solid5
- 格式:doc
- 大小:198.50 KB
- 文档页数:6
第3章ANSYS 的前处理技术3.1有限单元类型的选取有限元类型选取指令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPRDefines a local element type from the element library.ITYPEArbitrary local element type number. Defaults to 1 + currentmaximum.EnameElement name (or number) as given in the element library in Chapter4 of the ANSYS Elements Reference. The name consists of a categoryprefix and a unique number, such as BEAM3. The category prefix of the name (BEAM for the example) may be omitted but is displayed upon output for clarity. If Ename = 0, the element is defined as a null element.KOP1, KOP2, KOP3, KOP4, KOP5, KOP6KEYOPT values (1 through 6) for this element, as described in the ANSYS Elements Reference.INOPRIf 1, suppress all element solution printout for this element type 举例:PLANE13 has a 2-D magnetic, thermal, electrical, piezoelectric, and structural field capability with limited coupling between the fields. PLANE13 is defined by four nodes with up to four degrees of freedom per node. The element has nonlinear magnetic capability for modeling B-H curves or permanent magnet demagnetization curves. PLANE13 has large deflection and stress stiffening capabilities. When used in purely structural analyses, PLANE13 also has large strain capabilities. See PLANE13 in the ANSYS, Inc. Theory Reference for more details about this element. Other coupled-field elements are SOLID5, SOLID98, and SOLID62.KEYOPT(1)Element degrees of freedom:0-- AZ degree of freedom2-- TEMP degree of freedom3-- UX, UY degrees of freedom4-- UX, UY, TEMP, AZ degrees of freedom6-- VOLT, AZ degrees of freedom7-- UX, UY, VOLT degrees of freedomKEYOPT(2)Extra shapes:0-- Include extra shapes1-- Do not include extra shapesKEYOPT(3)Element behavior:0-- Plane strain (with structural degrees of freedom)1-- Axisymmetric2-- Plane stress (with structural degrees of freedom)KEYOPT(4)Element coordinate system defined:0--Element coordinate system is parallel to the global coordinate system1-- Element coordinate system is based on the element I-J side KEYOPT(5)Extra element output:0-- Basic element printout1-- Repeat basic solution for all integration points2-- Nodal stress printout3.2 点、线、面的产生方法3.2.1 电磁铁磁场分析步骤1:画出欲求解电磁场物体的结构图步骤2:求关键点(能决定物体形状的点的坐标)/PREP7 !开始前处理程序/UNITS, SI !选取国际单位EMUNIT, MKS !选取(米、千克、秒)电磁单位制LOCAL,11,0 !选取直角坐标系统LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 Defines a local coordinate system by a location and orientation. DATABASE: Coordinate SystemKCNArbitrary reference number assigned to this coordinate system. Must be greater than 10. A coordinate system previously defined with this number will be redefined.KCSCoordinate system type:0 or CART —Cartesian1 or CYLIN —Cylindrical (circular or elliptical)2 or SPHE —Spherical (or spheroidal)3 or TORO —ToroidalXC, YC, ZCLocation (in the global Cartesian coordinate system) of the origin of the new coordinate system.THXYFirst rotation about local Z (positive X toward Y).THYZSecond rotation about local X (positive Y toward Z).THZXThird rotation about local Y (positive Z toward X).PAR1Used for elliptical, spheroidal, or toroidal systems. If KCS = 1 or 2, PAR1is the ratio of the ellipse Y-axis radius to X-axis radius (defaults to 1.0 (circle)). If KCS = 3, PAR1 is the major radius of the torus.PAR2Used for spheroidal systems. If KCS = 2, PAR2 = ratio of ellipse Z-axis radius to X-axis radius (defaults to 1.0 (circle)).x 1步骤3: 由点联线LSTR, 1, 2 ! L1 第一条线(Straight line)LSTR, 2, 3LSTR, 3, 4LSTR, 4, 1LSTR, 5, 6 ! L5LSTR, 6, 7LSTR, 7, 8LSTR, 8, 5LSTR, 9, 10LSTR, 10, 11 ! L10LSTR, 11, 12LSTR, 12, 9LSTR, 6, 13LSTR, 13, 14LSTR, 14, 15 ! L15 LSTR, 15, 10LSTR, 11, 16LSTR, 16, 17LSTR, 17, 18LSTR, 18, 7 ! L20 LSTR, 19, 20LSTR, 20, 21LSTR, 21, 22LSTR, 22, 19LSTR, 14, 19 ! L25 LSTR, 15, 16LSTR, 17, 22 ! L27步骤4: 指定线段剖分单元边长(根据磁场分析精度的需要) LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIVSpecifies the divisions and spacing ratio on unmeshed lines.NL1Number of the line to be modified. If ALL, modify all selected lines [LSEL]. If NL1= P, graphical picking is enabled and all remaining command fields are ignored (valid only in the GUI). A component name may also be substituted for NL1.SIZEIf NDIV is blank, SIZE is the division (element edge) length. The number of divisions is automatically calculated from the linelength (rounded upward to next integer). If SIZE is zero (or blank), use ANGSIZ or NDIV.ANGSIZThe division arc (in degrees) spanned by the element edge (except for straight lines, which always result in one division).NDIVIf positive, NDIV is the number of element divisions per line.SPACESpacing ratio. If positive, nominal ratio of last division size to first division size (if > 1.0, sizes increase, if < 1.0, sizesdecrease). If negative, |SPACE| is nominal ratio of centerdivision(s) size to end divisions size. Ratio defaults to 1.0(uniform spacing). For layer-meshing, a value of 1.0 normally is used. If SPACE= FREE, ratio is determined by other considerationsKFORCKFORC 0-3 are used only with NL1 = ALL. Specifies which selected lines are to be modified.0—Modify only selected lines having undefined (zero) divisions.1—Modify all selected lines.2—Modify only selected lines having fewer divisions (including zero) than specified with this command.3—Modify only selected lines having more divisions than specified with this command.4—Modify only nonzero settings for SIZE, ANGSIZ, NDIV, SPACE, LAYER1, and LAYER2. If KFORC= 4, blank or 0 settings remain unchanged.LAYER1Layer-meshing control parameter. Distance which defines thethickness of the inner mesh layer, LAYER1. Elements in this layer are uniformly-sized with edge lengths equal to the specifiedelement size for the line (either through SIZE or line-length/NDIV).A positive value for LAYER1 is interpreted as an absolute length,while a negative value in interpreted as a multiplier on thespecified element size for the line. As a general rule, theresulting thickness of the inner mesh layer should be greater than or equal to the specified element size for the line. If LAYER1 = OFF, layer-meshing control settings are cleared for the selected lines. The default value is 0.0LAYER2Layer-meshing control parameter. Distance which defines thethickness of the outer mesh layer, LAYER2. Elements in this layer transition in size from those in LAYER1to the global element size.A positive value of LAYER2 is interpreted as an absolute length,while a negative value is interpreted as a mesh transition factor.A value of LAYER2 = -2 would indicate that elements shouldapproximately double in size as the mesh progresses normal to LAYER1.The default value is 0.0.KYNDIV0, No, and Off means that SmartSizing cannot override specifieddivisions and spacing ratios. Mapped mesh fails if divisions do not match. This defines the specification as “hard”.1, Yes, and On means that SmartSizing can override specifieddivisions and spacing ratios for curvature or proximity. Mapped meshing can override divisions to obtain required matchingdivisions. This defines the specification as“ soft”.一般采用将线段指定划分为多少个单元, 即只用下述指令中的红色部分, 其他部分不管.LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV根据对电磁铁磁场分布的定性分析, 可确定各线段有限元网格剖分的稀密程度。
基于ANSYS的超声搅拌摩擦焊系统设计与仿真夏罗生【摘要】According to FSW technology in the plate welding seam which is easy to appear problems such as osteoporosis in deep welding, put forward the ultrasonic vibration energy into FSW area, design the ultrasound friction stir welding device. Using ANSYS software multi-physical coupling function, coupling the structure field and the field coupling, establishing the whole ultrasound friction stir welding system finite element calculation model and the modal analysis harmonious response analysis. The numerical results show that the resonance frequency of 19.494 kHz, and then the actual measurement of the resonant frequency is close to 19. 56 kHz. In 1 000 V sinusoidal voltage applied, the vibration of the maximum output vibration displacement occurred in about 20 kHz for frequency, amplitude is about 72 microns, and meet the design requirements.%针对搅拌摩擦焊技术在厚板焊接时焊缝深层易出现组织疏松等焊接缺陷的问题,提出将超声振动能量导入到搅拌摩擦焊缝区,设计了超声搅拌摩擦焊接装置.利用ANSYS软件的多物理场耦合功能,将结构场与电场进行耦合,建立了整个超声搅拌摩擦焊系统的有限元计算模型并进行了模态分析和谐响应分析.计算结果表明,其共振频率为19.494 kHz,与后来实际测量的共振频率19.56kHz接近.在施加1 000 V的正弦电压时,其振动输出端的最大振动位移发生在频率为20 kHz左右,振幅约为72 μm,满足设计要求.【期刊名称】《制造技术与机床》【年(卷),期】2012(000)010【总页数】4页(P29-31,36)【关键词】超声振动;搅拌摩擦焊;结构设计;ANSYS;仿真【作者】夏罗生【作者单位】张家界航空工业职业技术学院,湖南张家界427000【正文语种】中文【中图分类】TG453搅拌摩擦焊技术(FSW)是一项可持续发展的绿色环保清洁战略技术,在高速轨道列车、航空航天飞行器、高速舰船快艇、汽车等轻型化结构以及各种铝合金型材拼焊结构制造中,已经显示出良好的技术和经济效益[1-4]。
安装步骤:1.鼠标右击【Solid Edge ST5】选择【解压到Solid Edge ST5】。
2.双击打开解压后的【Solid Edge ST5】文件夹。
3.双击打开【setup】文件夹。
4.双击打开【Standard Parts Administration】文件夹。
5.双击打开【ISSetupPrerequisites】文件夹。
6.双击打开【Microsoft SQL Server2008Express SP1(x86&x64Wow)】文件夹。
7.鼠标右击【SQLEXPR_x86_CHS.exe】选择【以管理员身份运行】。
8.正在配置。
9.点击【安装】。
10.点击【全新SQL Server独立安装或向现有安装添加功能】。
11.点击【确定】。
12.点击【下一步】。
13.勾选【我接受许可条款】,然后点击【下一步】。
14.点击【安装】。
15.正在安装中。
16.点击【下一步】。
17.点击【全选】,然后点击【…】更改【共享功能目录】,建议选择除C 盘之外的其它磁盘内,可以在E盘或其它磁盘内的【Program Files(X86)】文件夹内新建一个【Microsoft SQL Server】文件夹,然后点击【下一步】。
18.点击【…】更改【实例根目录】,选择第17步中在除C盘之外的其它磁盘内的【ProgramFiles(X86)】文件夹中新建的【Microsoft SQL Server】文件夹,然后点击【下一步】。
19.点击【下一步】。
20.点击【账户名】下的下拉按钮,然后选择第一项(NT AUTHORITY\NET…),然后点击【下一步】。
21.点击【添加当前用户】,然后点击【下一步】。
23.点击【下一步】。
25.正在安装。
27.点击【关闭】。
28.点击右上角的【❌】关闭此界面。
29.双击打开安装包解压后的【Solid Edge ST5】文件夹里面的【setup】文件夹。
30.鼠标右击【autostart.exe】选择【以管理员身份运行】。
SOLIDWORD软件SolidWorks百科名⽚SolidWorks为达索系统(Dassault Systemes S.A)下的⼦公司,专门负责研发与销售机械设计软件的视窗产品。
达索公司是负责系统性的软件供应,并为制造⼚商提供具有Inter net整合能⼒的⽀援服务。
该集团提供涵盖整个产品⽣命周期的系统,包括设计、⼯程、制造和产品数据管理等各个领域中的最佳软件系统,著名的CATIAV5就出⾃该公司之⼿,⽬前达索的CAD产品市场占有率居世界前列。
SolidWorks详细简介SolidWorks公司成⽴于1993年,由PTC公司的技术副总裁与CV公司的副总裁发起,总部位于马萨诸塞州的康克尔郡(Concord,Massa chusetts)内,当初所赋予的任务是希望在每⼀个⼯程师的桌⾯上提供⼀套具有⽣产⼒的实体模型设计系统。
从1995年推出第⼀套SolidWorks三维机械设计软件⾄今,它已经拥有位于全球的办事处,并经由300家经销商在全球140个国家进⾏销售与分销该产品。
SolidWorks软件是世界上第⼀个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为CA D/CAM产业中获利最⾼的公司。
良好的财务状况和⽤户⽀持使得SolidWorks每年都有数⼗乃⾄数百项的技术创新,公司也获得了很多荣誉。
该系统在1995-1999年获得全球微机平台CAD系统评⽐第⼀名;从1995年⾄今,已经累计获得⼗七项国际⼤奖,其中仅从1999年起,美国权威的CAD专业杂志CADENCE连续4年授予So lidWorks最佳编辑奖,以表彰SolidWorks的创新、活⼒和简明。
⾄此,SolidWorks 所遵循的易⽤、稳定和创新三⼤原则得到了全⾯的落实和证明,使⽤它,设计师⼤⼤缩短了设计时间,产品快速、⾼效地投向了市场。
由于SolidWorks出⾊的技术和市场表现,不仅成为CAD⾏业的⼀颗耀眼的明星,也成为华尔街青睐的对象。
Surfactants and polyalkylene glycolsAdding value forthe Detergent andFormulator industriesNonionic surfactantsProduct Alcohol Active Cloud Physical Viscosity HLBcontent point form [mPa·s] value[%] [°C] [23 °C]Lutensol® A … N types (C12C14Fatty alcohol ethoxylates)Lutensol A 4 N + 4 EO approx. 100 approx. 62 / E Liquid approx. 50 approx. 9 Lutensol A 7 N + 7 EO approx. 100 approx. 56 / A Liquid approx. 150 approx. 12 Lutensol A 79 N + 7 EO approx. 90 approx. 56 / A Liquid approx. 120 approx. 12 Lutensol A 8 + 8 EO approx. 90 approx. 52 / A Liquid approx. 100 approx. 13Lutensol® AT types (C16C18Fatty alcohol ethoxylates)Lutensol AT 11 + 11 EO approx. 100 approx. 87 / A Solid approx. 30 (60 °C) approx. 13 Lutensol AT 18 + 18 EO approx. 100 approx. 92 / B Solid approx. 40 (60 °C) approx. 15 Lutensol AT 18 Solution + 18 EO approx. 20 approx. 92 / B Liquid approx. 30 approx. 15 Lutensol AT 25 Powder + 25 EO approx. 100 approx. 95 / B Powder approx. 70 (60 °C) approx. 16 Lutensol AT 25 E + 25 EO approx. 100 approx. 95 / B Solid approx. 70 (60 °C) approx. 16 Lutensol AT 25 Flakes + 25 EO approx. 100 approx. 95 / B Flakes approx. 70 (60 °C) approx. 16 Lutensol AT 50 Powder + 50 EO approx. 100 approx. 92 / B Powder approx. 150 (60 °C) approx. 18 Lutensol AT 50 E + 50 EO approx. 100 approx. 92 / B Solid approx. 150 (60 °C) approx. 18 Lutensol AT 50 Flakes + 50 EO approx. 100 approx. 92 / B Flakes approx. 150 (60 °C) approx. 18 Lutensol AT 80 Powder + 80 EO approx. 100 approx. 87 / B Powder approx. 400 (60 °C) approx. 18.5 Lutensol AT 80 E + 80 EO approx. 100 approx. 87 / B Solid approx. 400 (60 °C) approx. 18.5 Lutensol AT 80 Flakes + 80 EO approx. 100 approx. 87 / B Flakes approx. 400 (60 °C) approx. 18.5Lutensol® AO types (C13C15Oxo alcohol ethoxylates)Lutensol AO 3 + 3 EO approx. 100 approx. 45 / E Liquid approx. 40 approx. 8 Lutensol AO 5 + 5 EO approx. 100 approx. 62 / E Liquid approx. 80 approx. 10 Lutensol AO 7 + 7 EO approx. 100 approx. 43 / A Liquid approx. 100 approx. 12 Lutensol AO 79 + 7 EO approx. 90 approx. 43 / A Liquid approx. 100 approx. 12 Lutensol AO 8 + 8 EO approx. 100 approx. 52 / A Paste approx. 30 (60 °C) approx. 12.5 Lutensol AO 89 + 8 EO approx. 90 approx. 52 / A Liquid approx. 110 approx. 12.5 Lutensol AO 11 + 11 EO approx. 100 approx. 86 / A Paste approx. 30 (60 °C) approx. 14 Lutensol AO 30 + 30 EO approx. 100 approx. 91 / B Solid approx. 60 (60 °C) approx. 17 Lutensol AO 3109 + 3 / + 10 EO approx. 90 approx. 73 / E Liquid approx. 140 approx. 11.5Lutensol® TO types (C13 Oxo alcohol ethoxylates)Lutensol TO 2 + 2 EO approx. 100 approx. 37 / D Liquid approx. 30 approx. 7 Lutensol TO 3 + 3 EO approx. 100 approx. 40 / E Liquid approx. 50 approx. 8 Lutensol TO 5 + 5 EO approx. 100 approx. 62 / E Liquid approx. 80 approx. 10.5 Lutensol TO 6 + 6 EO approx. 100 approx. 67 / E Liquid approx. 80 approx. 11 Lutensol TO 65 + 6.5 EO approx. 100 approx. 68 / E Liquid approx. 100 approx. 11.5 Lutensol TO 7 + 7 EO approx. 100 approx. 70 / E Liquid approx. 100 approx. 12 Lutensol TO 79 + 7 EO approx. 90 approx. 70 / E Liquid approx. 110 approx. 12 Lutensol TO 8 + 8 EO approx. 100 approx. 60 / A Liquid approx. 150 approx. 13 Lutensol TO 89 + 8 EO approx. 90 approx. 60 / A Liquid approx. 120 approx. 13 Lutensol TO 10 + 10 EO approx. 100 approx. 70 / A Paste approx. 30 (60 °C) approx. 13.5 Lutensol TO 109 + 10 EO approx. 85 approx. 70 / A Liquid approx. 150 approx. 13.5 Lutensol TO 11 + 11 EO approx. 100 approx. 70 / B Paste approx. 30 (60 °C) approx. 14 Lutensol TO 12 + 12 EO approx. 100 approx. 75 / B Solid approx. 40 (60 °C) approx. 14.5 Lutensol TO 129 + 12 EO approx. 85 approx. 75 / B Liquid approx. 200 approx. 14.5 Lutensol TO 15 + 15 EO approx. 100 approx. 80 / B Solid approx. 50 (60 °C) approx. 15.5 Lutensol TO 20 + 20 EO approx. 100 approx. 86 / B Solid approx. 60 (60 °C) approx. 16.5 Lutensol TO 389 + 3 / + 8 EO approx. 90 approx. 70 / E Liquid approx. 100 approx. 12Product Alcohol Active Cloud Physical Viscosity HLBcontent point form [mPa·s] value[%] [°C] [23 °C]Lutensol® XP types (C10-Guerbet alcohol ethoxylate)Lutensol XP 30 + 3 EO approx. 100 approx. 31 / E Liquid approx. 25 approx. 9 Lutensol XP 40 + 4 EO approx. 100 approx. 44 / E Liquid approx. 90 approx. 10.5 Lutensol XP 50 + 5 EO approx. 100 approx. 56 / E Liquid approx. 90 approx. 11.5 Lutensol XP 60 + 6 EO approx. 100 approx. 62 / E Liquid approx. 140 approx. 12.5 Lutensol XP 69 + 6 EO approx. 85 approx. 62 / E Liquid approx. 70 approx. 12.5 Lutensol XP 70 + 7 EO approx. 100 approx. 68 / E Liquid approx. 290 approx. 13 Lutensol XP 79 + 7 EO approx. 85 approx. 68 / E Liquid approx. 90 approx. 13 Lutensol XP 80 + 8 EO approx. 100 approx. 56 / A Liquid approx. 300 approx. 14 Lutensol XP 89 + 8 EO approx. 85 approx. 56 / A Liquid approx. 90 approx. 14 Lutensol XP 90 + 9 EO approx. 100 approx. 69 / A Liquid approx. 1200 approx. 14.5 Lutensol XP 99 + 8 EO approx. 85 approx. 69 / A Liquid approx. 100 approx. 14.5 Lutensol XP 100 + 10 EO approx. 100 approx. 80 / A Paste approx. 30 (60 °C) approx. 15 Lutensol XP 140 + 14 EO approx. 100 approx. 78 / B Paste approx. 40 (60 °C) approx. 16Lutensol® XL types (C10-Guerbet alcohol ethoxylate)Lutensol XL 40 + 4 EO approx. 100 approx. 43 / E Liquid approx. 40 approx. 10.5 Lutensol XL 50 + 5 EO approx. 100 approx. 58 / E Liquid approx. 50 approx. 11.5 Lutensol XL 60 + 6 EO approx. 100 approx. 65 / E Liquid approx. 60 approx. 12.5 Lutensol XL 70 + 7 EO approx. 100 approx. 68 / E Liquid approx. 70 approx. 13 Lutensol XL 79 + 7 EO approx. 85 approx. 68 / E Liquid approx. 120 approx. 13 Lutensol XL 80 + 8 EO approx. 100 approx. 56 / A Liquid approx. 120 approx. 14 Lutensol XL 89 + 8 EO approx. 85 approx. 56 / A Liquid approx. 150 approx. 14 Lutensol XL 90 + 9 EO approx. 100 approx. 69 / A Liquid approx. 30 (60 °C) approx. 14.5 Lutensol XL 99 + 9 EO approx. 80 approx. 69 / A Liquid approx. 160 approx. 14.5 Lutensol XL 100 + 10 EO approx. 100 approx. 80 / A Paste approx. 30 (60 °C) approx. 15 Lutensol XL 140 + 14 EO approx. 100 approx. 78 / B Paste approx. 40 (60 °C) approx. 16 Lutensol® AP types (Alkyl phenol ethoxylates)Lutensol AP 6 + 6 EO approx. 100 approx. 61 / E Liquid approx. 350 approx. 11 Lutensol AP 7 + 7 EO approx. 100 approx. 62 / E Liquid approx. 320 approx. 11 Lutensol AP 8 + 8 EO approx. 100 approx. 34 / A Liquid approx. 320 approx. 12.5 Lutensol AP 9 + 9 EO approx. 100 approx. 51 / A Liquid approx. 300 approx. 13 Lutensol AP 10 + 10 EO approx. 100 approx. 60 / A Liquid approx. 300 approx. 13.5 Lutensol AP 14 + 14 EO approx. 100 approx. 76 / B Liquid approx. 300 approx. 14.5 Lutensol AP 20 + 20 EO approx. 100 approx. 85 / B Solid approx. 70 (60 °C) approx. 16Lutensol® ON types (C10-Oxo alcohol ethoxylates)Lutensol ON 30 + 3 EO approx. 100 approx. 53 / E Liquid approx. 30 approx. 9 Lutensol ON 50 + 5 EO approx. 100 approx. 67 / E Liquid approx. 40 approx. 11.5 Lutensol ON 60 + 6 EO approx. 100 approx. 36 / A Liquid approx. 50 approx. 12 Lutensol ON 66 + 6.5 EO approx. 100 approx. 53 / A Liquid approx. 60 approx. 12.5 Lutensol ON 70 + 7 EO approx. 100 approx. 60 / A Liquid approx. 60 approx. 13 Lutensol ON 80 + 8 EO approx. 100 approx. 80 / A Liquid approx. 100 approx. 14 Lutensol ON 110 + 11 EO approx. 100 approx. 78 / B Paste approx. 30 (60 °C) approx. 15 Lutensol® GD typesLutensol GD 70 Alkyl polyglucoside approx. 70 > 100 / B Liquid approx. 5000Lutensol® F typesLutensol FA 12 Oleyl amine + 12 EO approx. 100 approx. 86 / B Liquid approx. 150Lutensol FA 12 K Coco amine + 12 EO approx. 100 approx. 92 / B Liquid approx. 190Lutensol FA 15 T Tallow amine + 15 EO approx. 100 approx. 97 / B Liquid approx. 240Lutensol FSA 10 Oleic acid amide + 10 EO approx. 100 approx. 85 / E Liquid approx. 300Nonionic low-foam surfactantsProduct Chemical Active Cloud Physical Viscosity Wetting nature content point form [mPa·s] effect[%] [°C] [23 °C]Plurafac® LF typesPlurafac LF 120 Fatty alcohol alkoxylate approx. 100 approx. 28 / A Liquid approx. 45 approx. 25 Plurafac LF 220 Fatty alcohol alkoxylate approx. 95 approx. 42 / A Liquid approx. 90 approx. 30 Plurafac LF 221 Fatty alcohol alkoxylate approx. 95 approx. 33 / A Liquid approx. 80 approx. 30 Plurafac LF 223 Fatty alcohol alkoxylate approx. 98 approx. 33 / E Liquid approx. 60 > 300 Plurafac LF 224 Fatty alcohol alkoxylate approx. 100 approx. 27 / E Liquid approx. 45 > 300 Plurafac LF 226 Fatty alcohol alkoxylate approx. 100 approx. 28 / A Liquid approx. 100 approx. 15 Plurafac LF 300 Fatty alcohol alkoxylate approx. 100 approx. 22 / A Liquid approx. 75 approx. 15 Plurafac LF 301 Fatty alcohol alkoxylate approx. 100 approx. 32 / E Liquid approx. 130 approx. 90 Plurafac LF 303 Fatty alcohol alkoxylate approx. 100 approx. 29 / E Liquid approx. 300 approx. 130 Plurafac LF 305 Fatty alcohol alkoxylate approx. 100 approx. 38 / E Liquid approx. 100 approx. 20 Plurafac LF 400 Fatty alcohol alkoxylate approx. 100 approx. 33 / A Liquid approx. 60 approx. 25 Plurafac LF 401 Fatty alcohol alkoxylate approx. 100 approx. 74 / A Liquid approx. 135 approx. 115 Plurafac LF 403 Fatty alcohol alkoxylate approx. 100 approx. 41 / E Liquid approx. 45 > 300 Plurafac LF 404 Fatty alcohol alkoxylate approx. 100 approx. 45 / E Liquid approx. 45 approx. 70 Plurafac LF 405 Fatty alcohol alkoxylate approx. 95 approx. 55 / E Liquid approx. 70 approx. 100 Plurafac LF 500 Fatty alcohol alkoxylate approx. 100 approx. 32 / E Liquid approx. 60 approx. 60 Plurafac LF 600 Fatty alcohol alkoxylate approx. 100 approx. 55 / A Liquid approx. 90 approx. 65 Plurafac LF 711 Fatty alcohol alkoxylate approx. 100 approx. 45 / E Liquid approx. 55 approx. 25 Plurafac LF 1300 Fatty alcohol alkoxylate approx. 100 approx. 21 / E Liquid approx. 95 > 300 Plurafac LF 1430 Amine alkoxylate approx. 100 approx. 35 / A Liquid approx. 400 > 300Plurafac SLF-18B45 90 %Fatty alcohol alkoxylate approx. 90 approx. 19 / A Liquid approx. 300 approx. 70Plurafac® LF types, end-cappedPlurafac LF 131 Fatty alcohol alkoxylate approx. 100 approx. 35 / E Liquid approx. 30 approx. 30 Plurafac LF 132 Fatty alcohol alkoxylate approx. 100 approx. 30 / E Liquid approx. 20 approx. 75 Plurafac LF 231 Fatty alcohol alkoxylate approx. 100 approx. 28 / E Liquid approx. 40 approx. 50 Plurafac LF 431 Fatty alcohol alkoxylate approx. 100 approx. 39 / E Liquid approx. 40 approx. 30Product EO content Active Cloud Physical Viscosity Molar[%] content point form [mPa·s] mass[%] [°C] [23 °C] [g/mol] Pluronic® PE types (PO/EO block polymers)Pluronic PE 3100 approx. 10 approx. 100 approx. 41 / E Liquid approx. 175 approx. 1000 Pluronic PE 3500 approx. 50 approx. 100 approx. 68 / A Liquid approx. 450 approx. 1900 Pluronic PE 4300 approx. 30 approx. 100 approx. 61 / E Liquid approx. 400 approx. 1750 Pluronic PE 6100 approx. 10 approx. 100 approx. 23 / A Liquid approx. 350 approx. 2000 Pluronic PE 6120 approx. 12 approx. 100 approx. 41 / E Liquid approx. 400 approx. 2100 Pluronic PE 6200 approx. 20 approx. 100 approx. 33 / A Liquid approx. 500 approx. 2450 Pluronic PE 6400 approx. 40 approx. 100 approx. 60 / A Liquid approx. 1000 approx. 2900 Pluronic PE 6800 approx. 80 approx. 100 approx. 88 / B Powder approx. 5000 (60 °C) approx. 8000 Pluronic PE 7400 approx. 40 approx. 100 approx. 60 / A Liquid approx. 1500 approx. 3500 Pluronic PE 8100 approx. 10 approx. 100 approx. 36 / E Liquid approx. 700 approx. 2600 Pluronic PE 9200 approx. 20 approx. 100 approx. 49 / E Liquid approx. 900 approx. 3650 Pluronic PE 9400 approx. 40 approx. 100 approx. 80 / E Solid approx. 300 (60 °C) approx. 4600 Pluronic PE 10100 approx. 10 approx. 100 approx. 35 / E Liquid approx. 800 approx. 3500 Pluronic PE 10300 approx. 30 approx. 100 approx. 71 / E Paste approx. 200 (60 °C) approx. 4950 Pluronic PE 10400 approx. 40 approx. 100 approx. 81 / A Paste approx. 500 (60 °C) approx. 5900 Pluronic PE 10500 approx. 50 approx. 100 approx. 75 / B Solid approx. 500 (60 °C) approx. 6500 Pluronic PE 10500 Solution approx. 50 approx. 18 approx. 75 / B Liquid approx. 10 approx. 6500Product EO content Active Cloud Physical Viscosity Molar[%] content point form [mPa·s] mass[%] [°C] [23 °C] [g/mol] Pluronic® RPE types (EO/PO block polymers)Pluronic RPE 1720 approx. 20 approx. 100 approx. 37 / E Liquid approx. 450 approx. 2150 Pluronic RPE 1740 approx. 40 approx. 100 approx. 51 / E Liquid approx. 600 approx. 2650 Pluronic RPE 2035 approx. 35 approx. 100 approx. 41 / E Liquid approx. 690 (40 °C) approx. 4100 Pluronic RPE 2520 approx. 20 approx. 100 approx. 31 / E Liquid approx. 600 approx. 3100 Pluronic RPE 2525 approx. 25 approx. 100 approx. 38 / E Liquid approx. 400 approx. 2000 Pluronic RPE 3110 approx. 10 approx. 100 approx. 25 / E Liquid approx. 600 approx. 3500 EmulsifiersProduct Chemical Active Cloud Physical Viscosity HLB nature content [%] point [°C] form [23 °C] [mPa·s] value Emulan® typesEmulan A Oleic acid ethoxylate approx. 100 approx. 52 / E Liquid approx. 70Emulan A Oleic acid ethoxylate approx. 100 approx. 52 / E Liquid approx. 70 approx. 11 Emulan AF Fatty alcohol ethoxylate approx. 100 approx. 65 / E Solid approx. 15 (60 °C) approx. 11 Emulan AT 9 Fatty alcohol ethoxylate approx. 100 approx. 68 / A Solid approx. 20 (60 °C) approx. 13 Emulan EL Castor oil ethoxylate approx. 97 approx. 71 / B Liquid approx. 600 (40 °C) approx. 13.5 Emulan EL 40 Castor oil ethoxylate approx. 100 approx. 72 / E Liquid approx. 300 (40 °C) approx. 12 Emulan ELH 60 Castor oil ethoxylate approx. 90 approx. 85 / B Liquid approx. 2500 approx. 16 Emulan EL 200 Powder Castor oil ethoxylate approx. 100 > 100 / A Powder approx. 200 (70 °C) approx. 18 Emulan ELP Castor oil ethoxylate approx. 100 approx. 51 / E Liquid approx. 700 approx. 7 Emulan LVA Oxo alcohol ethoxylate approx. 85 approx. 56 / A Liquid approx. 90 approx. 14 Emulan NP 3070 Alkylphenol ethoxylate approx. 70 approx. 90 / B Liquid approx. 1050 approx. 17 Emulan OC Fatty alcohol ethoxylate approx. 100 approx. 90 / B Solid approx. 60 (60 °C) approx. 17 Emulan OC Solution Fatty alcohol ethoxylate approx. 30 approx. 90 / B Liquid approx. 30 approx. 17 Emulan OG Fatty alcohol ethoxylate approx. 100 approx. 92 / B Powder approx. 80 (60 °C) approx. 17 Emulan OP 25 Alkylphenol ethoxylate approx. 100 approx. 88 / B Solid approx. 100 (60 °C) approx. 17 Emulan OU Fatty alcohol ethoxylate approx. 100 approx. 90 / B Solid approx. 60 (60 °C) approx. 17 Emulan P Fatty alcohol ethoxylate approx. 100 approx. 52 / E Liquid approx. 30 approx. 11 Emulan PO Alkylphenol ethoxylate approx. 100 approx. 46 / E Liquid approx. 300 approx. 11 Emulan TO 2080 C13 Oxo alcohol ethoxylate approx. 80 approx. 93 / B Liquid approx. 400 approx. 16 Emulan TO 3070 C13 Oxo alcohol ethoxylate approx. 70 approx. 91 / B Liquid approx. 1500 approx. 17 Emulan TO 4070 C13 Oxo alcohol ethoxylate approx. 70 approx. 91 / B Liquid approx. 1400 approx. 18 Emulan XCA 23 Polyisobutene derivative approx. 70 – Liquid approx. 3600 (40 °C) –Emulphor® typesEmulphor OPS 25 Sodium octylphenol approx. 34 Liquid approx. 60polyglycol ether sulphateEmulphor NPS 25 Sodium nonylphenol approx. 31 Liquid approx. 100polyglycol ether sulphateEmulphor FAS 30 Sodium fatty alcohol approx. 30 Liquid approx. 100polyglycol ether sulphateSolubiliserProduct Chemical Active Cloud Physical Viscositynature content [%] point [°C] form [mPa·s]Emulan HE 50 Hexanol ethoxylate approx. 100 approx. 72 / B Liquid approx. 25Emulan HE S104 Alcohol alkoxylate approx. 100 approx. 56 / E Liquid approx. 45AminopolyolQuadrol L Ethylene diamine+4 PO approx. 100 LiquidIonic surfactantsProduct Concentration Physical form Chemical nature[%] [23 °C]Lutensit® typesLutensit A-BO approx. 60 Liquid Sodium dioctylsulphosuccinateLutensit A-EP approx. 100 Liquid Acid phosphoric esterLutensit A-ES approx. 40 Liquid Sodium alkylphenol ether sulphateLutensit A-FK approx. 55 Liquid Sodium fatty acid condensation productLutensit A-LBA approx. 55 Liquid Amine salt of dodecylbenzenesulphonateLutensit A-LBS approx. 98 Liquid Dodecylbenzenesulphonic acidLutensit AN 10 approx. 100 Liquid Anionic/nonionic surfactant combination based on APEO Lutensit AN 30 approx. 100 Liquid Anionic/nonionic surfactant combination based on fattyalcohol ethoxylateLutensit AN 40 approx. 70 Liquid Mixture of nonionic surfactants with alkyl carboxylic acids Lutensit AN 45 approx. 80 Liquid Mixture of nonionic surfactants with alkyl carboxylic acids Lutensit AN 50 approx. 100 Liquid Anionic/nonionic surfactant combination based on fattyalcohol ethoxylateNekal® typesNekal BX Dry approx. 68 Powder Sodium alkylnaphthalene sulphonateNekal BX Conc. Paste approx. 60 Paste Sodium alkylnaphthalene sulphonateNekal BX Conc. Paste 40 % approx. 34 Paste Sodium alkylnaphthalene sulphonateNekal BX 30 % approx. 22 Liquid Sodium alkylnaphthalene sulphonateNekal SBC approx. 72 Liquid Alkylnaphthalene sulphonic acidCorrosion inhibitorsKorantin® typesKorantin BH Solid > 98 Solid 2-Butyne-1,4-diolKorantin BH 50 approx. 50 Liquid 2-Butyne-1,4-diolKorantin LUB approx. 100 Liquid Acid phosphoric ester of a polyetherKorantin MAT approx. 100 Liquid Alkanolamine salt of a nitrogenous organic acidKorantin PAT approx. 80 Liquid Alkanolamine salt of a nitrogenous organic acidKorantin PM > 99.5 Liquid Propargyl alcohol alkoxylateKorantin PP approx. 67 Liquid Propargyl alcohol alkoxylateKorantin SMK approx. 100 Liquid Phosphoric acid monoesterFoam depressorsProduct Chemical Physical form Viscosity Concentration nature [23 °C] [m·Pas] [%] Degressal® typesDegressal SD 20 Fatty alcohol alkoxylate Liquid approx. 60 100 Degressal SD 21 Fatty alcohol alkoxylate Liquid approx. 250 100 Degressal SD 23 Alcohol alkoxylate Liquid approx. 800 100 Degressal SD 30 Carboxylic acid ester Liquid approx. 20 100 Degressal SD 40 Phosphoric acid ester Liquid approx. 20 100Polyalkylene glycolsProduct Unsaturated Physical form Viscosity at 20 °C Iodine numberalcohol [23 °C] [mm2/s]Pluriol® A … R types (Reactive polyalkylene glycols)Pluriol A 010 R Allyl alcohol ethoxylate Liquid approx. 55 approx. 50Pluriol A 11 RE Allyl alcohol alkoxylate Liquid approx. 500 approx. 12Pluriol A 13 R Allyl alcohol alkoxylate Liquid approx. 150 approx. 20Pluriol A 22 R Allyl alcohol alkoxylate Liquid approx. 300 approx. 13Pluriol A 23 R Allyl alcohol alkoxylate Liquid approx. 60 approx. 43Pluriol A 308 R Butyne diol ethoxylate Liquid approx. 175 approx. 14 Product Molar mass Physical form Viscosity at 20 °C Melting point[g/mol] [23 °C] [mm2/s] [°C]Pluriol® A … E types (Methyl polyethylene glycols)Pluriol A 350 E approx. 350 Liquid approx. 30 –Pluriol A 500 E approx. 500 Liquid approx. 60 –Pluriol A 750 E* approx. 750 Solid approx. 30 (50 °C) approx. 35Pluriol A 760 E approx. 750 Solid approx. 30 (50 °C) approx. 35Pluriol A 1000 E approx. 1000 Solid approx. 60 (50 °C) approx. 40Pluriol A 1020 E* approx. 1000 Solid approx. 60 (50 °C) approx. 40Pluriol A 2000 E approx. 2000 Solid approx. 120 (50 °C) approx. 54Pluriol A 3010 E* approx. 3000 Solid approx. 160 (70 °C) approx. 59Pluriol A 5010 E* approx. 5000 Solid approx. 200 (100 °C) approx. 62 * = not filtratedProduct Molar mass Physical form Viscosity at 20 °C Viscosity[g/mol] [23 °C] [mm2/s] [mm2/s]Pluriol® A … PE types (Alkyl polyalkylene glycol copolymers)Pluriol A 1000 PE approx. 1000 Liquid approx. 50 approx. 11 (100 °C) Pluriol A 1320 PE* approx. 1400 Liquid approx. 180 approx. 20 (100 °C) Pluriol A 2000 PE approx. 2000 Liquid approx. 250 approx. 28 (100 °C) Pluriol A 2020 PE* approx. 2000 Liquid approx. 250 approx. 28 (100 °C) * = not filtratedPluriol® A … P types (Alkyl polypropylene glycols)Pluriol A 1350 P approx. 1350 Liquid approx. 195 approx. 85 (40 °C) Pluriol A 2000 P approx. 2000 Liquid approx. 500 approx. 180 (40 °C) Pluriol® A … TE types (Polyfunctional polyalkylene glycols)Pluriol A 3 TE approx. 275 Liquid approx. 1000 approx. 230 (40 °C) Pluriol A 15 TE approx. 800 Liquid approx. 400 approx. 140 (40 °C) Pluriol A 15 TERC approx. 800 Liquid approx. 400 approx. 140 (40 °C) Pluriol A 18 TERC approx. 900 Liquid approx. 430 approx. 150 (40 °C) Reactive solventsProduct Bisphenol A Physical form Active Viscosity[23 °C] content (%) [mm2/s]Pluriol® BP …E types (Bisphenol A ethoxylates)Pluriol BP 30 E + 3 EO Liquid approx. 100 approx. 450 (60 °C) Pluriol BP 40 E + 4 EO Liquid approx. 100 approx. 580 (50 °C) Pluriol BP 60 E + 6 EO Liquid approx. 100 approx. 680 (40 °C) Pluriol BP 100 E + 10 EO Liquid approx. 100 approx. 400 (40 °C)Product Molar mass Physical form Viscosity at 75 °C Melting point [g/mol] [23 °C] [mm2/s] [°C]Pluriol® E types (Polyethylene glycols) / Technical gradePluriol E 200 approx. 200 Liquid approx. 60 (20 °C)Pluriol E 300 approx. 300 Liquid approx. 85 (20 °C)Pluriol E 400 approx. 400 Liquid approx. 110 (20 °C)Pluriol E 600 approx. 600 Liquid approx. 40 (50 °C) approx. 20 Pluriol E 1000 approx. 1000 Paste approx. 30 approx. 40 Pluriol E 1500 E approx. 1500 Solid approx. 60 approx. 45 Pluriol E 1500 Powder approx. 1500 Powder approx. 60 approx. 45 Pluriol E 1500 Flakes approx. 1500 Flakes approx. 60 approx. 45 Pluriol E 3400 E approx. 3400 Solid approx. 200 approx. 55 Pluriol E 3400 Powder approx. 3400 Powder approx. 200 approx. 55 Pluriol E 3400 Flakes approx. 3400 Flakes approx. 200 approx. 55 Pluriol E 4000 E approx. 4000 Solid approx. 260 approx. 55 Pluriol E 4000 Powder approx. 4000 Powder approx. 260 approx. 55 Pluriol E 4000 Flakes approx. 4000 Flakes approx. 260 approx. 55 Pluriol E 6000 E approx. 6000 Solid approx. 600 approx. 60 Pluriol E 6000 Powder approx. 6000 Powder approx. 600 approx. 60 Pluriol E 6000 Flakes approx. 6000 Flakes approx. 600 approx. 60 Pluriol E 8000 E approx. 8000 Solid approx. 1500 approx. 63 Pluriol E 8000 Flakes approx. 8000 Flakes approx. 1500 approx. 63 Pluriol E 9000 Powder approx. 9000 Powder approx. 2500 approx. 65 Pluriol E 9000 Flakes approx. 9000 Flakes approx. 2500 approx. 65 Product Molar mass Physical form Viscosity at 100 °C[g/mol] [23 °C] [mm2/s]Pluriol® E types (Polyethylene glycols) / CARE grade*Pluriol E 205 approx. 200 Liquid approx. 4Pluriol E 305 approx. 300 Liquid approx. 5Pluriol E 405 approx. 400 Liquid approx. 6.5Pluriol E 605 approx. 600 Liquid approx. 10Pluriol E 1505 E approx. 1500 Solid approx. 30Pluriol E 1505 Flakes approx. 1500 Flakes approx. 30Pluriol E 3405 E approx. 3400 Solid approx. 85Pluriol E 3405 Flakes approx. 3400 Flakes approx. 85Pluriol E 4005 E approx. 4000 Solid approx. 110Pluriol E 4005 Flakes approx. 4000 Flakes approx. 110Pluriol E 6005 E approx. 6000 Solid approx. 350Pluriol E 6005 Flakes approx. 6000 Flakes approx. 350Pluriol E 8005 E approx. 8000 Solid approx. 600Pluriol E 8005 Flakes approx. 8000 Flakes approx. 600* Meets the monograph requirements of the current European and American PharmacopoeiaProduct Molar mass Physical form Viscosity at 20 °C Viscosity at 40 °C [g/mol] [23 °C] [mm2/s] [mm2/s]Pluriol® P types (Polypropylene glycols)Pluriol P 400 approx. 430 Liquid approx. 95 approx. 20Pluriol P 600 approx. 600 Liquid approx. 130 approx. 40Pluriol P 900 approx. 900 Liquid approx. 180 approx. 60Pluriol P 2000 approx. 2000 Liquid approx. 440 approx. 150 Pluriol P 4000 approx. 4000 Liquid approx. 1050 approx. 350。
美陆军成立“绿色贝雷帽”【1962】THE BOSS再一次任务中被迫杀死THE SORROW(Ocelot生父)【1963】Shaghod除武器部分外,研发接近尾声。
索科洛夫开始对其强大的威力心生恐惧。
同年,Volgin上校准备叛乱。
【1964】8月24日。
贞洁行动开始,JACK被派遣营救索科洛夫。
THE BOSS叛变,任务失败。
8月30日,食蛇者行动开始,目标营救索科洛夫,杀死THE boss,Volgin。
摧毁Shaghod。
9月2日,食蛇者行动成功,JACK被授予“BIG BOSS”头衔,并且了解到THE BOSS叛变而牺牲自我,保全大局的真相,从此深受THE BOSS理念的影响。
同年,BIG BOSS退出FOX UNIT。
后FU由GENE接管指挥美国掌握有一半哲学家的遗产。
【1965】Sigint进入ARPA【1968】EVA于河内失踪【1970】PARA-MEDIC在西雅图建立PARA MEDIC医疗系统。
zero解散了FOX UNITGENE发动叛乱意图摧毁哲学家组织,BIGBOSS瓦解危机,GENE死前给予了BIG BOSS关于他设想的“Army’s heaven”全部资料Ocelot刺杀中情局局长,与EVA ZERO等人创立了“爱国者”,BIG BOSS随后应Ocelot要求,被吸收入爱国者。
【1971】BIG BOSS,FRANK(未来的灰狐),ROY CAMPBELL创立了FOX HOUND部队。
名称来源是整合了FOX UNIT 以及HOUND UNIT【1972】“魔童计划”元年,LIQUID SOLID SOLIDUS出生。
均克隆自BIG BOSS,LIQUID SOLID代孕体为EVA。
同年,BIG BOSS创立MSF,在克罗比亚与MICDONALD MILLER(KAZ)初识。
【1974】PEACE WALKER事件,METAL GEAR ZEKE研发完成。
MSF得以壮大。
参考答案Chapter 1 Water第一天:词汇与句型(1)一、根据题意和括号内的提示语,完成下列句子1. pouring2. patient3. pipes4. solid5. liquid6. tap7. enough8. wasted9. covered 10. shook二、根据题意和首字母,完成句子.11. froze 12. reply 13. covered 14. obey 15. polluting16. until 17. plant 18. sewage 19. total 20. precious三、完型填空21—25 B C A D D 26—30 C A C B B四、阅读理解31—35 A A D C B第二天:词汇与句型(2)一、根据句子意思,用所给单词的适当形式填空1. gases2. streams3. nodded4. treatment5. valuable6. owner7. dropped8. quickly9. pollution 10. cleans二、根据句子意思从下列方框中选择正确的词组,并用其适当形式填空11. clean; up 12. looked around 13. turn off14. shook his head 15. comes from三、完型填空16—20 C A B D C 21—25 B A B C D四、阅读理解26—30 D C B A A第三天:词汇与句型(3)一、1—5 B D A A B二、6—10 A A D C D 11—15 C C D B D三、16—20 B B C D A 21—25 C A C C A四、26—30 C B D A B第四天:语法(1)一、1—5 D B A D B 6—10 D B C D A11—15 A A D A D 16—20 A C C B B二、21—25 B A D C B 26—30 A C C C A三、31—35 B C D B D第五天:语法(2)一、按要求完成下列各句1. much2. a lot of3. many4. little5. few6. a few7. a little8. enough9. any 10. some二、完型填空11—15 D B A C B 16—20 A B A D C三、从方框中选择合适的单词补全对话,使对话内容完整21. washing 22. Because 23. take 24. turn 25. ways第六天:单元检测一、选择填空i. 1—5 B C A A Dii. 6—10 D B C B A 11—15 A D B C A16—20 A D A C B二、完形填空21—25 A B C D B 26—30 A B A C A三、阅读理解i. 31—35 A B C D Aii. 36—40 D B F E Aiii. 41—45 D B A F G四、根据句子意思,用所给单词的适当形式填空46. sounded 47. works 48. uncomfortable 49. flowed 50. freezes 51. disobeys 52. scientist 53. owners54. Planting 55. bathing五、书面表达Water is valuable. People can't live without it. How should we save it at home? Tony thinks we should always remember to turn off the tap when we don't use it. Lucy thinks we should’t leave water running while we brush our teeth. Tom thinks we should take a shower instead of a bath. Daisy says we'd better spend less time doing the dishes. And I think we can clean the toilet with the used water.Chapter 2 School newspapers第一天:词汇与句型(1)一、根据题意和括号内的提示语,完成下列句子1. absent2. teenage3. term4. suggested5. consider6. publish7. secretary8. pleased9. experience 10. deserves二、根据题意和首字母,完成句子11. held 12. formed 13. march 14. local15. praised 16. free 17. briefly 18. shame19. voted 20. design三、完型填空21—25 A D B A C 26—30 D B A D B四、阅读理解31—35 D C D A C第二天:词汇与句型(2)一、根据句子意思,用所给单词的适当形式填空1. suggestions2. to have3. experienced4. choose5. Congratulations6. location7. editors8. pleased 9. brief 10. decision二、根据句子意思从下列方框中选择适当的词组11. am responsible for 12. make a list13. for example 14. pay for 15. a bit六、完型填空16—20 B D C D B 21—25 A C A C B七、阅读理解26—30 B B B D A第三天:词汇与句型(3)一、1—5 C B A C D二、6—10 A B B A A 11—15 B C A B C三、完型填空16—20 C A D B C 21—25 A D B C A四、阅读理解26—30 B B C D A第四天:语法(1)一、选择20题1—5 B C D B B 6—10 A A B B C11—15 B A A C D 16—20 C C A C D二、完型填空21—25 D A A B C 26—30 A D C D C三、阅读理解31—35 D A D B C第五天:语法(2)一、用should 或ought to 填空。
ansys热力耦合分析单元简介SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。
本单元由8个节点定义,每个节点有6个自由度。
在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。
在结构和压电分析中,具有大变形的应力钢化功能。
与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。
INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。
具有两个节点,每个节点上带有磁向量势或温度自由度。
所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。
使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。
使用热自由度时,只能进行线性稳态分析。
PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。
由4个节点定义,每个节点可达到4个自由度。
具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。
具有大变形和应力钢化功能。
当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。
LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。
每个节点有一个自由度。
可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。
允许形状因子和面积分别乘以温度的经验公式是有效的。
发射率可与温度相关。
如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。
LINK32-二维传导杆用于两节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
可用于二维(平面或轴对称)稳态或瞬态的热分析问题。
如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。
LINK33-三维传导杆用于节点间热传导的单轴单元。
该单元每个节点只有一个温度自由度。
3维实体焊接残余应力分析中的单元选择和网格划分1 尽量使用低阶六面体单元焊接仿真是一个复杂的非线性热应力耦合分析,而堆焊几何模型也往往比较大,计算量大。
非线性分析中要尽量使用低阶单元(只有corner code),选用低阶热单元,如solid90,如果必须使用高阶单元,则要打开对角比热矩阵选项。
Keyopt,,1。
按形状进行比较,接近正方体的六面体单元的计算精度远高于四面体单元,并且划分数量也相当少些。
高阶单元的计算精度高于低阶单元,但是计算量也大一些。
2 使用过渡单元对于三维的焊接仿真问题,过小的时间步长和过密的网格划分势必需要很大的计算机容量和很长的计算时间,而一旦在焊缝处加粗单元网格,计算精度又受到影响,且极易发生“跃阶”现象。
一般的出来方法是,焊缝及其附件区域用密网格,远离焊缝的区域用粗网格,如图所示。
模型中包括粗细不同的网格密度,必然涉及到过渡区域的问题。
过渡区域的单元类型选择很重要,某些单元类型不支持pyramid 派生形状,可能会导致网格质量低。
用mcheck 命令检查就会出现了类似如下的warning 。
*** WARNING *** SUPPRESSED MESSAGE CP = 5.031 TIME= 10:44:54 The edge of element 10059 defined by nodes 1429 1230 is part of at least 2 distinct sets of exterior faces. This may indicate that the attached elements are connected in an unusual manner.热 SOLID90 SOLID90 SOLID87 结构 SOLID186/95 SOLID186 SOLID187/92 高频 HF120 HF11910-节点四面体13-节点金字塔形20-节点六面体8-节点六面体9-节点金字塔 10-节点四面体热 SOLID70 SOLID90 SOLID87结构 SOLID185/45 SOLID186 SOLID187/92过渡单元: 热SOLID90 结构SOLID186 (一般不选用一阶六面体单元作为过渡单元)自由网格往往数量多质量差,映射网格却不容易实现。
1 您可以使用CTRL+TAB 键循环进入在SolidWorks 中打开的文件。
2 使用方向键可以旋转模型。
按CTRL 键加上方向键可以移动模型。
按ALT 键加上方向键可以将模型沿顺时针或逆时针方向旋转。
3 您可以钉住视图定向的对话框,使它可以使用在所有的操作时间内。
4 使用z 来缩小模型或使用SHIFT +z 来放大模型。
5 您可以使用工作窗口底边和侧边的窗口分隔条,同时观看两个或多个同一个模型的不同视角。
6 单击工具栏中的"显示/删除几何关系"的图标找出草图中过定义或悬空的几何关系。
当对话框出现时,单击准则并从其下拉清单上选择过定义或悬空。
7 您可以在FeatureManager设计树上拖动零件或装配体的图标,将其放置到工程图纸上自动生成标准三视图。
8 您可以用绘制一条中心线并且选择镜向图标然后生成一条"镜向线"。
9 您可以按住CTRL 键并且拖动一个参考基准面来快速地复制出一个等距基准面,然后在此基准面上双击鼠标以精确地指定距离尺寸。
10 您可以在FeatureManager设计树上以拖动放置方式来改变特征的顺序。
11 当打开一个工程图或装配体时,您可以借助使用打开文件对话框中的参考文件按钮来改变被参考的零件。
12 如果隐藏线视图模式的显示不够精准,可以使用工具/选项/文件属性/图象品质/线架图品质,以调整显示品质。
13 您可以用拖动FeatureManager设计树上的退回控制棒来退回其零件中的特征。
14 使用选择过滤器工具栏,您可以方便地选择实体。
15 按住CTRL 键并从FeatureManager设计树上拖动特征图标到您想要修改的边线或面上,您可以在许多边线和面上生成圆角、倒角、以及孔的复制。
16 在右键的下拉菜单上选择"选择其他"的选项可以在该光标所在位置上做穿越实体的循环选择操作。
17 单击菜单上的工具/选项/文件属性/颜色,然后从清单上选择一个特征类型,接着单击编辑来选择颜色,您可以对选择的特征类型指定颜色。
用S Y S软件分析压电换能器入门Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT用ANSYS软件分析压电换能器入门A:分析过程基本步骤一:问题描述(草稿纸上完成)1:画出换能器几何模型,包括尺寸2:选定材料3:查材料手册确定材料参数二:建立模型1:根据对称性确定待建模型的维数2:根据画出的几何模型确定关键点坐标,给关键点编好号码3:建立一个文件夹用于当前分析4:启动ANSYS软件,指定路径到建立的文件夹,5:定义单元类型压电换能器分析使用的单元类型:solid5:8个节点3D六面体耦合场单元(也可缩减为三角柱形单元或四面体单元)。
无实常数。
plane13:4个节点2D四边形耦合场单元(也可缩减为三角形单元)。
无实常数。
solid98:10个节点3D四面体耦合场单元。
无实常数。
Fluid30:8个节点3D六面体声学流体单元(也可缩减为三角柱形单元或四面体单元)。
应用于近场水和远场水。
实常数为参考声压,可缺省。
Fluid130:4个节点面无穷吸收水声学流体单元(也可缩减为三角形面单元)。
实常数:半径,球心X,Y,Z坐标值。
6:定义材料参数对一般均匀各向同性材料要给出材料密度,杨氏模量,泊松系数。
(静态分析不用密度)对压电材料:一般使用的压电方程:e型压电方程,因此输入的常数为注意!一般顺序为:XX,YY,ZZ,YZ,XZ,XY。
在ANSYS中为XX,YY,ZZ,XY,YZ,XZ。
因此,前两矩后三行和后三列要做相应变化。
7:建立关键点8:把关键点连成线9:把线段围成面10:通过适当的方法生成体11:指定单元类型和材料参数12:划分线段13:划分体单元14:坐标转换,(转换到柱坐标系下)15:节点转换三:加载约束条件1:加载边界约束条件2:电极上加电压四:求解1:模态分析2:谐响应分析五:查看结果1:查看模态分析结果,计算导纳。
2:各模态的动态演示3:查看谐响应分析结果,计算导纳、发射与接收响应。
SOLID226 单元及其退化形式-六面体20节点单元SOLID227 单元-四面体10节点单元SOLID226 分析功能:SOLID5 及其退化形式SOLID5 分析功能:主要限制:ANSYS Mechanical.∙This element does not have magnetic capability.∙The MAG degree of freedom is not active.∙KEYOPT(1) cannot be set to 10. If KEYOPT(1) = 0 (default) or 1, the MAG degree of freedom is inactive.∙The magnetic material properties (MUZERO, MUR_, MG__, and the BH data table) are not allowed.∙The Maxwell force flags and magnetic virtual displacements body loads are not applicable.ANSYS Emag.∙This element has only magnetic and electric field capability, and does not have structural, thermal, or piezoelectric capability.∙The only active degrees of freedom are MAG and VOLT.∙KEYOPT(1) settings of 0, 1, 2, 3 and 8 are invalid.∙The only allowable material properties are the magnetic and electric properties (MUZERO through PERZ, plus the BH data table).∙The only applicable surface loads are Maxwell force flags. The only applicable body loads are temperatures (for material propertyevaluation only) and magnetic virtual displacements.∙The element does not have stress stiffening or birth and death features.∙KEYOPT(3) is not applicable.从上单元信息可知:1)solid226,solid227单元采用高阶单元形式(中节点形式二阶单元),与solid5相比,分析精度提高,改善分析准确性。
HTML5+CSS3 圆角边框的绘制
在CSS 3中,使用CSS样式完成圆角边框绘制,是经常用来美化页面效果的手法之一。
1.border-radius属性
在CSS 3中,border-radius属性用于指定圆角的半径,来完成圆角半径的绘制。
示例:17-4 BorderRadius.html
在上述代码中,使用border-radius属性绘制DIV层的边框,设置圆角半径为25像素。
2.在border-radius属性中指定两个半径
下列代码与示例17-4中的代码部分相同,样式修改代码如下:
示例:17-5 BorderRadius1.html
在上述代码中,使用border-radius属性绘制DIV层的边框,分别设置圆角半径为60像素和15像素,边框颜色为红色。
在Opera游览器中效果如下:
3.设置边框为不显示
在使用border-radius 属性绘制圆角边框时,可以使用border 属性的none 值将边框设置为不显示。
示例:17-6 BorderRadius2.html
在上述代码中,设置div
层背景颜色为“#E4E4E4”,宽度为300像素,高度为123像素。
4.绘制四个角不同半径的圆角边框
在绘制圆角边框时,如果圆角边框的四个圆角半径各不相同,可以使用下列属性进行设置。
示例:17-7 BorderRadius3.html
在上述代码中,设置左上角的半径为30像素,设置左下角的半径为80像素,设置右上角的半径为5像素,设置右下角的半径为60像素。
半径为5像素
半径为60像素
半径为30像素。
用ANSYS软件分析压电换能器入门A:分析过程基本步骤一:问题描述(草稿纸上完成)1:画出换能器几何模型,包括尺寸2:选定材料3:查材料手册确定材料参数二:建立模型1:根据对称性确定待建模型的维数2:根据画出的几何模型确定关键点坐标,给关键点编好号码3:建立一个文件夹用于当前分析4:启动ANSYS软件,指定路径到建立的文件夹,5:定义单元类型压电换能器分析使用的单元类型:solid5:8个节点3D六面体耦合场单元(也可缩减为三角柱形单元或四面体单元)。
无实常数。
plane13:4个节点2D四边形耦合场单元(也可缩减为三角形单元)。
无实常数。
solid98:10个节点3D四面体耦合场单元。
无实常数。
Fluid30:8个节点3D六面体声学流体单元(也可缩减为三角柱形单元或四面体单元)。
应用于近场水和远场水。
实常数为参考声压,可缺省。
Fluid130:4个节点面无穷吸收水声学流体单元(也可缩减为三角形面单元)。
实常数:半径,球心X,Y,Z坐标值。
6:定义材料参数对一般均匀各向同性材料要给出材料密度,杨氏模量,泊松系数。
(静态分析不用密度)对压电材料:一般使用的压电方程:e型压电方程,因此输入的常数为注意!一般顺序为:XX,YY,ZZ,YZ,XZ,XY。
在ANSYS中为XX,YY,ZZ,XY,YZ,XZ。
因此,前两矩后三行和后三列要做相应变化。
7:建立关键点8:把关键点连成线9:把线段围成面10:通过适当的方法生成体11:指定单元类型和材料参数12:划分线段13:划分体单元14:坐标转换,(转换到柱坐标系下)15:节点转换三:加载约束条件1:加载边界约束条件2:电极上加电压四:求解1:模态分析2:谐响应分析五:查看结果1:查看模态分析结果,计算导纳。
2:各模态的动态演示3:查看谐响应分析结果,计算导纳、发射与接收响应。
六:生成命令流文件1:给程序分块,添加适当的注释2:把相应参数具体值改成变量,同时给变量赋值B:空气中建模过程一:问题描述弯曲式换能器实体模型为轴对称结构。