2y x = ②8x y = ③(21)x y a =-(12a >且1a ≠) ④(4)x y =-⑤xy π= ⑥1225+=xy ⑦x y x=⑧10xy =-.(2)函数2(33)x y a a a =-+是指数函数,则实数a 的值为( )A 、1a =或2a =B 、1a =C 、2a =D 、0a >或1a ≠ 2.指数函数x y a =(0a >且1a ≠)的图象:探究:在同一坐标系中,画出2xy =的图象 、1()x y =的图象.(注意体会描点法作图的基本步骤)指数函数x在底数1a >及01a <<这两种情况下的图象和性质(注意记忆图象再记住性质):思考:函数2x y =与2()2xx y -==图象有何关系?函数x y a =与()x y a=有何关系,为什么?三、图象性质简单巩固性例题:例题2.已知指数函数()(0,1)x f x a a a =>≠的图象经过点(3,)π,求(0),(1),(3)f f f -的值例题3.比较下列各组中数值的大小:2.53(1)1.7,1.7; 0.10.2(2)0.8,0.8-- (3)0.40.6,1 0.3 3.1(4)1.7,0.9例题4、指数函数,,,xxxxy a y b y c y c ====的图象如右所示,试判断1,,,,a b c d 这五个数的大小关系(,,,a b c d 都大于0且都不等于1)五、作业:1、判断下列各组数的大小:(1)23554.1,4.1 (2)0.60.90.7,0.7 (3)34340.9,1.22、已知22(2)(2)xya a a a ++>++(a R ∈),则,x y 大小关系为 ;3、某种药物在5分钟内注入患者的血液中,在这5分钟期间,血液中药物量与时间x 呈正比;5分钟停止注射后血液中的药物含量呈指数衰减.则血液中药物含量y 与时间x 的函数关系图为( )4、总结本节课的主要知识和方法;指数函数图象、性质的应用(第二、三课时)一、引入复习回顾指数函数的图象和性质 二、函数图象的应用:例题1、(1)若0a >且1a ≠,则函数11x y a -=-的图象一定过点 ;(2)函数223()(1)xx f x a m a +-=+> 恒过点(1,10),则m = 练习1、若函数1(0,1)x y a b a a =+->≠且的图象经过第二、三、四象限,则一定有( )A.010a b <<>且B.10a b >>且C.010a b <<<且D.10a b ><且例题2、已知函数()2x y f x ==,在同一坐标系上作出下列各组函数的图象,并总结规律: (1)(1)f x + 与(1)f x -; (2)(1)f x -与()f x -; (3)()1f x +与()1f x -; (4)()f x -与1()f x --;(5)(||)f x 与(|1|)f x -及|()1|f x -;练习2、(1)函数34x y --=图象向 平移 单位,得到函数4xy -=的图象;(2)在同一坐标系中画出函数1()2xy =、1|1()|2xy =-的草图。
第十讲 指数函数 重难点一、指数图像综合【例1】已知2()f x x =,1()2xg x m ⎛⎫=- ⎪⎝⎭,若对[]11,3x ∀∈-,[]20,2x ∃∈, 12()()f x g x ≥,则m 的取值范围为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .1,4⎛⎤-∞ ⎥⎝⎦【变式1】如图,面积为8的平行四边形OABC ,对角线AC CO ⊥,AC 与BO 交于点E ,某指数函数x y a=()0,1a a >≠且,经过点E B 、,则a =( )A .2B .3C .2D .3 重难点二、指数复合综合【例2】函数()22323()x x y a a a R --=++∈的递增区间是________. 【变式1】函数2212x y -⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(],0-∞B .[)0,+∞C .(,2⎤-∞⎦D .)2,⎡+∞⎣ 【变式2】已知函数()()0,1x f x a a a -=>≠且满足(2)(3)f f ->-,则函数21()x g x a -=的单调增区间是________.【例3】已知关于x 的方程422x x a -=有两个不相等的实数根,求a 的取值范围.【变式1】设函数()31,1,2,1x x x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的a 取值范围是( ) A .2,13⎡⎤⎢⎥⎣⎦B . []0,1C . 2,3⎡⎫+∞⎪⎢⎣⎭D .[)1,+∞【例4】已知1339x x ⎛⎫≤- ⎪⎝⎭,求函数13xy ⎛⎫= ⎪⎝⎭的值域.【变式1】若函数1()21x f x =+,则该函数在(),-∞+∞上( ) A .单调递减且无最小值 B .单调递减且有最小值 .单调递增且有最大值【例5】若存在正数x 使2()1x a -<成立,则a 的取值范围是( )A .(),-∞+∞B .()2,-+∞C .()0,+∞D .()1,-+∞【变式1】已知函数||212)(x x x f -=,若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围.【例6】已知)(122)(12R a a a x f x x ∈-+-⋅=+. (1)求()f x 的值域;(2)设()2()x h x f x -=,0a >时,对任意12,[1,1]x x ∈-总有121()()2a h x h x +-≤成立,求a 的取值范围.【变式1】定义域为R 的函数12()2x x b f x a+-+=+是奇函数.(1)求,a b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.【例7】设函数()(01)x x f x ka a a a -=->≠且是定义在R 的奇函数(1)求k 的值(2)若(1)0f >,试求不等式2(2)(4)0f x x f x ++->的解集(3)若3(1)2f =且22()2()x x g x a a mf x -=+-在[1,)+∞上的最小值为2-,求m 的值【变式1】已知函数()2()11xx f x a a x -=+>+ 证明:(1)函数()f x 在()1,-+∞上为增函数; (2)用反证法证明方程()0f x =没有负数根。
题型一 指数函数的定义与表示【例1】 求下列函数的定义域(1)32xy -= (2)213x y += (3)512xy ⎛⎫= ⎪⎝⎭(4)()10.7xy =【例2】 求下列函数的定义域、值域⑴112x y -= ; ⑵3x y -=; ⑶2120.5x x y +-=【例3】 求下列函数的定义域和值域:1.xa y -=1 2.31)21(+=x y【例4】 求下列函数的定义域、值域(1)110.4x y -=; (2)513x y -=. (3)21x y =+典例分析板块二.指数函数【例5】 求下列函数的定义域(1)13xy =;(2)y =【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f ,(3)f -的值.【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( )A B .2或2- C .2- D .2题型二 指数函数的图象与性质【例8】 已知1a b c >>>,比较下列各组数的大小:①___bca a ;②1ba ⎛⎫⎪⎝⎭1ca ⎛⎫ ⎪⎝⎭;③11___b ca a ;④__a abc .【例9】 比较下列各题中两个值的大小:⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9.【例10】 比较下列各题中两个值的大小(1)0.80.733,(2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01,(4) 3.3 4.50.990.99,【例11】 已知下列不等式,比较m 、n 的大小(1) 22m n<(2)0.20.2m n >(3)()01m n a a a <<<(4)()1m n a a a >>【例12】 图中的曲线是指数函数x y a =的图象,已知a413,,3105四个值,则相应于曲线1234,,,c c c c 的a 依次为_______________.【例13】 已知a =函数()x f x a =,若实数m n ,满足()()f m f n >,则m n ,的大小关系为.【例14】 设a b =c a ,b ,c 的大小关系是【例15】 若对[1,2]x ∈,不等式22x m +>恒成立,求实数m 的取值范围.【例16】 判断函数11()3x y -=的单调性.【例17】 函数||()x f x e =( )A .是奇函数,在(,0]-∞上是减函数B .是偶函数,在(,0]-∞上是减函数C .是奇函数,在[0,)+∞上是增函数D .是偶函数,在(,)-∞+∞上是增函数【例18】 已知函数f (x )为偶函数,当()0x ∈+∞,时,()12x f x +=-,求当()0x ∈-∞,时,()f x 的解析式.【例19】 证明函数x a y =和x a y -= )10(≠>a a 且的图象关于y 轴对称。
指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。
(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。
(3)()()*∈>==N n n a a nnn ,1,00。
,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。
2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。
(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。
4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。
5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。
高一数学基础教材(A )—04第二章 基本初等函数2-1 指数与指数函数(二)✍基础知识:1、指数函数的定义函数 叫做指数函数,其中x 是自变量,函数的定义域为R.指数函数xy a =在底数1a >及01a <<这两种情况下的图象和性质:(1)指数函数中,底数是一个常量,自变量出现在指数位置上.显然y =x a不是指数函数,这一点要特别注意.(2)指数函数中,系数一定为1,指数一定为x.例如,y =3·2x 不是指数函数,y =2x+1也不是指数函数.(3)当0<a<1时,x →+∞,y →0;当a>1时,x →-∞,y →0. (其中“x→+∞”的意义是“x 接近于正无穷大”)✍例题讲解:[例1] 下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ;(4)y =x x ;(5)y =x α(α是常数).【一点通】 判定一个函数为指数函数:①___________________;②_________________________;③________________________________________. 【巩固】1.给出下列函数: ①y =2·(2)x;②y =2x -1;③y =(π2)x;④y =31x -;⑤y =x 13.其中是指数函数的是________(填序号).【巩固】2.若函数y =(a 2-3a +3)·a x是指数函数,求a 的值.[例2] 如图,曲线C 1,C 2,C 3,C 4是指数函数y =ax的图象,而a ∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫23,13,5,π,则图象C 1,C 2,C 3,C 4对应的函数的底数依次是______,______,________,________.【一点通】(1)指数函数的图象随底数变化的规律:①无论指数函数的底数a 如何变化,指数函数y =a x的图像都与直线_________相交于点(__,________),由图像可知:在y 轴右侧,图象从下到上相应的底数由___变_____.②指数函数的底数与图象间的关系可概括记忆为:在第一象限内,图高则底_____(填大小). (2) 指数函数图象问题的处理方法①抓住图象上的特殊点,如指数函数的图象过定点(___,____); ②利用图象变换,如函数图象的平移变换(左右平移、上下平移); ③利用函数的__________与______________.【巩固】3.函数y =2-|x |的大致图象是 ( )【巩固】4.函数f (x )=ax -1+1(a >0且a ≠1)的图像过定点A ,则A 点的坐标为________.[例3] 比较下列各组数的大小:(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4;(4)(45)12,(910)13.【一点通】 比较幂的大小的方法:(1)对于底数相同但指数不同的幂,可以利用指数函数的______________来比较. (2)对于底数不同但指数相同的幂,可利用指数函数__________________来比较. (3)对于底数不同且指数不同的幂,则应通过________________来比较. 【巩固】5.下列判断正确的是 ( )A .2.52.5>2.53B .0.82<0.83C .π2<π2D .0.90.3>0.90.5【巩固】6.已知a =5-12,函数f (x )=a x.若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.【巩固】7.比较下列各组数的大小:(1)(54)2.3和(45)2.3;(2)0.6-2和(43)23-.【巩固】8.如果a -5x >ax +7(a >0,且a ≠1),求x 的取值范围.[例4] (12分)求下列函数的定义域和值域:(1)y =21x -4;(2)y =⎝ ⎛⎭⎪⎫23-|x |;(3)y =22x -x 2.【一点通】(1)函数y =af (x )的定义域与y =f (x )的定义域相同.(2)函数y =af (x )的值域的求法如下:①换元,令t =f (x );②求t =f (x )的定义域x ∈D ;③求t =f (x )的值域t ∈M ;④利用y =at 的单调性求y =at ,t ∈M 的值域.【巩固】9.函数y = a x-1的定义域是(-∞,0],则实数a 的取值范围为________.【巩固】10.函数f (x )=⎝ ⎛⎭⎪⎫13x-1,x ∈[-1,2]的值域为________. 【巩固】11.求下列函数的定义域和值域:(1)y = 1-2x; (2)y =(13)3-x .(1)应用指数函数y =ax 的单调性时,如果底数a 大小不确定,必须分________________和_____________________两种情况讨论.(2)当_____________时,a 的值越大,图象越靠近y 轴,递增速度越快.当_________时,a 的值越小,图象越靠近y 轴,递减的速度越快.课堂练习一、选择题:1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44366399a a ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且22b ba a -+=,则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>a B 、2<a C 、2a < D 、12a <<5、下列函数式中,满足1(1)()2f x f x +=的是( )A 、1(1)2x + B 、14x + C 、2x D 、2x -6、下列2()(1)x x f x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22ab>;(3)b a 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数9、函数121x y =-的值域是( )A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( )A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限11、2()1()(0)21x F x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( )A 、是奇函数 B 、可能是奇函数,也可能是偶函数C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若103,104xy==,则10x y-= 。
§2.7指数与指数函数课标要求1.理解有理数指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质.2.通过实例,了解指数函数的实际意义,会画指数函数的图象.3.理解指数函数的单调性、特殊点等性质,并能简单应用.知识梳理1.根式(1)一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.(3)(na )n =a .当n 为奇数时,na n =a ,当n 为偶数时,n a n =|a |a ,a ≥0,-a ,a <0.2.分数指数幂正数的正分数指数幂:m na =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂:m n a=1m na=1na m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于0,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R .(2)指数函数的图象与性质a >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x>0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1增函数减函数常用结论1.指数函数图象的关键点(0,1),(1,a )12.如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则c >d >1>a >b >0,即在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)4(-4)4=-4.(×)(2)2a ·2b =2ab .(×)(3)指数函数y =a x 与y =a -x (a >0,且a ≠1)的图象关于y 轴对称.(√)(4)若a m <a n (a >0,且a ≠1),则m <n .(×)2.已知函数y =a ·2x 和y =2x +b 都是指数函数,则a +b 等于()A .不确定B .0C .1D .2答案C解析由函数y =a ·2x 是指数函数,得a =1,由y =2x +b 是指数函数,得b =0,所以a +b =1.3.已知关于x 的不等式-4≥3-2x ,则该不等式的解集为()A .[-4,+∞)B .(-4,+∞)C .(-∞,-4)D .(-4,1]答案A 解析不等式-4≥3-2x ,即34-x ≥3-2x ,由于y =3x 是增函数,所以4-x ≥-2x ,解得x ≥-4,所以原不等式的解集为[-4,+∞).4.(2023·福州质检)3(-4)3+120.254=________.答案5解析3(-4)3+120.254=-4+1+0.5×16=5.题型一指数幂的运算例1计算:-2×2310227-⎛⎫ ⎪⎝⎭-2×(2+π)02;(2)23×331.5×612.解(1)原式=128116⎛⎫ ⎪⎝⎭-2×236427-⎛⎫⎪⎝⎭-2=14232⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-2×23334⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-2+916=94-2×916-2+916=94-98-2+916=-516.(2)原式=11132623233(23)2⎛⎫⨯⨯⨯⨯⨯ ⎪⎝⎭1111133362623-+++=⨯⨯=6×3=18.思维升华(1)指数幂的运算首先将根式、分数的分数指数幂统一为整数的分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加.②运算的先后顺序.(2)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.跟踪训练1(多选)下列计算正确的是()A.12(-3)4=3-3B .2115113366221()(3)9(0,0)3a a b a b a a b ⎛⎫-÷=->> ⎪⎝⎭C.39=33D .已知x 2+x -2=2,则x +x -1=2答案BC解析对于A ,12(-3)4=1234=143123=3=33≠3-3,所以A 错误;对于B ,2115211115113366326236221()(3)93a b a b a b a b +-+⎛⎫-÷=-⋅ ⎪⎝⎭=-9a (a >0,b >0),所以B 正确;对于C ,391163=9=3=33,所以C 正确;对于D ,因为(x +x -1)2=x 2+2+x -2=4,所以x +x -1=±2,所以D 错误.题型二指数函数的图象及应用例2(1)(多选)已知实数a ,b 满足等式3a =6b ,则下列可能成立的关系式为()A .a =bB .0<b <aC .a <b <0D .0<a <b答案ABC解析由题意,在同一平面直角坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,故选项A 正确;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,故选项B 正确;作出直线y =m ,当0<m <1时,若3a =6b =m ,则a <b <0,故选项C 正确;当0<a <b 时,易得2b >1,则3a <3b <2b ·3b =6b ,故选项D 错误.(2)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.答案(0,2)解析在同一平面直角坐标系中画出y=|2x-2|与y=b的图象,如图所示.∴当0<b<2时,两函数图象有两个交点,从而函数f(x)=|2x-2|-b有两个零点.∴实数b的取值范围是(0,2).思维升华对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.跟踪训练2(多选)已知函数f(x)=a x-b(a>0,且a≠1,b≠0)的图象不经过第三象限,则a,b 的取值范围可能为()A.0<a<1,b<0B.0<a<1,0<b≤1C.a>1,b<0D.a>1,0<b≤1答案ABC解析若0<a<1,则函数y=a x的图象如图所示,要想f(x)=a x-b的图象不经过第三象限,则需要向上平移,或向下平移不超过1个单位长度,故-b>0或-1≤-b<0,解得b<0或0<b≤1,故A,B正确;若a>1,则函数y=a x的图象如图所示,要想f(x)=a x-b的图象不经过第三象限,则需要向上平移,故-b>0,解得b<0,即C正确,D错误.题型三指数函数的性质及应用命题点1比较指数式的大小例3(2024·海口模拟)已知a=1.30.6,b0.4,c,则()A.c<b<a B.a<b<cC .c <a <bD .b <c <a 答案D解析a =1.30.6>1.30=1,b 0.4,c ,因为指数函数y 是减函数,所以=1,所以b <c <1,所以b <c <a .命题点2解简单的指数方程或不等式例4已知p :a x <1(a >1),q :2x +1-x <2,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析∵a x <1,当a >1时,y =a x 是增函数,∴p :{x |x <0}.对于不等式2x +1<x +2,作出函数y =2x +1与y =x +2的图象,如图所示.由图象可知,不等式2x +1<x +2的解集为{x |-1<x <0},∴q :{x |-1<x <0}.又∵{x |-1<x <0}⊆{x |x <0},∴p 是q 的必要不充分条件.命题点3指数函数性质的综合应用例5已知函数f (x )=8x +a ·2xa ·4x (a 为常数,且a ≠0,a ∈R )是奇函数.(1)求a 的值;(2)若∀x ∈[1,2],都有f (2x )-mf (x )≥0成立,求实数m 的取值范围.解(1)f (x )=1a ·2x +12x ,因为f (x )是奇函数,所以f (-x )=-f (x ),即1a ·12x +2x xx 0,即1a +1=0,解得a =-1.(2)由(1)知a =-1,所以f (x )=12x -2x ,x ∈[1,2],所以122x -22x ≥所以m ≥12x +2x ,x ∈[1,2],令t =2x ,t ∈[2,4],设y =12x +2x ,则y =t +1t ,t ∈[2,4],由于y =t +1t 在[2,4]上单调递增,所以m ≥4+14=174.所以实数m 的取值范围是174,+思维升华(1)利用指数函数的性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量.(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,要借助“同增异减”这一性质分析判断.跟踪训练3(1)(多选)(2023·重庆模拟)已知函数f (x )=e x -1e x +1,则下列结论正确的是()A .函数f (x )的定义域为RB .函数f (x )的值域为(-1,1)C .函数f (x )是奇函数D .函数f (x )为减函数答案ABC解析因为e x >0,所以e x +1>0,所以函数f (x )的定义域为R ,故A 正确;f (x )=e x -1e x +1=1-2e x +1,由e x >0⇒e x +1>1⇒0<1e x +1<1⇒-2<-2e x +1<0⇒-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1),故B 正确;因为f (-x )=e -x-1e -x +1=1e x -11e x +1=1-e x1+ex =-f (x ),所以函数f (x )是奇函数,故C 正确;因为函数y =e x +1是增函数,所以y =e x +1>1,所以函数y =2e x +1是减函数,所以函数y =-2e x +1是增函数,故f (x )=e x -1e x +1=1-2e x +1是增函数,故D 不正确.(2)(2023·银川模拟)函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,则a 的值为________.答案32或12解析当a >1时,函数f (x )在区间[1,2]上单调递增,由题意可得,f (2)-f (1)=a 2-a =a2,解得a =32或a =0(舍去);当0<a <1时,函数f (x )在区间[1,2]上单调递减,由题意可得,f (1)-f (2)=a -a 2=a2,解得a =12或a =0(舍去),综上所述,a =32或a =12.课时精练一、单项选择题1.下列结论中,正确的是()A .若a >0,则4334·a a =a B .若m 8=2,则m =±82C .若a +a -1=3,则1122a a-+=±5D.4(2-π)4=2-π答案B解析对于A ,根据分数指数幂的运算法则,可得443325334412a a aa +⋅==,当a =1时,2512a =a ;当a ≠1时,2512a≠a ,故A 错误;对于B ,m 8=2,故m =±82,故B 正确;对于C ,a +a -1=3,则21122a a -⎛⎫+ ⎪⎝⎭=a +a -1+2=3+2=5,因为a >0,所以1122a a -+=5,故C 错误;对于D ,4(2-π)4=|2-π|=π-2,故D 错误.2.已知函数f (x )=a x -a (a >1),则函数f (x )的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限答案B解析y =a x (a >1)是增函数,经过点(0,1),因为a >1,所以函数f (x )的图象需由函数y =a x (a >1)的图象向下平移超过1个单位长度得到,所以函数f (x )=a x -a 的图象如图所示.故函数f (x )的图象不经过第二象限.3.已知a =31.2,b =1.20,c 0.9,则a ,b ,c 的大小关系是()A .a <c <bB .c <b <aC .c <a <bD .b <c <a答案D解析因为b =1.20=1,c 0.9=30.9,且y =3x 为增函数,1.2>0.9>0,所以31.2>30.9>30=1,即a >c >b .4.(2023·新高考全国Ⅰ)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上是增函数,而函数f (x )=2x (x-a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).5.(2023·潍坊模拟)“关于x 的方程a (2|x |+1)=2|x |没有实数解”的一个必要不充分条件是()A .a ≤12B .a >1C .a ≤12或a ≥1D .a <12或a ≥1答案C解析a (2|x |+1)=2|x |,因为2|x |+1>0,所以a =2|x |2|x |+1=1-12|x |+1,因为2|x |≥20=1,所以2|x |+1≥2,0<12|x |+1≤12,12≤1-12|x |+1<1,要使a (2|x |+1)=2|x |没有实数解,则a <12或a ≥1,由于a <12或a ≥1不能推出a ≤12,故A 不成立;由于a <12或a ≥1不能推出a >1,故B 不成立;由于a <12或a ≥1⇒a ≤12或a ≥1,且a ≤12或a ≥1不能推出a <12或a ≥1,故C 正确;D 为充要条件,不符合要求.6.(2024·辽源模拟)已知函数f (x )=2x -2-x +1,若f (a 2)+f (a -2)>2,则实数a 的取值范围是()A .(-∞,1)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)答案C解析令g (x )=2x -2-x ,定义域为R ,且g (-x )=-g (x ),所以函数g (x )是奇函数,且是增函数,因为f (x )=g (x )+1,f (a 2)+f (a -2)>2,则g (a 2)+g (a -2)>0,即g (a 2)>-g (a -2),又因为g (x )是奇函数,所以g (a 2)>g (2-a ),又因为g (x )是增函数,所以a 2>2-a ,解得a <-2或a >1,故实数a 的取值范围是(-∞,-2)∪(1,+∞).二、多项选择题7.已知函数f (x )=|2x -1|,实数a ,b 满足f (a )=f (b )(a <b ),则()A .2a +2b >2B .∃a ,b ∈R ,使得0<a +b <1C .2a +2b =2D .a +b <0答案CD解析画出函数f (x )=|2x -1|的图象,如图所示.由图知1-2a =2b -1,则2a +2b =2,故A 错误,C 正确;由基本不等式可得2=2a +2b >22a ·2b =22a +b ,所以2a +b <1,则a +b <0,故B 错误,D 正确.8.已知函数f (x )=m -e x 1+e x是定义域为R 的奇函数,则下列说法正确的是()A .m =12B .函数f (x )在R 上的最大值为12C .函数f (x )是减函数D .存在实数n ,使得关于x 的方程f (x )-n =0有两个不相等的实数根答案AC 解析因为函数f (x )=m -e x 1+e x 是定义域为R 的奇函数,所以f (0)=m -e 01+e 0=0,解得m =12,此时f (x )=12-e x 1+e x,则f (-x )=12-e -x 1+e -x =12-11+e x=12-1+e x -e x 1+e x=12-1+e x 1+e x =e x 1+e x -12=-f (x ),符合题意,故A 正确;又f (x )=12-e x 1+e x =12-e x +1-11+ex =11+e x -12,因为e x >0,所以e x +1>1,则0<11+ex <1,所以-12<f (x )<12,即f (x )-12,B 错误;因为y =e x 是增函数,y =e x >0,且y =1x在(0,+∞)上单调递减,所以f (x )=11+e x -12是减函数,故C 正确;因为f (x )是减函数,所以y =f (x )与y =n 最多有1个交点,故f (x )-n =0最多有一个实数根,即不存在实数n ,使得关于x 的方程f (x )-n =0有两个不相等的实数根,故D 错误.三、填空题9.013623290.125[(2)]8-⎛⎫-+-+ ⎪⎝⎭=________.答案81解析原式=13131326322112(23)2⎛⎫⨯- ⎪⨯⎝⎭⎛⎫-++⨯ ⎪⎝⎭=2-1+8+(23×32)=81.10.(2023·福州模拟)写出一个同时具备下列性质的函数f (x )=________.①f (x +1)=f (x )f (1);②f ′(x )<0.答案e -x (答案不唯一)解析∵f (x +1)=f (x )f (1)是加变乘,∴考虑指数函数类型,又f ′(x )<0,∴f (x )是减函数,∴f (x )=e -x 满足要求.11.已知函数f (x )=24313ax x -+⎛⎫ ⎪⎝⎭有最大值3,则a 的值为________.答案1解析令g (x )=ax 2-4x +3,则f (x )(x ),∵f (x )有最大值3,∴g (x )有最小值-1,1,解得a =1.12.(2024·宁波模拟)对于函数f (x ),若在定义域内存在实数x 0满足f (-x 0)=-f (x 0),则称函数f (x )为“倒戈函数”.设f (x )=3x +m -1(m ∈R ,m ≠0)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是________.答案-23,解析∵f (x )=3x +m -1是定义在[-1,1]上的“倒戈函数”,∴存在x 0∈[-1,1]满足f (-x 0)=-f (x 0),∴03x -+m -1=03x --m +1,∴2m =0033x x ---+2,构造函数y =0033x x ---+2,x 0∈[-1,1],令t =03x ,t ∈13,3,则y =-1t-t +2=2在13,1上单调递增,在(1,3]上单调递减,∴当t =1时,函数取得最大值0,当t =13或t =3时,函数取得最小值-43,∴y ∈-43,0,又∵m ≠0,∴-43≤2m <0,∴-23≤m <0.四、解答题13.如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,求a 的值.解令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1a ,a ,又函数y =(t +1)2-2在1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3或a =-5(舍去);当0<a <1时,因为x ∈[-1,1],所以t ∈a ,1a ,又函数y =(t +1)2-2在a ,1a 上单调递增,则y max -2=14,解得a =13或a =-15(舍去).综上,a =3或a =13.14.已知定义域为R 的函数f (x )=a -2x b +2x是奇函数.(1)求a ,b 的值;(2)判断f (x )的单调性;(3)若存在t ∈[0,4],使f (k +t 2)+f (4t -2t 2)<0成立,求实数k 的取值范围.解(1)因为函数f (x )是定义在R 上的奇函数,所以f (0)=0,即a -1b +1=0,所以a =1,又因为f (-x )=-f (x ),所以a -12x b +12x =-a -2x b +2x ,将a =1代入,整理得2x -1b ·2x +1=2x -1b +2x,当x ≠0时,有b ·2x +1=b +2x ,即(b -1)(2x -1)=0,又因为当x ≠0时,有2x -1≠0,所以b -1=0,所以b =1.经检验符合题意,所以a =1,b =1.(2)由(1)知,函数f (x )=1-2x 1+2x =-(1+2x )+21+2x =-1+21+2x ,因为y =1+2x 为增函数,且1+2x >0,则函数f (x )是减函数.(3)因为存在t ∈[0,4],使f (k +t 2)+f (4t -2t 2)<0成立,且函数f (x )是定义在R 上的奇函数,所以不等式可转化为f (k +t 2)<f (2t 2-4t ),又因为函数f (x )是减函数,所以k +t 2>2t 2-4t ,所以k >t 2-4t ,令g (t )=t 2-4t =(t -2)2-4,由题意可知,问题等价转化为k >g (t )min ,又因为g (t )min =g (2)=-4,所以k >-4,即实数k 的取值范围为(-4,+∞).15.(2023·深圳模拟)已知αa =(cos α)sin α,b =(sin α)cos α,c =(cos α)cos α,则()A .b >c >aB .c >b >aC .c >a >bD .a >b >c 答案A 解析已知α0<cos α<sin α<1,因为y =(cos α)x 在(0,1)上单调递减,故c =(cos α)cos α>(cos α)sin α=a ;因为幂函数y =x cos α在(0,1)上单调递增,故c =(cos α)cos α<(sin α)cos α=b ,故b >c >a .16.(2023·徐州模拟)正实数m ,n 满足e 1-2m +2-2m =e n -1+n ,则n m +1n的最小值为________.答案5 2解析由e1-2m+2-2m=e n-1+n,得e1-2m+(1-2m)=e n-1+(n-1),令f(x)=e x+x,则原等式为f(1-2m)=f(n-1),显然函数f(x)为增函数,于是1-2m=n-1,即2m+n=2,而m>0,n>0,因此nm+1n=nm+2m+n2n=nm+mn+12≥2nm·mn+12=52,当且仅当nm=mn,即m=n=23时取等号,所以当m=n=23时,nm+1n取得最小值52.。
第2课时 指数函数的图象与性质(2)教材要点要点一 比较幂的大小一般地,比较幂大小的方法有(1)对于同底数不同指数的两个幂的大小,利用____________的单调性来判断.(2)对于底数不同指数相同的两个幂的大小,利用__________的变化规律来判断.(3)对于底数不同指数也不同的两个幂的大小,则通过______来判断.要点二 解指数方程、不等式简单指数不等式的解法(1)形如a f(x)>a g(x)的不等式,可借助y=a x的________求解.(2)形如a f(x)>b的不等式,可将b化为________________,再借助y=a x的________求解.(3)形如a x>b x的不等式,可借助两函数y=a x,y=b x的图象求解.要点三 指数型函数的单调性一般地,有形如y=a f(x)(a>0,且a≠1)函数的性质(1)函数y=a f(x)与函数y=f(x)有________的定义域.(2)当a>1时,函数y=a f(x)与y=f(x)具有__________的单调性;当0<a<1时,函数y=a f(x)与函数y=f(x)的单调性________.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)y=a x(a>0且a≠1)的最小值为0.( )(2)y=21-x是R上的增函数.( )(3)若0.1a>0.1b,则a>b.( )(4)由于y=a x(a>0,且a≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也构不成具有奇偶性的函数.( )2.下列函数中是奇函数,且在(0,+∞)上单调递增的是( )A.y=1xB.y=|x|C.y=2x D.y=x33.下列判断正确的是( )A.1.51.5>1.52B.0.52<0.53C.e2<√2eD.0.90.2>0.90.54.函数y=2|x|的单调递减区间是________.题型1 指数函数单调性的应用角度1 比较大小例1 (1)(多选)下列各组数的大小比较不正确的是( )A.1.52.5<1.53.2B.0.6-1.2>0.6-1.5C.1.50.3>0.81.2D.0.30.4<0.20.5(2)比较下列各值的大小:(43)13,223,(−23)3,(34)12.方法归纳比较指数幂的大小时,主要应用指数函数的单调性以及图象的特征,或引入中间数进行比较.角度2 解简单的指数不等式例2 (1)不等式3x-2>1的解集为________.(2)若a x+1>(1a)5−3x(a>0且a≠1),求x的取值范围.方法归纳解与指数相关的不等式的策略底数不同的先要化同底,底数统一后直接利用单调性转化为一元一次、一元二次不等式求解,底数不确定的讨论单调性后转化求解.跟踪训练1 (1)已知a=20.1,b=0.33,c=0.30.1,则a、b、c的大小关系为( ) A.a<b<c B.c<b<aC.b<c<a D.a<c<b(2)解不等式(13)x2−2≤3.题型2 与指数函数有关的复合函数的单调性例3 (1)函数y=31x的单调递减区间是( )A.(-∞,+∞) B.(-∞,0)C.(0,+∞) D.(-∞,0)和(0,+∞)(2)求函数y=a x2+2x-3的单调区间.方法归纳(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u =φ(x),通过考察f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.跟踪训练2 已知函数f(x)=(13)x2−2x,判断函数f(x)的单调性.题型3 指数函数性质的综合应用(2b-6<x<b)是奇函数.例4 已知函数f(x)=1-a·3x3x+1(1)求a,b的值;(2)证明:f(x)是区间(2b-6,b)上的减函数;(3)若f(m-2)+f(2m+1)>0,求实数m的取值范围.方法归纳解决指数函数性质的综合问题的注意点(1)注意代数式的变形,如分式通分、因式分解、配方法、分母(或分子)有理化等变形技巧.(2)解答函数问题注意应在函数定义域内进行.(3)由于指数函数单调性与底数有关,因此要注意是否需要讨论.跟踪训练3 已知函数f(x)=(12x−1+12)·x3.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明:f(x)>0.易错辨析 忽视对指数函数的底数分类讨论致误例5 若函数y=a x(a>0,且a≠1)在[1,2]上的最大值与最小值的差为a2,则a的值为( )A.12 B.32C.23或2 D.12或32解析:当a>1时,y=a x在[1,2]上的最大值为a2,最小值为a,故有a2-a=a2,解得a=32或a=0(舍去).当0<a<1时,y=a x在[1,2]上的最大值为a,最小值为a2,故有a-a2=a2,解得a=12或a=0(舍去).综上,a=32或a=12.答案:D易错警示课堂十分钟1.已知a=40.1,b=0.40.5,c=0.40.8,则a,b,c的大小关系正确的是( )A.c>b>a B.b>a>cC.a>b>c D.a>c>b2.设f(x)=(12)|x|,x∈R,那么f(x)是( )A.奇函数且在(0,+∞)上是增函数B.偶函数且在(0,+∞)上是增函数C.奇函数且在(0,+∞)上是减函数D.偶函数且在(0,+∞)上是减函数3.若函数f(x)=a x(a>0且a≠1)在[−2,1]上的最大值为4,最小值为m,实数m 的值为( )A.12B.14或12C.116D.12或1164.不等式23-2x<0.53x-4的解集为________.5.已知函数f(x)=2-x2+2x.(1)求函数f(x)的单调区间;(2)求函数f(x)在[0,3]上的值域.第2课时 指数函数的图象与性质(2)新知初探·课前预习要点一(1)指数函数 (2)指数函数图象 (3)中间值要点二(1)单调性 (2)以a为底的指数幂 单调性要点三(1)相同 (2)相同 相反[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:y=1x在(0,+∞)上单调递减,所以排除A;y=|x|是偶函数,所以排除B;y=2x为非奇非偶函数,所以排除C.答案:D3.解析:因为y=0.9x是减函数,且0.5>0.2,所以0.90.2>0.90.5.答案:D4.解析:函数y=2|x|的图象如图.由图可知,函数y=2|x|的单调递减区间是(-∞,0].答案:(-∞,0]题型探究·课堂解透例1 解析:(1)A中,函数y= 1.5x在R上是增函数,∵2.5<3.2,∴1.52.5<1.53.2,A正确;B中,函数y=0.6x在R上是减函数,∵-1.2>-1.5,∴0.6-1.2<0.6-1.5,B不正确;C中,由指数函数的性质,知1.50.3>1.50=1,而0.81.2<0.80=1,∴1.50.3>0.81.2,C正确;D中,在同一直角坐标系内,画出y=0.3x,y =0.2x两个函数的图象,由图象得0.30.4>0.20.5,D不正确.故选BD.(2)先根据幂的特征,将这4个数分类:①负数:(−23)3;②大于1的数:(43)13,223;③大于0且小于1的数:(34)12.也可在同一平面直角坐标系中,分别作出y=(43)x,y=2x的图象,再分别取x=13,x=23,比较对应函数值的大小,如图)故有(−23)3<(34)12<(43)13<223.答案:(1)BD (2)(−23)3<(34)12<(43)13<223例2 解析:(1)3x-2>1⇒3x-2>30⇒x-2>0⇒x>2,所以解集为(2,+∞).(2)因为a x+1>(1a)5−3x,所以当a>1时,y=a x为增函数,可得x+1>3x-5,所以x<3.当0<a<1时,y=a x为减函数,可得x+1<3x-5,所以x>3.综上,当a>1时,x的取值范围为(-∞,3),当0<a<1时,x的取值范围为(3,+∞).答案:(1)(2,+∞) (2)见解析跟踪训练1 解析:(1)因为函数y=x0.1在(0,+∞)上为增函数,则a=20.1>0.30.1=c,指数函数y=0.3x为R上的减函数,则b=0.33<0.30.1=c.因此,b<c<a.(2)(13)x2−2=32−x2≤3,∵y=3x是R上的增函数,∴2-x2≤1,解得x≥1或x≤-1,∴原不等式的解集是{x|x≥1或x≤-1}.答案:(1)C (2)见解析例3 解析:(1)设u=1x,则y=3u,对任意的0<x1<x2,有u1>u2.又因为y=3u在R上是增函数,所以y1>y2,所以y=31x在(0,+∞)上是减函数.对任意的x1<x2<0,有u1>u2,又因为y=3u在R上是增函数,所以y1>y2,所以y=31x在(-∞,0)上是减函数.所以函数y=31x的单调递减区间是(-∞,0)和(0,+∞).故选D.(2)设y=a u,u=x2+2x-3,由u=x2+2x-3=(x+1)2-4,得u在(-∞,-1)上为减函数,在[-1,+∞)上为增函数.当a>1时,y关于u为增函数;当0<a<1时,y关于u为减函数,∴当a>1时,原函数的增区间为[-1,+∞),减区间为(-∞,-1);当0<a<1时,原函数的增区间为(-∞,-1),减区间为[-1,+∞).答案:(1)D (2)见解析跟踪训练2 解析:令u=x2-2x,则原函数变为y=(13)u.∵u=x2-2x=(x-1)2-1在(-∞,1)上单调递减,在[1,+∞)上单调递增,又∵y=(13)u 在(-∞,+∞)上单调递减,∴y =(13)x 2−2x在(-∞,1)上单调递增,在[1,+∞)上单调递减.例4 解析:(1)函数f (x )=1-a·3x 3x +1(2b -6<x <b )是奇函数,所以f (-x )=-f (x )恒成立,即1-a·3−x 3−x +1=-1+a·3x 3x +1,整理得(a -2)(3x +1)=0,所以a =2,因为2b -6+b =0,解得b =2,所以a =2,b =2.(2)证明:由(1)得f (x )=1-2·3x 3x +1,x ∈(-2,2),设任意取x 1,x 2∈(-2,2),且x 1<x 2,则f (x 1)-f (x 2)=(1−2·3x 13x 1+1)−(1−2·3x 23x 2+1)=2(3x 2−3x 1)(3x 1+1)(3x 2+1),因为x 1<x 2,所以3x 1<3x 2,所以3x 2−3x 1>0,而3x 1+1>0,3x 2+1>0,所以2(3x 2−3x 1)(3x 1+1)(3x 2+1)>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )是区间(2b -6,b )上的减函数.(3)f (m -2)+f (2m +1)>0,所以f (m -2)>-f (2m +1),因为函数f (x )是奇函数,所以f (m -2)>f (-2m -1),因为函数f (x )是区间(-2,2)上的减函数,所以{m−2<−2m−1−2<m−2<2−2<2m +1<2,解得0<m <13,所以实数m的取值范围是(0,13).跟踪训练3 解析:(1)由题意得2x-1≠0,即x≠0,∴f(x)的定义域为(-∞,0)∪(0,+∞).(2)由(1)知,f(x)的定义域关于原点对称.令g(x)=12x−1+12=2x+12(2x−1),φ(x)=x3,则f(x)=g(x)·φ(x).∵g(-x)=2−x+12(2−x−1)=1+2x2(1−2x)=-g(x),φ(-x)=(-x)3=-x3=-φ(x),∴f(-x)=g(-x)·φ(-x)=[-g(x)]·[-φ(x)]=g(x)·φ(x)=f(x),∴f(x)=(12x−1+12)·x3为偶函数.(3)证明:当x>0时,2x>1,∴2x-1>0,∴12x−1+12>0.∵x3>0,∴f(x)>0.由偶函数的图象关于y轴对称,知当x<0时,f(x)>0也成立.故对于x∈(-∞,0)∪(0,+∞),恒有f(x)>0.[课堂十分钟]1.解析:因为40.1>1,0.40.8<0.40.5<1,所以a>b>c.答案:C2.解析:因为f(-x)=(12)|−x|=(12)|x|=f(x),所以f(x)为偶函数.又当x>0时,f(x)=(12)x在(0,+∞)上是减函数,答案:D3.解析:函数f(x)=a x在[−2,1]上:当0<a<1时,f(x)单调递减,最大值为f(-2)=a-2=4,最小值f(1)=a=m,即有m=12;当a>1时,f(x)单调递增,最大值为f(1)=a=4,最小值f(-2)=a-2=m,即有m=116;综上,有m=12或m=116.答案:D4.解析:原不等式可化为23-2x<24-3x,因为函数y=2x是R上的增函数,所以3-2x<4-3x,解得x<1,则解集为{x|x<1}.答案:{x|x<1}5.解析:(1)函数y=2-x2+2x的定义域是R.令u=-x2+2x,则y=2u.当x∈(-∞,1]时,函数u=-x2+2x为增函数,函数y=2u是增函数,所以函数y=2-x2+2x在(-∞,1]上是增函数.当x∈[1,+∞)时,函数u=-x2+2x为减函数,函数y=2u是增函数,所以函数y=2-x2+2x在[1,+∞)上是减函数.综上,函数y=2-x2+2x的单调减区间是[1,+∞),单调增区间是(-∞,1].(2)由(1)知f(x)在[0,1]上单调递增,在[1,3]上单调递减,且f(0)=1,f(1)=2,f(3)=18,所以f(x)max=f(1)=2,f(x)min=f(3)=18,所以f(x)的值域为[18,2].。
第7讲 指数函数与对数函数一.基础知识回顾1.指数函数的定义:函数 叫作指数函数,自变量x 在指数位置上,底数a ( )的常量.2.指数函数的图象与性质y =a x a >1 0<a <1图象定义域值域性质 过定点( )当x >0时, ; 当x <0时, 当x >0时, 当x <0时, ;在R 上是 函数 在R 上是 函数3. 当0<a <1时,指数函数的底数越小函数图像越接近坐标轴,当a >1,指数函数的底数越大函数图像越接近坐标轴4.对数函数的定义:一般地,我们把函数 (a>0,a≠1)叫作对数函数,a 叫作对数函数的 ,x 是 5.对数函数的图象与性质a >1 0<a <1图象性 质 定义域:值域:过点 ,即x =1时,y =0当x >1时, 当0<x <1时, 当x >1时,当0<x <1时,是(0,+∞)上的 函数 是(0,+∞)上的 函数6.当0<a 大函数图像越接近坐标轴7.反函数:指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 对称.二.典例精析题型一:指数函数的性质及应用例1:(1)已知a =32)21(,b =234-,c =31)21(,则下列关系式中正确的是( ) A .c <a <b B .b <a <c C .a <c <b D .a <b <c(2)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}(3)函数f (x )=⎝⎛⎭⎫12-x 2+2x +1的单调减区间为______.变式训练1:(1)已知a =2,b ,c ,则( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a(2)已知函数y =2-x 2 +ax +1在区间(-∞,3)内递增,则a 的取值范围为 .(3)函数f (x )=⎝⎛⎭⎫14x -⎝⎛⎭⎫12x +1在x ∈[-3,2]上的值域是________题型二:指数型函数的综合问题例2:已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1). (1)判断f (x )的奇偶性;(2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围.变式迁移2:已知函数f (x )=(12x -1+12)x 3. (1) 求f (x )的定义域;(2)证明:f (-x )=f (x ); (3)证明:f (x )>0.题型三:对数函数的性质及应用 例3:已知a =231-,b =log 312,c =log 3121,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a(2)定义在R 上的偶函数f (x )在[0,+∞)上递增,f (13)=0,则满足)(log 81x f >0的x 的取值范围是( )A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12) (3)已知函数f (x )=lg ax +a -2x在区间[1,2]上是增函数,则实数a 的取值范围是______ 变式训练3:(1)设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2) 的大小关系是( A )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定(2)已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( C )A.12B.14C .2D .4 (3)已知函数f (x )=ln(1-a 2x )的定义域是(1,+∞),则实数a 的值为________. 题型四:对数型函数的综合问题例4:已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.变式训练4:已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值及y 取最大值时x 的值.三.方法规律总结2.比较两个指数幂大小时,尽量化同底数或同指数,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.3.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c <d <1<a <b .在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小;即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.4.求解与对数函数有关的复合函数的单调性的步骤:(1)确定定义域;(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y =f (u ),u =g (x );(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”.5.用对数函数的性质比较大小:(1)同底数的两个对数值的大小比较例如,比较log a f (x )与log a g (x )的大小,其中a >0且a ≠1.①若a >1,则log a f (x )>log a g (x )⇔f (x )>g (x )>0.②若0<a <1,则log a f (x )>log a g (x )⇔0<f (x )<g (x ).(2)同真数的对数值大小关系如图:图象在x 轴上方的部分自左向右底逐渐增大,即0<c <d <1<a <b .6.常见对数方程式或对数不等式的解法:(1)形如log a f (x )=log a g (x )(a >0且a ≠1)等价于f (x )=g (x ),但要注意验根.对于log a f (x )>log a g (x )等价于0<a <1时,⎪⎩⎪⎨⎧<>>);()(,0)(,0)(x g x f x g x f a >1时,⎪⎩⎪⎨⎧>>>).()(,0)(,0)(x g x f x g x f (2)形如F (log a x )=0、F (log a x )>0或F (log a x )<0,一般采用换元法求解.四.课后练习作业一.选择题1.函数f (x )=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0] C .(-∞,-3)∪(0,+∞) D .(-∞,-3)∪(-3,0)2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 31x B.12x C . log 2x D .2x -23.在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x 的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称C .关于原点对称 D .关于直线y =x 对称4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)5.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A 不确定.B .f (-4)=f (1)C .f (-4)<f (1)D f (-4)>f (1)6.函数y =⎝⎛⎭⎫12x +1的图象关于直线y =x 对称的图象大致是( )7.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)8.已知函数f (x )=ln e x -e -x2,则f (x )是( ) A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q10.已知函数f (x )=log a (2x -a )在区间⎣⎡⎦⎤12,23上恒有f (x )>0,则实数a 的取值范围是( B )A. ⎣⎡⎭⎫13,1B. ⎝⎛⎭⎫13,1C.⎝⎛⎭⎫23,1D.⎣⎡⎭⎫23,1 11.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝⎛⎭⎫110x在x ∈[0,4]上解的个数是( B )A .0B .4C .6D .812.已知函数f (x )=e x +m e x +1,若对于任意a ,b ,c ∈R ,都有f (a )+f (b )>f (c )成立,则实数m 的取值范围是( )A.⎣⎡⎦⎤12,2B.[0,1] C .[1,2] D.⎣⎡⎦⎤12,1 二.填空题13.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.14.已知函数f (x )=a 2x -4+n (a >0且a ≠1)的图象恒过定点P (m ,2),则m +n =________.15.函数y =log 3(x 2-2x )的单调减区间是________.16.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则n +m =________.三.解答题17.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.18.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值;(3)若f (x )的值域是(0,+∞),求a 的值.19.已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.20.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.。
第12讲 指数与指数函数一、指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质a >10<a <1图象定义域 值域性质[常用结论]二、指数函数图象的画法1.画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . 2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.3.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.1、【2020年新课标2卷理科】若2233x y x y ---<-,则( ) A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<2、【2020年新课标3卷理科】Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A .60B .63C .66D .693、【2020年新高考1卷(山东卷)】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A .1.2天 B .1.8天 C .2.5天D .3.5天4、【2018年新课标1卷文科】设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,5、【2022年全国甲卷】函数y =(3x −3−x )cosx 在区间[−π2,π2]的图象大致为( )A .B .C .D .1、已知a =432,b =254,c =135,则( ) A .c <b <a B .a <b <c C .b <a <cD .c <a <b2、若函数f (x )=a x -b 的图象如图所示,则( )A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <13、函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值是最小值的2倍,则a 的值是( ) A.12或 2 B.12或2 C.12D .24、 (多选)下列结论中,正确的是( ) A. 函数y =2x -1是指数函数B. 函数y =ax 2+1(a >1)的值域是[1,+∞)C. 若a m >a n (a >0,a ≠1),则m >nD. 函数f (x )=a x -2-3(a >0,a ≠1)的图象必过点(2,-2)4. 化简的结果是________.考向一 化简下列各式:(1);(2) ;(3) .考向二 指数函数的性质与应用例2、(1).已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .c <b <aD .a <b <c .(2).如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A .3 B .13 C .-5 D .3或13.(3).已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.变式1、过原点O 的直线与函数y =2x 的图像交于A ,B 两点,过点B 作y 轴的垂线交函数y =4x 的图像于点C ,若AC 平行于y 轴,则点A 的坐标是________.变式2、(2020届江苏省南通市海安高级中学高三第二次模拟)已知过点O 的直线与函数3xy =的图象交于A 、B 两点,点A 在线段OB 上,过A 作y 轴的平行线交函数9xy =的图象于C 点,当BC ∥x 轴,点A的横坐标是变式3、已知函数f (x )=2a ·4x -2x -1.(1) 当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2) 若关于x 的方程f (x )=0有解,求实数a 的取值范围.考向三 指数函数的综合运用例3、已知函数f (x )=3x +λ·3-x (λ∈R ).(1) 若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集; (2) 若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围.变式1、关于函数f (x )=14x +2的性质,下列说法中正确的是( )A .函数f (x )的定义域为RB .函数f (x )的值域为(0,+∞)C .方程f (x )=x 有且只有一个实根D .函数f (x )的图象是中心对称图形变式2、(2022·江苏南通市区期中)设函数f (x )的定义域为R ,f (x )为偶函数,f (x +1)为奇函数,当x ∈[1,2]时,f (x )=a ·2x+b ,若f (0)+f (1)=-4,则f (72)= .变式3、已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称 B .()f x 的图象关于点()3,0对称 C .()f x 在()2,4上单调递增 D .()f x 在()2,4上单调递减1、已知指数函数()xf x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( )A .32B .23C .3D2、(2022·江苏省第一次大联考)航天之父、俄罗斯科学家齐奥科夫斯基(K .E .Tsiolkovsky)于1903年给出火箭最大速度的计算公式v =V 0ln(1+Mm 0).其中,V 0是燃料相对于火箭的喷射速度,M 是燃料的质量,m 0是火箭(除去燃料)的质量,v 是火箭将燃料喷射完之后达到的速度.已知V 0=2km/s ,则当火箭的最大速度v 可达到10km/s 时,火箭的总质量(含燃料)至少是火箭(除去燃料)的质量的( )倍A .e 5B .e 5-1C .e 6D .e 6-13、(2022·江苏淮安市六校第一次联考)(多选题)已知f (x )是定义在R 上的偶函数,且f (x +3)=f (x -1),若当x ∈[0,2]时,f (x )=2x -1,则下列结论正确的是( )A .当x ∈[-2,0]时,f (x )=2-x-1 B .f (2019)=1C .y =f (x )的图像关于点(2,0)对称D .函数g (x )=f (x )-log 2x 有3个零点4、(2022·广东汕头·二模)(多选题)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-。
题型一 指数函数的定义与表示【例1】 求下列函数的定义域(1)32xy -= (2)213x y += (3)512xy ⎛⎫= ⎪⎝⎭(4)()10.7x y =【例2】 求下列函数的定义域、值域⑴112x y -= ; ⑵3x y -=; ⑶2120.5x x y +-=【例3】 求下列函数的定义域和值域:1.xa y -=1 2.31)21(+=x y【例4】 求下列函数的定义域、值域(1)110.4x y -=; (2)513x y -= (3)21x y =+典例分析板块二.指数函数【例5】 求下列函数的定义域(1)13xy =;(2)y =【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f ,(3)f -的值.【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( )A B .2或2- C .2- D .2题型二 指数函数的图象与性质【例8】 已知1a b c >>>,比较下列各组数的大小:①___b c a a ;②1ba ⎛⎫⎪⎝⎭1ca ⎛⎫ ⎪⎝⎭;③11___b ca a ;④__a abc .【例9】 比较下列各题中两个值的大小:⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9.【例10】 比较下列各题中两个值的大小(1)0.80.733,(2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01,(4) 3.3 4.50.990.99,【例11】 已知下列不等式,比较m 、n 的大小(1) 22m n < (2)0.20.2m n >(3)()01m n a a a <<<(4)()1m n a a a >>【例12】 图中的曲线是指数函数x y a =的图象,已知a413,,3105四个值,则相应于曲线1234,,,c c c c 的a 依次为_______________.【例13】 已知a =,函数()x f x a =,若实数m n ,满足()()f m f n >,则m n ,的大小关系为.【例14】 设a b =c a ,b ,c 的大小关系是【例15】 若对[1,2]x ∈,不等式22x m +>恒成立,求实数m 的取值范围.【例16】 判断函数11()3x y -=的单调性.【例17】 函数||()x f x e =( )A .是奇函数,在(,0]-∞上是减函数B .是偶函数,在(,0]-∞上是减函数C .是奇函数,在[0,)+∞上是增函数D .是偶函数,在(,)-∞+∞上是增函数【例18】 已知函数f (x )为偶函数,当()0x ∈+∞,时,()12x f x +=-,求当()0x ∈-∞,时,()f x 的解析式.【例19】 证明函数x a y =和x a y -= )10(≠>a a 且的图象关于y 轴对称。
题型三 关于指数的复合函数1.二次函数复合型【例20】 求函数2212x xy -⎛⎫= ⎪⎝⎭单调区间,并证明【例21】 函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调增区间为 ,值域为 .【例22】 函数()342x x f x =⋅-,求()f x 在[0,)x ∈+∞上的最小值.【例23】 求函数1()423x x f x a +=-⋅+ (R)x ∈的值域.【例24】 已知4323x x y =-⋅+,当其值域为[1,7]时,x 的取值范围是【例25】 求下列函数的单调区间.⑴232xx y a -++=(0a >,且1a ≠);⑵已知910390x x -⨯+≤,求函数1111()4()542x x y --=-⋅+最值.【例26】 函数2281(01)x x y a a --+=<<的单调增区间是 .【例27】 设()124()x x f x a a =++⋅∈R ,当(,1]x ∈-∞时,()f x 的图象在x 轴上方,求a 的取值范围.【例28】 如果函数221(0,1)x x y a a a a =+->≠在区间[1,1]-上的最大值是14,求a 的值.【例29】 求函数11()1([3,2])42xxf x x ⎛⎫⎛⎫=-+∈- ⎪ ⎪⎝⎭⎝⎭的单调区间及其值域.【例30】 已知12x -≤≤,求函数1()3239x x f x +=+⋅-的最大值和最小值.【例31】 求函数()()444222x x x f x a --=+-+的最小值,并指出使()f x 取得最小值时x 的值2.分式函数复合型【例32】 当a >1时,证明函数1()1x x a f x a +=-是奇函数.【例33】 求证下列命题:(1)()2x xa a f x --=(a >0,a ≠1)是奇函数;(2)()(1)1x x a xf x a +=-(a >0,a ≠1)是偶函数.【例34】 已知函数()2121x x f x -=+,(1)判断函数()f x 的奇偶性;(2)求证函数()f x 在()-∞+∞,上是增函数.【例35】 讨论函数21()21x x f x -=+的奇偶性、单调性,并求它的值域.【例36】 已知1010()1010x xx xf x ---=+,判断函数的单调性、奇偶性,并求()f x 的值域.【例37】 正实数12x x ,及函数()f x 满足()()141x f x f x +=-,且()()121f x f x +=,求()12f x x +的最小值【例38】 设a ∈R ,2()()21xf x a x =-∈+R ,若()f x 为奇函数,求a 的值.【例39】 在计算机的算法语言中有一种函数[]x 叫做取整函数(也称高斯函数),它表示x的整数部分,即[]x 是不超过x 的最大整数.例如:[2]2=,[3.1]3=,[ 2.6]3-=-.设函数21()122x x f x =-+,则函数[()][()]y f x f x =+-的值域为题型四 其他综合题目【例40】 小明即将进入一大学就读,为了要支付4年学费,小明欲将一笔钱存入银行,使得每年皆有40000元可以支付学费.而银行所提供的年利率为6%,且为连续复利,试求出小明现在必须存入银行的钱的数额.【例41】 求函数y =【例42】 已知函数|22|x y =-,⑴ 作出函数的图象;⑵ 根据图象指出函数的单调区间;⑶ 根据图象指出当x 取什么值时,函数有最值.【例43】 方程22x x =-的解的个数为 .【例44】 已知函数()||122x x f x =-, ⑴若()2f x =,求x 的值;⑵若()()220t f t mf t +≥对于[]12t ∈,恒成立,求实数m 的取值范围.【例45】 函数()2lg 34y x x =-+的定义域为M ,当x ∈M 时,求()42234x f x =+-⨯的最值.【例46】 设a 是实数,()221x f x a =-+ (x ∈R) (1)试证明对于任意()af x 为增函数; (2)试确定a 值,使f (x )为奇函数.【例47】 因为复杂的函数,往往是由多个简单函数的加、减、乘、除运算得到,或者是多个函数的复合后得到的,比如下列函数:()()()22x f x g x h x x ===,,则()()f xg x ,复合后可得到函数()()2x g f x g =⎡⎤⎣⎦和()f g x f==⎡⎤⎣⎦的取值,得到的函数称为复合函数;也可以由()()f x g x ,进行乘法运算得到函数()()2x f x g x =.所以我们在研究较复杂的函数时,常常设法把复杂的函数进行逆向操作,把其拆分转化为简单的函数,借助简单函数的性质进行研究. ⑴复合函数(){}f hg x ⎡⎤⎣⎦的解析式为 ;其定义域为 .⑵可判断()()2x f x g x =是增函数,那么两个增函数相乘后得到的新函数是否一定是增函数?若是请证明,若不是,请举一个反例;⑶已知函数()2x f x -,若()()121f x f x +>-,则x 的取值范围为 .⑷请用函数()()()()22ln x f x g x h x x k x x ===,,中的两个进行复合,得到三个函数,使它们分别为偶函数且非奇函数、奇函数且非偶函数、非奇非偶函数.【例48】 已知函数2()()1x x af x a a a -=--,其中0a >,1a ≠. ⑴判断函数()f x 的奇偶性; ⑵判断函数()f x 的单调性,并证明.【例49】 已知2()()(0,1)2x x a f x a a a a a -=->≠-是R 上的增函数,求a 的取值范围.【例50】 已知函数()x f x b a = (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B(3,24).(1)求()f x ;(2)若不等式1123x xm ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭在()1x ∈-∞,时恒成立,求实数m 的取值范围.【例51】 已知11()212x f x x ⎛⎫=+ ⎪-⎝⎭. ⑴求证:()0f x >;⑵若()()()F x f x t f x t =++-(t 为常数),判断()F x 的奇偶性.【例52】 用{}min a b c ,,表示a ,b ,c 三个数中的最小值,设{}()min 2210x f x x x =+-,, (0)x ≥,则()f x 的最大值为( )A .4B .5C .6D .7【例53】 已知函数()x f x a =满足条件:当(),0x ∈-∞时,()1f x >;当()0,1x ∈时,不等式,()()()23112f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【例54】 如果函数2()(31)x x f x a a a =--(0,1)a a >≠且仔区间[)0,+∞上是增函数,那么实数a 的取值范围是( )A .20,3⎛⎤ ⎥⎝⎦ B .1⎫⎪⎪⎣⎭ C .(1, D .2,3⎛⎫+∞ ⎪⎝⎭【例55】 若关于x 的方程1125450x x m -+-+-⋅-=有实根,求m 的取值范围.【例56】 已知11235723511x y z x y z -+++=++=,,求11235x y z +-++的取值范围。
【例57】已知()xf x=01a a>≠,。
(1)求证:函数()f x的图像关于点1122⎛⎫⎪⎝⎭,中心对称(2)求123910101010 f f f f⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【例58】已知函数()2xf x=,()122xg x=+(1)求函数()g x的值域;(2)求满足方程()()0f xg x-=的x的值.。