当前位置:文档之家› 高等数学在电气自动化的应用

高等数学在电气自动化的应用

高等数学在电气自动化的应用
高等数学在电气自动化的应用

材料学院自动化1010

李长茂 123号

一、何为高等数学

高等数学比初等更“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。

二、

高等数学的特点

初等数学研究的是常量与匀变量,高等数学研究的是的是不匀变量。

高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科。

作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的

应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。

三、高等数学的重要地位

我们可以作这样一个比喻:如果将整个数学比作一棵参天大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干就是“数学分析、高等代数、空间几何”。这个粗浅的比喻,形象地说明这“三门”课程在数学中的地位和作用。

我们现在学习的高等数学是由微积分学、空间解析几何、微分方程组成,而微积分学是数学分析中主干部分,而微分方程在科学技术中应用非常广泛,无处不在。就微积分学,可以对它作如下评价。

微积分的发明与其说是数学史上,不如说是人类科学史上的一件大事。它是由牛顿和莱布尼茨各自独立地创立的。

恩格斯指出:“在一切理论成就中,未必再有什么像十七世纪下半叶微积分学的发明那样被看作人类精神的最高胜利了。”

美国著名数学家柯朗指出:“微积分,或曰数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具…这门学科乃是一种憾人心灵的智力奋斗的结晶。”

数百年来,在大学的所有理工类、经济类专业中,微积分总是被列为一门重要的基础理论课。

四、高等数学在电气自动化领域的体现

电路原理》中的数学应用

我们在学习《基本电路理论》一阶、二阶电路部分时遇到了许多微分方程求解的问题。这些微分方程实质上比较简单,但运算量大,且涉及繁琐的复数计算,消耗大量的时间。可以看到,在后面引入的相量法、拉式变换为我们提供了强有力的工具去解决这一类问题,但如果思考一下各种情形下微分方程求解中的同异,熟悉它们的数学本质,就会设计出一种便捷的方法处理这类问题。 分析

先从RLC 串联电路的零输入响应谈起。 对基本RLC 串联电路列出微分方程:

0c di

L Ri u dt ++=

c

du i C

dt =

并有

2

2

0,0i

di i

L R t dt C

d

dt

++=≥。这是教材当中的表达式。

我们将其写成:

2

2

0,0

i di LC

RC i t dt d dt ++=≥ (1)

令i 的系数为1。初始条件

(0)0,(0)(0)0

c L u i i ===

于是有0

1

0[(0)(0)]c di t Ri u dt

L L u ==-+=- (2) 先不去解上面的方程,而是直接转到RLC 串联电路的冲激响应。 含有冲激响应的基本微分方程为

2

2

()C

C C

d L R t dt C d d u u u t

δ++=

初始条件(0)0C u -=

对冲激函数积分之后,得到:

2

20

C

C C d LC RC

dt

d d u u u t ++= (3)

初始条件(0)0C u +=及1

0C

d t dt

LC u =+=

(4)

比较1、2、3和4式可以发现,1和3是未知量系数是1的齐次二阶微分方程,而且同次微分对应的系数相等。而2和4都是初始条件,撇开字母的形式也几乎完全一样:初值为零,且0时的导数不为零。 由此我们发现,两者的数学本质是一样的。因此,求解后除了特定的值需要换一下,RLC 零输入的电流响应结论完全可以移植到冲激响应的电压上来。 我们列表做一下比较:

其中,1

S α=-+

2

S

α=-0ω=

不难发现,冲激响应的uc 其实就是将零输入响应i 中的0

L u

换成了

1/LC 。由此,只要记住了零输入响应的电流公式,冲激响应的uc 可以完全照搬。

然而在实际应用中这是不够的。实际题目中往往给定初值,并不是都要我们去求冲激响应。前面说过,这里的方法是一条“捷径”,只要记住了公式就能很快地“套”出一些题目的结论。 下面再来看具体问题中如何应用。

对比(4)式的10C

d t dt

LC u =+=和00C d t dt C u i +

=+=。用0C i +

来换掉1/LC 即可。而知道了c u ,由

00C d C

t dt

u i +

=+=可以得到i 。

接下来再来讨论阶跃响应的处理方式。

阶跃响应的微分方程处理时是将其分解成稳态分量和暂态分量求解的,暂态分量(电流)的初始条件是(0)(0)0L i i +=+=,

0(0)0C di

t C dt u =+=+=,和前面导数初值非零的情况不同,因此在数学

形式上与前面三者不能统一起来。但是,其形式上和零输入响应仍有相当多的共同之处。 请看下面表格:

我们不难发现如下的规律:

电流:将零输入时的-U0换成1,即得阶跃响应电流。

电容电压:将零输入时的U0换成1,并用1去减之,所得结果乘以u(t)。实际应用中会遇到外加的恒定电压源幅值不是

1的情况,依网络的线性性质,将上面标示各种的1用Us 代替。 讨论过后,下面就给出应用法则:

从简到繁,首先,对于基本的RLC 串联电路,我们约定Us 都是恒压。 1. 找出三个条件:(0)C u +、(0)L i +和Us ,均取一致参考方向。 2. (0)C u +处理为零输入,Us 处理为阶跃,(0)L i +处理为冲激,方法如前所述。

3. 将所求的电压、电流叠加,可得结果。

例:已知RLC 串联电路中R=6Ω,L=1H, C=0.04F 和i(0)=4A,

(0)4C

V

U

=- ,试求i(t)、()C t U 0t ≥。

解:已知i(0)=4A, (0)4C V U =- ,分解为零输入和冲击响应。 零输入响应:

3,2R

L α==

05,

ω=

=4

d ω== 为欠阻尼情形。

34sin 414t

i t e --=

? 3353(4)cos(4arctan())(4cos 43sin 4)44

t t C t t t u e e --=?--=-- 冲激响应:

04

01000.04C d i t dt

C u +=+=

==

3321()100sin 425sin 44t t

t t t u e

e --=?

=

322()0.0425(3sin 44cos 4)

t

d t C

t t dt

u i e -==?-+

于是,由叠加原理:

312()()()(22sin 44cos 4)

t

C t t t t t u u u e -==-+ 312()()()(4cos 42sin 4)

t

i t t t t t i i e -==-+

3()(4cos 42sin 4)

t

C d i t C

t t dt

u e -==-完全一致,结论亦可作为正确性的一

个证明。

实际中遇到的电路通常都需要先列出微分方程。约定如下步骤: 列出关于所求变量的微分方程,写出初始条件。

2.令微分方程中为质量系数为1,写成2

2x dx

A B x p

dt d d t

++=的形式。为

了解决问题的方便,一般都取为电容电压Vc 。

3. 仿造2

2x dx

LC RC x p

dt d d t

++=,

0,2B A αω=

=

4. 按和前面完全相同的步骤求解。

例:已知图1中电路处于稳态,现在t=0时刻将开关打开,试求t≥0

时的电容电压uc(t)和电感电流iL (t)。 解: 分析题意,列出微分方程。 直接利用教材中的结论表达式。 该题的电路方程为:

R2=2Ω

L=2H

图1

2

2

3

24C

C C

d dt

d d u u v t

+

+

=

(0)2C

V

u

= 00

C d t dt

u =+=

首先调整微分方程的系数,得

2

2448

333

C C C d dt d d u u u t ++=

04

13

,422223B A αω=

====?,

2d

ω==

为欠阻尼情形。

由初值,可将其分解为零输入响应和阶跃响应(注意用V0去换1)。 零输入响应:

1

02

1

2

cos(sin arctan())2

22

35.3)

2

t t

C d

d d

t

t

u u e e

αα

ωω

ωω

--

-

=-=?-

=-?

阶跃响应:

1

02

1

2

8

[1cos(sin arctan())]()(1cos(arctan(

322

8

35.3)

3

t t

C d

d d

t

t u t

u e e

αα

ωω

ωω

--

-

=--=?-

=-?

所以,由叠加定理,Vc等于上两值之和,有

1

2

8

35.3)

3

t

C

u-

=-?

,与书上答案完全吻合。

本文的讨论完全来源于变量的数学本质,并且紧密依托叠加定理。要切实掌握好这一方法,必须明白推理过程,明确基本概念,并在实际中加以运用。徒然大量做题而不假思索,未必会有收获。

五、总结

因此,我们当代大学生学习数学的重要性就显而以见的了,我们要想在21世纪的社会有一个立足之地就需要全面的发展自己,而我们学习的高等数学又是这里面的重中之重。

我们只有认清当今社会的人才培养目标,深入的学习高等数学,使高等数学在我们的人生中其到应有的作用,为社会做到最大的效益!

高等数学课程标准

《高等数学》课程标准 第一部分课程的性质 数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成方法和理论,并且进行广泛应用的科学。数学是抽象的,又是具体的,是一种工具,也是一种文化,更是一种信息。 随着时代的发展,文明的进步,特别是二十世纪中叶以来,数学自身发生了巨大的变化,与计算机的结合愈来愈紧密,使得数学在研究领域、研究方式和应用范围等方面得到了空前的发展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量繁杂的信息作出最优的判断和选择,同时为人们交流信息提供了一种有效而简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息、建立模型,进而解决问题,直接为社会创造价值。 在高等职业技术教育中,高等数学是一门必修的公共基础课。它将为今后学习工程数学、专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。基于职业教育的特点,以及为适应迅猛的社会经济发展,为公司企业输送相应层次的技术人才,在高等数学的教学中必须遵循“以应用为目的,以必需,够用为度”的原则,注重理论联系实际,强调对学生基本运算能力和分析问题、解决问题能力的培养,以努力提高学生的数学修养和素质。 第二部分课程基本任务 一、优化课程结构,适应高等职业教育人才培养模式 高等职业技术教育是以培养高等技术应用性专门人才为根本任务,以适应社会需要为目标,以培养技术应用能力为主线设计学生的知识、能力、素质结构和培养方案,毕业生应具有基础理论知识适度、技术应用能力强、知识面较宽、素质高等特点。因此,课程的教学内容体系应突出“应用”的主旨,从而与经济建设、科技进步和社会发展要求相适应,与人的全面发展需求相适应,与高等教育大众化条件下多样化的学习需求相适应,与高等教育课程改革与建设的国际化趋势相适应,与国家基础教育课程改革的要求相衔接。 二、以能力培养为切入点,充分体现课程的基础性、应用性和发展性 数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据,进行计算、推理和证明,它为其它学科提供了语言、思想和方法,从而数学的基础性地位无可替代,更不

高等数学练习题(附答案)

------------------------------------------------------------------------------------------------------------------------《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则

高等数学应用案例讲解

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 y f x f dx dy ????= 所以,当增加一名技术工人时,非技术工人的变化量为 x y y x f dx dy 2-=???= 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数;

x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程: (1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名, 且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: )(020020y y x x y x ?+??+=?)( 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y ?????????????????? ? ??+--=200111x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: ∑∞=--???? ???-+???? ???-?=???? ???+-110120020)1(32111n n n x x n x x x x x x 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷

高等数学标准

《简单的线性规划及其应用 课题: 简单的线性规划及其应用 一、教学目标: 1 . 知识目标: 1 、在应用图解法解题的过程中培养学生的观察能力、理解能力; 2 、在变式训练的过程中,培养学生的分析能力、探索能力; 3 、会用线性规划的理论和方法解决一些较简单的实际问题。 2 . 能力目标 : 1 、了解线性规划的意义,了解线性约束条件、线性目标函数、可 行解、可行域和最优解等概念; 2 、理解线性规划问题的图解法; 3 、会利用图解法求线性目标函数的最优解; 4 、 让学生体验数学来源于生活,服务于生活,体验应用数 学的快乐。 3 . 情感目标: 1 、 培养学生学习数学的兴趣和“用数学”的意识,激励学生 创新,鼓励学生讨论,学会沟通,培养团结协作精神; 2 、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、 从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想 《高等数学》课程标准 一、课程描述 1、课程性质 数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成

方法和理论,并且进行广泛应用的科学。数学是一种工具,也是一种文化。作为工具,数学应用于各门科学,可以帮助人们更好地探求客观世界的规律,有助于人们收集、整理、描述信息、建立模型,进而解决问题;作为一种文化,数学一直是现代文化的主要力量,数学知识的学习过程,能培养人们形成理性和客观的生活态度与工作理念,使人们的思维习惯与语言表达趋于严密和精炼。 在高职院校中,《高等数学》课程是各专业一门必修的公共基础课。它将为今后学习专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。基于高职教育的特点,在高等数学的教学中必须遵循“以必需,够用为度”的原则,注重对学生基本运算能力和数学思维方式的训练,强调对基本数学概念的理解和应用,以努力提高学生的数学修养和素质。 在高等职业技术教育中,高等数学是一门必修的公共基础课。 2、课程的基本理念 (1)优化课程结构,适应高等职业教育人才培养模式 高等职业技术教育是以培养高等技术应用性专门人才为根本任务,以适应社会需要为目标,以培养技术应用能力为主线设计学生的知识、能力、素质结构和培养方案,毕业生应具有基础理论知识适度、技术应用能力强、知识面较宽、素质高等特点。因此,课程的教学内容体系应突出“应用”的主旨,从而与经济建设、科技进步和社会发展要求相适应,与人的全面发展需求相适应,与高等教育课程改革要求相衔接。 (2)以素质、能力培养为目标,充分体现课程的基础性、应用性和发展性 数学是一种普适性工具,在数据处理,表达计算、演绎推理等方面为其它学科提供了一种特有的语言、思想和方法,数学的基础性地位无可替代,更不能偏废。高等职业技术教育中,高等数学作为公共基础课程,应充分遵循“需有所学、学有所用”的原则,教学过程中应从素质、能力培养出发,开发学生的创新思维。 (3)以学生为中心,充分发挥学生的学习能动性 高等数学的学习内容应当根据实际需求进行调整,而内容的呈现也应采用不同的表达方式,以满足多样化的学习需求,同时教学活动必须建立在学生的接受能力基础之上。而教师也不是被动的,应调动一切可行的手段,激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验,为学习和实践提供有效的知识工具和良好的思维素质。 (4)加强计算机与数学教学的整合,促进教学改革,提高教学质量 现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,加强计算机与数学教学的整合,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,把学生的学习活动整合到现实的、探索性的数学活动中去。 (5)构建本课程新的评价体系,考察学生的“输出”能力 评价的主要目的是为了全面了解学生的数学学习历程,考察学生的实际能力,同时激励学生的学习和改进教师的教学。但以往的评价手段过于单一,不能全面反映学生的真实情况,而且评价的价值取向犹为偏颇。所以应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,也要关注学习的过程;要关注数学知识的掌握,也要关注数学知识的运用。总之,评价的结果优劣要经得起实践检验。 3、课程设计理念 依据课程的基本理念,根据不同系的不同专业,在内容的选择上,要从提高素质和加强应用的角度选择教材的内容,大胆取舍,以满足专业岗位的需求。针对不同专业的学生特点及专

极限定义在高等数学中的应用

韩山师范学院 学生毕业论文 (2008届) 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要 极限概念是微积分学中最重要,最基本的概念。掌握好利用定义证明函数极限是学好高等数学的基础。极限有数列极限,函数极限,多元函数极限等几类,本文直接或间接地用极限定义来证明一些我们经常见到高等数学问题。 关键词:极限;极限定义;数列极限;函数极限 Abstract The definition of the limit is the most important and basic concept in the infinitesimal calculus. Mastering the ways of using the definition to probe the limit of function lays a foundation for studying the higher mathematics well. There are the limit of series, limit of function and functional limit of several variables and so on. In this paper, the definition of the limit is used directly or indirectly to prove some common problems of higher mathematics. Keywords: limit, definition of limit, limit of series, limit of function

高等数学应用案例讲解

高等数学应用案例讲解文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为 8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 所以,当增加一名技术工人时,非技术工人的变化量为 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数; x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名 时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

(完整)高等数学练习题(附答案)

《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则 =')3(g . 4. 设y x xy u + =, 则=du .

5. 曲线3 26y y x -=在)2,2(-点切线的斜率为 . 6. 设)(x f 为可导函数,)()1()(,1)1(2 x f x f x F f +==',则=')1(F . 7. 若 ),1(2)(0 2x x dt t x f +=? 则=)2(f . 8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分 =-+∞? dx e x 20 . 10. 设D 为圆形区域=+≤+??dxdy x y y x D 5 2 2 1, 1 . 三、计算题(每题5分,共40分) 1. 计算)) 2(1 )1(11(lim 222n n n n ++++∞→Λ. 2. 求10 3 2 )10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数. 3. 求不定积分 dx x x ? -) 1(1. 4. 计算定积分 dx x x ? -π 53sin sin . 5. 求函数2 2 3 24),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y == ,围成,计算dxdy y y D ?? sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积. 8. 求微分方程y x y y 2- ='的通解. 四、证明题(每题10分,共20分) 1. 证明:tan arc x = )(+∞<<-∞x .

高等数学在生活中的应用

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又就是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不就是从前那种简单的一个文凭就可以了,而就是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就就是您的思维能力,就是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而您建立模型地基础就就是您怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只就是很多学生不知道学这门课程有什么用途,缺乏学习的动力与兴趣,最后逐渐认为数学就是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别就是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展与电子计算机的应用与普及,数学方法在医药学中的应用日益广泛与深入。医药学科逐步由传统的定性描述阶段向定性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发

展提供了强有力的工具。高等数学就是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解与巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,就是我国航天事业科学求实精神的结晶,就是坚定不移走自主创新之路的结果。载人航天就是当今世界最复杂、最庞大、最具风险的工程,就是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模就是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学就是培养学生创新能力与实践能力的一条有效途径,就是当前大学数学课程改革的一个重要方向、 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察与分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求她们应用数学的语言与方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析与解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能力。数学建模将实际问题转化为数学问题后,要求学生用数学理论、方法对该问题求解

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23- ),=b ( 16 - ). ∵()12++='bx x a x f ,当2,121==x x 时, 012=++b a ,0142=++b a ,解之得6 1 ,32-=-=b a 2.函数()() 1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 211 2 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

高等数学应用案例讲解

高等数学应用案例案例1、如何调整工人的人数而保证产量不变 一工厂有x名技术工人和y名非技术工人,每天可生产的产品产量为 , (=(件) f2 ) x x y y 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192 f=件,保持这种产量的函数曲线为y (= x f。对于任一给定值x,每增加一名技术工人时y的变化量即为, 8192 ) dy。而由隐函数存在定理,可得 这函数曲线切线的斜率 dx 所以,当增加一名技术工人时,非技术工人的变化量为 dy。 当16,32 ==时,可得4-= x y dx 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c:每天可生产的产品产量; x;技术工人数; y;非技术工人数; x?;技术工人增加人数; y?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每 天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

高等数学应用题

第一章 函数 极限 连续 问题1. 上岸点的问题 有一个士兵P ,在一个半径为R 的圆形游泳池(图1—1) 222x y R +≤游泳,当他位于点(,02R -)时,听到紧急集 合号,于是得马上赶回位于A=(2R ,0)处的营房去,设该士 兵水中游泳的速度为1v ,陆地上跑步的速度为2v ,求赶回营房 所需的时间t 与上岸点M 位置的函数关系。 图1-1 解:这里需要求的是时间t 与上岸点M 位置的函数关系,所以一定要先把上岸点M 的位置数字化,根据本题特点可设 (cos ,sin )M R R θθ= 其中θ为M 的周向坐标(即极坐标系中的极角),于是本题就成为了求函数关系()t f θ=的问题。由对称性,我们可只讨论在上半圆周上岸的情况,即先确定函数()t f θ=的定义域为0θπ≤≤。 该士兵在水中游泳所花的时间为 111 PM t v === 而在陆地上跑步所需的时间,则要视上岸点位置的两种不同的情况要分别进行讨论: ① 当03πθ≤≤ 时,有222M A t v '== ② 当3π θπ≤≤时,要先跑一段圆弧MB ,再跑一段且线段BA ,所以 2221()(3 R t MB BA v v πθ=+=-。 综上所述,可得 121 203(33t R v πθππθθπ≤≤=-+≤≤

问题2 外币兑换中的损失 某人从美国到加拿大去度假,他把美元兑换成加拿大元时,币面数值增加12%,回国后他发现把加拿大元兑换成美元时,币面数值减少12%。把这两个函数表示出来,并证明这两个函数不互为反函数,即经过这么一来一回的兑换后,他亏损了一些钱。 解:设1()f t 为将x 美元兑换成的加拿大元数,2()f t 为将x 加拿大元兑换成的美元数,则 1()12% 1.12, 0f t x x x x =+?=≥ 2()12%0.88,0f t x x x x =-?=≥ 而21(())0.880.120.9856,f f t x x x =?=<故1()f t ,2()f t 不互为反函数。 思考题:设一美国人准备到加拿大去度假,他把1000美元兑换成加拿大元,但因未能去成,于是又将加拿大元兑换成了美元,问题亏损了多少钱?(14.4美元) 问题3 旅游问题 一个旅游者,某日早上7点钟离开脚下的旅馆,沿着一条上山的路,在当天下午7点钟走到顶上的旅馆。第二天早上7点钟,他从山顶沿原路下山,在当天下午7点钟回到脚下的旅馆。试证明在这条路上存在这样一个点,旅游者在两天的同一时刻都经过此点。 证明:设两个旅馆之间的路程为L ,以()f t 表示在时刻([7,19])t ∈该旅游者离开山脚下的旅馆的路程,则可知()f t 是区间[7,19]上的连续函数,且有(7)0f =,(19)f L =。 以()g t 表示该旅游者在第二天下山时在与前一天相同时刻尚未走完的路程,则可知()g t 是区间[7,19]上的连续函数,且有(7)f L =,(19)0f =。 于是原问题可转化为:证明存在[7,19]ξ∈,使()()f g ξξ=。 作辅助函数()()()t f t g t ?=-,则()t ?在区间[7,19]上连续,且有 2(7)(19)[(7)(7)][(19)(19)]0f g f g L ??=--=-<, 根据闭区间上连续函数的零值定理可知,一定存在[7,19]ξ∈,使()0?ξ=。就得到了所需要证明的结论。

高等数学在经济中的应用

高等数学在经济中的应用 专业:制药工程 姓名:XXX 指导老师:XXX 摘要:高等数学在经济研究中起着基础性作用,只有学好高等数学才能更好的理解剖析经济现象掌握经济知识。本文主要用数学分析、常微分方程、高等代数 概率与数理统计等课程的相关知识来说明高等数学在经济中的应用。 关键词:高等数学;经济;应用 Application of Advanced Mathematics in Economy Abstract:Advanced mathematics is basis of economic research.0nly learning advanced mathematics,call we get a better understanding and analyzing economic phenomenon and master economic knowledge.This paper mainly illustrates the application of advanced mathematics in the economy by using the related knowledge of mathematical analysis,ordinary differential equation,higher algebra,probability and mathematical statistics course. Key words:advanced mathematics;economy;application 0 引言 数学在经济中扮演着越来越重要的角色,经济学的许多研究方法都依赖于数学思维,许多重要的结论也来源于数学的推导,而且提高经济学理论的科学性与分析水平的重要工具也是数学。因此,研究数学方法与经济学的内在联系,研究

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

浅谈高等数学在生活中的应用

浅谈高等数学在生活中的应用 摘要:随着社会经济的迅猛发展,数学在经济生活作用日益突出。数学的理论 和方法越来越广泛地应用到物理、化学、生物、医学、经济管理、军事战争等不同学科领域以及日常生活中。21世纪对数学需求表现得越来越突出,无论是数学建模、企业管理,还是经济分析,数学都是至关重要的。数学是一种思想方法,学习数学的过程就是思维训练的过程数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。这样就更容易的去解决问题、处理问题。不敢预测也不可能断言,在未来的各个领域研究中数学会占据统治地位,但是数学越来越渗透到各个领域研究中并且发挥着越来越重要的作用已成为事实。人类社会的进步,与数学这门科学的广泛应用是分不开的。 关键词:高等数学各个领域数学建模经济应用 数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识,下面浅谈我的理解。 一、数学在管理中的应用 科学管理之父泰勒通过对管理活动的认识和研究,提出了科学管理,这就是数学在管理中应用的开始。不论是计件工资还是计时工资,都是用数学知识推导计算的。就我看来,我们学习数学也是为了更好的管理。 首先,数学在管理者的思维方面发挥了重要作用。我们经常强调人要有逻辑,数学逻辑是帮助人进行思维的工具。学好数学,就具备较好的思维能力,使管理者头绪清晰。其次,数学在管理决策中的应用。科学决策离不开对相关方案的判断和评估,这需要恰当地处理大量的数据,才能得到正确的决策。再次,数学在预测中的应用。企业根据已有的数据分析,总结相关发展趋势,对公司未来某段时间内的经营状况做出一些预警和规划。 (一)数学与管理的历史联系 尽管现代管理是工业革命以后的产物,对管理进行正式的研究则是一门较新的学科,但管理活动自古以来就存在,在人类早期文明中,管理活动也是必须的。人类的早期管理活动与数学开端是一个互相促进的过程,在这一过程中产生了算术、代数和几何。算术中的加、减、乘、除,都与人类管理活动直接有关;代数则是为解决较复杂管理问题产生的,也为解决相对复杂问题提供了工具;几何与土地测量和天文观测有关,土地测量和天文观测也与人类早期文明中管理活动紧密相关。总之,早期数学的大部分是由于贸易和农业的需要而发展起来的,同时也推动了早期的管理活动。 (二)数学与管理者 不难发现,对同一个问题,不同的人,用不同的数学方法,在不同的时间和地点,做出的结论永远是一致的。所以数学教育能培养人做事严肃认真,做事、做人目标明确,前后一致,表里如一的态度。在数学的发展过程中,数学每前进一步,都离不开严密的逻辑推理。推理是从已知到未知的合乎逻辑的思维过程。

高等数学知识在医学中的应用举例

高等数学知识在生物化学工程中的应用举例 高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 在化工原理中常用的柏努利方程式中的应用 化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。 流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。 定态流动时液体的机械能衡量式为 ∑?-=+?+ ?f e p p h W v d p u z g 212 2 (1) 该式队可压缩液体和不可压缩液体均适用。对不可压缩液体,(1)式中?2 p p vdp 项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρ ρ ρp p p dp vdp p p p p ?= -= = ??2 12 2 1 ,代入(1)式有: ∑-=?+?+?f e h W p u z g ρ 22 或 ∑+++=+++f e h p u gz W p u gz ρ ρ22 22121122 (2) (2)式称为柏努利方程式。 需要注明的是,22u 为动能,gz 为位能,ρ p 为静态能,e W 为有效能,∑f h 为能量损耗,z ?为高度差。 例2 混合气体粘度的计算 常温下混合气体的计算式为

∑∑=== n i i i n i i i i m M y M y 1 211 21μμ (3) 其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。 例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用 Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度? 解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率, Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为 s Pa Ar s Pa N s Pa O ??????---55252 1009.2107.11003.2 代入(3)式计算空气的粘度,即 s Pa M y M y n i i i n i i i i m ??=?+?+????+???+???= = ----==∑∑52 12 12 12 15 2 152 151 211 21 1078.19 .3901.02878.03221.09 .391009.201.028107.178.0321003.221.0μμ 例3. 在细胞生长计算中的应用 随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。 如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。设限制性基质为A ,其浓度为a ,

高数数学应用题(下)

高等数学应用题(下) 1、利用单摆摆动测量重力加速度的公式是2 24l g T π= 。现测得单摆摆长与振 动周期分别为1000.1l cm =±、20.004T s =±。问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少? 解:设测量l 与T 的误差分别为l ?与T ?,由此引起g 的误差为g ?,则 2 2 3 12||||||||||||||4( ||||)g g g g l g dg l T l T l T l T l T T T π?????≈=?+?≤?+?=?+ ?????。 将100,2,0.1,0.004l T l T ==?=?=代入上式,得g 的绝对误差约为 2 2 2 2 3 0.12100||4( 0.004)0.5 4.93(/)2 2 g cm s ππ ??=+ ?=≈ 从而相对误差约为 2 2 3 0.50.5%4100 2 g g π π?= =? 2、有一宽为24cm 的长方形铁板,把它两边折起来做成一断面为等腰梯形的 水槽,问怎样折法才能使断面的面积最大? 解:设折起来的边长为x cm ,倾角为α,那么梯形的下底长为242x -cm ,上底长为2422cos x x α-+cm ,高为sin x αcm ,所以断面的面积为 2 2 1(2422cos 242)sin 2 24sin 2sin sin cos (012,0). 2 A x x x x x x x x αα ααααπ α= -++- =-+ << <≤ 令 2222 24sin 4sin 2sin cos 0242cos (cos sin )0 x A x x A xcox x x ααααααααα=-+=? ?=-+-=? 由于sin 0,0x α≠≠,上述方程组可化为 22 122cos 0242cos (cos sin )0x x cox x x ααααα-+=? ?-+-=?

相关主题
文本预览
相关文档 最新文档