当前位置:文档之家› 高等数学的应用

高等数学的应用

高等数学的应用
高等数学的应用

高等数学的应用

——微积分的应用

土木与交通学院

无机非金属材料工程

2010048班

小组成员:

201004801 方馨悦

201004803 王会芳

201004806 朱格格

摘要:微积分是研究函数的微分以及有关概念和应用的数学分支,是建立在实数,函数和极限的基础上的。微分的内容有:极限理论,导数,微分等。积分的内容包括定积分,不定积分等。微积分是于实际应用联系着发展起来的,它在天文学,力学,化学,工程学,经济等。

自然科学社会科学及应用科学各分支中有越来越广泛的应用

关键词:微积分,极限,导数,定积分,不定积分,物理,化学,力学,工程学,经济学。

The higher mathematics the applications - the application of calculus

Abstract:The differential calculus is research function, integral and the relevant concept and application of mathematics branch, is based in the real, function and limit based on. A: the content of the differential calculus limit theory, a derivative, differential, etc. Integral content definite integral, indefinite integral, etc. Calculus is developed with the practical application of contact, it in geometry, astronomy, mechanics, chemical engineering, economics and other natural scien

ce, social science and applied science in each branch has more and more extensive role.

Key words :Calculus, limit, derivative, definite integral, indefinite integral, astronomy, chemistry, mechanics, engineering, economics

引言:微积分学是微分学和积分学的总称。它是一种数学思想,…无限细分?就是微分,…无限求和?就是积分。十七世纪后半叶,牛顿和莱

布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化

正文

一:极限

所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。

1,极限思想在化学中的应用。

对于可逆反应而言,当反应达到平衡状态后,其各组分的量均不可能为零。而在解决一些化学问题时,尤其是关系取值范围问题的解决,我们可以借助完全反应这一“极限思想”进行。例如,在密闭容器内进行可逆反应: 已知其时刻的浓度分别为当反应达到平衡时,我们想知道

密度在什么范围内,这就需要我们运用极限思想进行分析。根据可逆反应的特点可知:无论反应向正向移动还是逆向移动,达到平衡时浓度的取值范围为

而的浓度为

2,建筑学科利用极限思想。

当前工程上尚没有隧道稳定安全系数的概念,一般按经验对隧道围岩的稳定性先进行分析,极限方法通过对岩土体强度参数的折减,使岩土处于极限状态,因而有可能使岩土体显示潜在的破裂面并取得安全系数,这在滑坡稳定分析中取得了成功。但应用于地下洞室工程中算出的塑性区往往是一大片,而不像滑坡岩土体内存在明显的剪切带,因而要找出围岩内的破裂面比较困难。隧道围岩发生塑性改变突变时的情况就是围岩发生破坏流动的情况,因而只要找出围岩塑性应变发生突变时的塑性区各断面中塑性应变值最大的点,并将其连成线就可得到围岩的潜在破坏面,同时可求得地下洞室的安全系数。二.导数。

在自然科学,工程技术及日常生活等方面都有着广泛的应用,导数是从生产技术和自然科学的需要中产生的,同时又促进了生产技术和自然科学的发展。

导数知识在解决环境问题中的应用

烟囱向其周围地区散落烟尘造成环境污染,已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比。现有A,B两烟囱距离20KM,其中B座烟囱喷出的烟尘量是A的8倍,试求出两座烟囱

连线上的点C,使该点烟尘浓度最低。

解:设A烟囱喷出的烟尘量是1,而B烟囱喷出的烟尘量是8,

三,微分在物理学只的应用

具有PN节的半导体器件,其电流微变和引起这个变化的电压微变之比称为低频跨导。一种PN节的半导体器件,其转移特性曲线方程为,求电压U=-2V时的低频跨导。

解:低频跨导是电流微变和引起这个变化的电压微变之比,它在U=-2V时的变化率为:

四,。定积分是把函数在某个区间上的图像[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距Δx是相等的。但是必须指出,即使Δx不相等,积分值仍然相同。

1,定积分在高等数学中的应用

2;定积分在几何中的应用

计算阿基米德螺线上相应于的一段弧与极轴所围成的图形的面积。

3,定积分在物理中的应用

设半径为R的匀质球占有空间闭区域= 。求它对位于

处的单位质量的质点的引力。

解:设球的密度为,有球体的对称型及质量分布的均匀性知

所求引力沿Z轴的质量为

结束语:

一部微积分发展史,是人类一步一步顽强地认识客观事物的历史,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。恩格斯说:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就正是在这里。” 有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机。宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律发现了,牛顿用同一个公式来描述太阳对行星的作用,以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为。宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科学运动开始了。毫无疑问,微积分的发现是世界近代科学的开端。

参考文献

1,《高等数学》上下册(同济大学第六版)高等教育出版社

2.《物理学教程》上册马文蔚周雨青高等教育出版社

3.《微分几何学》苏步青科学出版社4,《微积分学习指导》韩云端清华大学出版社

高等数学课程标准

《高等数学》课程标准 第一部分课程的性质 数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成方法和理论,并且进行广泛应用的科学。数学是抽象的,又是具体的,是一种工具,也是一种文化,更是一种信息。 随着时代的发展,文明的进步,特别是二十世纪中叶以来,数学自身发生了巨大的变化,与计算机的结合愈来愈紧密,使得数学在研究领域、研究方式和应用范围等方面得到了空前的发展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量繁杂的信息作出最优的判断和选择,同时为人们交流信息提供了一种有效而简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息、建立模型,进而解决问题,直接为社会创造价值。 在高等职业技术教育中,高等数学是一门必修的公共基础课。它将为今后学习工程数学、专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。基于职业教育的特点,以及为适应迅猛的社会经济发展,为公司企业输送相应层次的技术人才,在高等数学的教学中必须遵循“以应用为目的,以必需,够用为度”的原则,注重理论联系实际,强调对学生基本运算能力和分析问题、解决问题能力的培养,以努力提高学生的数学修养和素质。 第二部分课程基本任务 一、优化课程结构,适应高等职业教育人才培养模式 高等职业技术教育是以培养高等技术应用性专门人才为根本任务,以适应社会需要为目标,以培养技术应用能力为主线设计学生的知识、能力、素质结构和培养方案,毕业生应具有基础理论知识适度、技术应用能力强、知识面较宽、素质高等特点。因此,课程的教学内容体系应突出“应用”的主旨,从而与经济建设、科技进步和社会发展要求相适应,与人的全面发展需求相适应,与高等教育大众化条件下多样化的学习需求相适应,与高等教育课程改革与建设的国际化趋势相适应,与国家基础教育课程改革的要求相衔接。 二、以能力培养为切入点,充分体现课程的基础性、应用性和发展性 数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据,进行计算、推理和证明,它为其它学科提供了语言、思想和方法,从而数学的基础性地位无可替代,更不

东南大学高等数学数学实验报告上

Image Image 高等数学数学实验报告 实验人员:院(系) ___________学号_________姓名____________实验地点:计算机中心机房 实验一 1、 实验题目: 根据上面的题目,通过作图,观察重要极限:lim(1+1/n)n =e 2、 实验目的和意义 方法的理论意义和实用价值。 利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。通过此实验对数列极限概念的理解形象化、具体化。 三、计算公式 (1+1/n)n 四、程序设计 五、程序运行结果 六、结果的讨论和分析 当n足够

Image Image 大时,所画出的点逐渐接近于直线,即点数越大,精确度越高。对于不同解题方法最后均能获得相同结果,因此需要择优,从众多方法中尽可能选择简单的一种。程序编写需要有扎实的理论基础,因此在上机调试前要仔细审查细节,对程序进行尽可能的简化、改进与完善。 实验二一、实验题目 制作函数y=sin cx的图形动画,并观察参数c对函数图形的影响。 二、实验目的和意义 本实验的目的是让同学熟悉数学软件Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。三、计算公式:y=sin cx 四、程序设计五、程序运行结果 六、结果的讨论和分析 c的不同导致函数的区间大小不同。 实验三 一、实验题目 观察函数f(x)=cos x的各阶泰勒展开式的图形。 二、实验目的和意义 利用Mathematica计算函数的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。 三、计算公式

高等数学应用案例讲解

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 y f x f dx dy ????= 所以,当增加一名技术工人时,非技术工人的变化量为 x y y x f dx dy 2-=???= 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数;

x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程: (1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名, 且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: )(020020y y x x y x ?+??+=?)( 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y ?????????????????? ? ??+--=200111x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: ∑∞=--???? ???-+???? ???-?=???? ???+-110120020)1(32111n n n x x n x x x x x x 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷

高等数学标准

《简单的线性规划及其应用 课题: 简单的线性规划及其应用 一、教学目标: 1 . 知识目标: 1 、在应用图解法解题的过程中培养学生的观察能力、理解能力; 2 、在变式训练的过程中,培养学生的分析能力、探索能力; 3 、会用线性规划的理论和方法解决一些较简单的实际问题。 2 . 能力目标 : 1 、了解线性规划的意义,了解线性约束条件、线性目标函数、可 行解、可行域和最优解等概念; 2 、理解线性规划问题的图解法; 3 、会利用图解法求线性目标函数的最优解; 4 、 让学生体验数学来源于生活,服务于生活,体验应用数 学的快乐。 3 . 情感目标: 1 、 培养学生学习数学的兴趣和“用数学”的意识,激励学生 创新,鼓励学生讨论,学会沟通,培养团结协作精神; 2 、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、 从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想 《高等数学》课程标准 一、课程描述 1、课程性质 数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成

方法和理论,并且进行广泛应用的科学。数学是一种工具,也是一种文化。作为工具,数学应用于各门科学,可以帮助人们更好地探求客观世界的规律,有助于人们收集、整理、描述信息、建立模型,进而解决问题;作为一种文化,数学一直是现代文化的主要力量,数学知识的学习过程,能培养人们形成理性和客观的生活态度与工作理念,使人们的思维习惯与语言表达趋于严密和精炼。 在高职院校中,《高等数学》课程是各专业一门必修的公共基础课。它将为今后学习专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。基于高职教育的特点,在高等数学的教学中必须遵循“以必需,够用为度”的原则,注重对学生基本运算能力和数学思维方式的训练,强调对基本数学概念的理解和应用,以努力提高学生的数学修养和素质。 在高等职业技术教育中,高等数学是一门必修的公共基础课。 2、课程的基本理念 (1)优化课程结构,适应高等职业教育人才培养模式 高等职业技术教育是以培养高等技术应用性专门人才为根本任务,以适应社会需要为目标,以培养技术应用能力为主线设计学生的知识、能力、素质结构和培养方案,毕业生应具有基础理论知识适度、技术应用能力强、知识面较宽、素质高等特点。因此,课程的教学内容体系应突出“应用”的主旨,从而与经济建设、科技进步和社会发展要求相适应,与人的全面发展需求相适应,与高等教育课程改革要求相衔接。 (2)以素质、能力培养为目标,充分体现课程的基础性、应用性和发展性 数学是一种普适性工具,在数据处理,表达计算、演绎推理等方面为其它学科提供了一种特有的语言、思想和方法,数学的基础性地位无可替代,更不能偏废。高等职业技术教育中,高等数学作为公共基础课程,应充分遵循“需有所学、学有所用”的原则,教学过程中应从素质、能力培养出发,开发学生的创新思维。 (3)以学生为中心,充分发挥学生的学习能动性 高等数学的学习内容应当根据实际需求进行调整,而内容的呈现也应采用不同的表达方式,以满足多样化的学习需求,同时教学活动必须建立在学生的接受能力基础之上。而教师也不是被动的,应调动一切可行的手段,激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验,为学习和实践提供有效的知识工具和良好的思维素质。 (4)加强计算机与数学教学的整合,促进教学改革,提高教学质量 现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,加强计算机与数学教学的整合,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,把学生的学习活动整合到现实的、探索性的数学活动中去。 (5)构建本课程新的评价体系,考察学生的“输出”能力 评价的主要目的是为了全面了解学生的数学学习历程,考察学生的实际能力,同时激励学生的学习和改进教师的教学。但以往的评价手段过于单一,不能全面反映学生的真实情况,而且评价的价值取向犹为偏颇。所以应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,也要关注学习的过程;要关注数学知识的掌握,也要关注数学知识的运用。总之,评价的结果优劣要经得起实践检验。 3、课程设计理念 依据课程的基本理念,根据不同系的不同专业,在内容的选择上,要从提高素质和加强应用的角度选择教材的内容,大胆取舍,以满足专业岗位的需求。针对不同专业的学生特点及专

极限定义在高等数学中的应用

韩山师范学院 学生毕业论文 (2008届) 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要 极限概念是微积分学中最重要,最基本的概念。掌握好利用定义证明函数极限是学好高等数学的基础。极限有数列极限,函数极限,多元函数极限等几类,本文直接或间接地用极限定义来证明一些我们经常见到高等数学问题。 关键词:极限;极限定义;数列极限;函数极限 Abstract The definition of the limit is the most important and basic concept in the infinitesimal calculus. Mastering the ways of using the definition to probe the limit of function lays a foundation for studying the higher mathematics well. There are the limit of series, limit of function and functional limit of several variables and so on. In this paper, the definition of the limit is used directly or indirectly to prove some common problems of higher mathematics. Keywords: limit, definition of limit, limit of series, limit of function

高等数学应用案例讲解

高等数学应用案例讲解文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为 8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 所以,当增加一名技术工人时,非技术工人的变化量为 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数; x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名 时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

高等数学在生活中的应用

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又就是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不就是从前那种简单的一个文凭就可以了,而就是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就就是您的思维能力,就是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而您建立模型地基础就就是您怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只就是很多学生不知道学这门课程有什么用途,缺乏学习的动力与兴趣,最后逐渐认为数学就是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别就是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展与电子计算机的应用与普及,数学方法在医药学中的应用日益广泛与深入。医药学科逐步由传统的定性描述阶段向定性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发

展提供了强有力的工具。高等数学就是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解与巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,就是我国航天事业科学求实精神的结晶,就是坚定不移走自主创新之路的结果。载人航天就是当今世界最复杂、最庞大、最具风险的工程,就是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模就是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学就是培养学生创新能力与实践能力的一条有效途径,就是当前大学数学课程改革的一个重要方向、 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察与分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求她们应用数学的语言与方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析与解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能力。数学建模将实际问题转化为数学问题后,要求学生用数学理论、方法对该问题求解

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23- ),=b ( 16 - ). ∵()12++='bx x a x f ,当2,121==x x 时, 012=++b a ,0142=++b a ,解之得6 1 ,32-=-=b a 2.函数()() 1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 211 2 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

高等数学应用案例讲解

高等数学应用案例案例1、如何调整工人的人数而保证产量不变 一工厂有x名技术工人和y名非技术工人,每天可生产的产品产量为 , (=(件) f2 ) x x y y 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192 f=件,保持这种产量的函数曲线为y (= x f。对于任一给定值x,每增加一名技术工人时y的变化量即为, 8192 ) dy。而由隐函数存在定理,可得 这函数曲线切线的斜率 dx 所以,当增加一名技术工人时,非技术工人的变化量为 dy。 当16,32 ==时,可得4-= x y dx 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c:每天可生产的产品产量; x;技术工人数; y;非技术工人数; x?;技术工人增加人数; y?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每 天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

高等数学在经济中的应用

高等数学在经济中的应用 专业:制药工程 姓名:XXX 指导老师:XXX 摘要:高等数学在经济研究中起着基础性作用,只有学好高等数学才能更好的理解剖析经济现象掌握经济知识。本文主要用数学分析、常微分方程、高等代数 概率与数理统计等课程的相关知识来说明高等数学在经济中的应用。 关键词:高等数学;经济;应用 Application of Advanced Mathematics in Economy Abstract:Advanced mathematics is basis of economic research.0nly learning advanced mathematics,call we get a better understanding and analyzing economic phenomenon and master economic knowledge.This paper mainly illustrates the application of advanced mathematics in the economy by using the related knowledge of mathematical analysis,ordinary differential equation,higher algebra,probability and mathematical statistics course. Key words:advanced mathematics;economy;application 0 引言 数学在经济中扮演着越来越重要的角色,经济学的许多研究方法都依赖于数学思维,许多重要的结论也来源于数学的推导,而且提高经济学理论的科学性与分析水平的重要工具也是数学。因此,研究数学方法与经济学的内在联系,研究

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远

高等数学下实验报告

高等数学实验报告 实验人员:院(系)化学化工学院 学号19013302 姓名 黄天宇 实验地点:计算机中心机房 实验七:空间曲线与曲面的绘制 一、 实验目的 1、利用数学软件Mathematica 绘制三维图形来观察空间曲线和空 间曲面图形的特点,以加强几何的直观性。 2、学会用Mathematica 绘制空间立体图形。 二、实验题目 利用参数方程作图,做出由下列曲面所围成的立体图形: (1) x y x y x z =+--=2 222,1及xOy 平面; (2) 01,=-+=y x xy z 及.0=z 三、实验原理 空间曲面的绘制 作参数方程],[],,[,),(),() ,(max min max min v v v u u v u z z v u y y v u x x ∈∈? ?? ??===所确定的曲面图形的 Mathematica 命令为: ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax}, {v,vmin,vmax},选项] 四、程序设计及运行 (1)

(2)

六、结果的讨论和分析 1、通过参数方程的方法做出的图形,可以比较完整的显示出空 间中的曲面和立体图形。 2、可以通过mathematica 软件作出多重积分的积分区域,使积分能够较直观的被观察。 3、从(1)中的实验结果可以看出,所围成的立体图形是球面和圆柱面所围成的立体空间。 4、从(2)中的实验结果可以看出围成的立体图形的上面曲面的方程是xy z =,下底面的方程是z=0,右边的平面是01=-+y x 。 实验八 无穷级数与函数逼近 一、 实验目的 (1) 用Mathematica 显示级数部分和的变化趋势; (2) 展示Fourier 级数对周期函数的逼近情况; (3) 学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算。 二、实验题目 (1)、观察级数 ∑ ∞ =1 ! n n n n 的部分和序列的变化趋势,并求和。 (2)、改变例2中m 及x 0的数值来求函数的幂级数及观察其幂级数逼近函数的情况 (3)、观察函数? ? ?<≤<≤--=ππx x x x f 0,10 ,)(展成的Fourier 级数

浅谈高等数学在生活中的应用

浅谈高等数学在生活中的应用 摘要:随着社会经济的迅猛发展,数学在经济生活作用日益突出。数学的理论 和方法越来越广泛地应用到物理、化学、生物、医学、经济管理、军事战争等不同学科领域以及日常生活中。21世纪对数学需求表现得越来越突出,无论是数学建模、企业管理,还是经济分析,数学都是至关重要的。数学是一种思想方法,学习数学的过程就是思维训练的过程数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。这样就更容易的去解决问题、处理问题。不敢预测也不可能断言,在未来的各个领域研究中数学会占据统治地位,但是数学越来越渗透到各个领域研究中并且发挥着越来越重要的作用已成为事实。人类社会的进步,与数学这门科学的广泛应用是分不开的。 关键词:高等数学各个领域数学建模经济应用 数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识,下面浅谈我的理解。 一、数学在管理中的应用 科学管理之父泰勒通过对管理活动的认识和研究,提出了科学管理,这就是数学在管理中应用的开始。不论是计件工资还是计时工资,都是用数学知识推导计算的。就我看来,我们学习数学也是为了更好的管理。 首先,数学在管理者的思维方面发挥了重要作用。我们经常强调人要有逻辑,数学逻辑是帮助人进行思维的工具。学好数学,就具备较好的思维能力,使管理者头绪清晰。其次,数学在管理决策中的应用。科学决策离不开对相关方案的判断和评估,这需要恰当地处理大量的数据,才能得到正确的决策。再次,数学在预测中的应用。企业根据已有的数据分析,总结相关发展趋势,对公司未来某段时间内的经营状况做出一些预警和规划。 (一)数学与管理的历史联系 尽管现代管理是工业革命以后的产物,对管理进行正式的研究则是一门较新的学科,但管理活动自古以来就存在,在人类早期文明中,管理活动也是必须的。人类的早期管理活动与数学开端是一个互相促进的过程,在这一过程中产生了算术、代数和几何。算术中的加、减、乘、除,都与人类管理活动直接有关;代数则是为解决较复杂管理问题产生的,也为解决相对复杂问题提供了工具;几何与土地测量和天文观测有关,土地测量和天文观测也与人类早期文明中管理活动紧密相关。总之,早期数学的大部分是由于贸易和农业的需要而发展起来的,同时也推动了早期的管理活动。 (二)数学与管理者 不难发现,对同一个问题,不同的人,用不同的数学方法,在不同的时间和地点,做出的结论永远是一致的。所以数学教育能培养人做事严肃认真,做事、做人目标明确,前后一致,表里如一的态度。在数学的发展过程中,数学每前进一步,都离不开严密的逻辑推理。推理是从已知到未知的合乎逻辑的思维过程。

高等数学知识在医学中的应用举例

高等数学知识在生物化学工程中的应用举例 高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 在化工原理中常用的柏努利方程式中的应用 化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。 流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。 定态流动时液体的机械能衡量式为 ∑?-=+?+ ?f e p p h W v d p u z g 212 2 (1) 该式队可压缩液体和不可压缩液体均适用。对不可压缩液体,(1)式中?2 p p vdp 项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρ ρ ρp p p dp vdp p p p p ?= -= = ??2 12 2 1 ,代入(1)式有: ∑-=?+?+?f e h W p u z g ρ 22 或 ∑+++=+++f e h p u gz W p u gz ρ ρ22 22121122 (2) (2)式称为柏努利方程式。 需要注明的是,22u 为动能,gz 为位能,ρ p 为静态能,e W 为有效能,∑f h 为能量损耗,z ?为高度差。 例2 混合气体粘度的计算 常温下混合气体的计算式为

∑∑=== n i i i n i i i i m M y M y 1 211 21μμ (3) 其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。 例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用 Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度? 解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率, Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为 s Pa Ar s Pa N s Pa O ??????---55252 1009.2107.11003.2 代入(3)式计算空气的粘度,即 s Pa M y M y n i i i n i i i i m ??=?+?+????+???+???= = ----==∑∑52 12 12 12 15 2 152 151 211 21 1078.19 .3901.02878.03221.09 .391009.201.028107.178.0321003.221.0μμ 例3. 在细胞生长计算中的应用 随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。 如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。设限制性基质为A ,其浓度为a ,

数学实验报告

高等数学数学实验报告 实验人员:院(系) __ __学号____姓名_ __ 实验地点:计算机中心机房 实验一 空间曲线与曲面的绘制 一、实验题目:(实验习题1-2) 利用参数方程作图,做出由下列曲面所围成的立体图形: (1) x y x y x z =+--=2222,1及xOy 平面; (2) 01,=-+=y x xy z 及.0=z 二、实验目的和意义 1、利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。 2、学会用Mathematica 绘制空间立体图形。 三、程序设计 空间曲面的绘制 作参数方程] ,[],,[,),(),(),(max min max min v v v u u v u z z v u y y v u x x ∈∈?????===所确定的曲面图形的Mathematica 命令为: ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax}, {v,vmin,vmax},选项] (1) (2)

四、程序运行结果 (1) (2) 五、结果的讨论和分析 1、通过参数方程的方法做出的图形,可以比较完整的显示出空间中的曲面和立体图形。 2、可以通过mathematica 软件作出多重积分的积分区域,使积分能够较直观的被观察。 3、从(1)中的实验结果可以看出,所围成的立体图形是球面和圆柱面所围成的立体空间。 4、从(2)中的实验结果可以看出围成的立体图形的上面曲面的方程是xy z =,下底面的方程是z=0,右边的平面是01=-+y x 。 实验一 空间曲线与曲面的绘制 一、实验题目:(实验习题1-3) 观察二次曲面族kxy y x z ++=22的图形。特别注意确定k 的这样一些值,当k 经过这些值时,曲面从一种类型变成了另一种类型。 二、实验目的和意义 1. 学会利用Mathematica 软件绘制三维图形来观察空间曲线和空间曲线图形的特

高等数学在生活中的应用

高等数学在生活中的应 用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲 授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期 适用对象:通信工程专业学生 一、课程性质与任务 本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。 二、课程教学的基本要求 通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。能较熟练地应用微积分学的思想方法解决应用问题。 三、课程教学内容 高等数学(上) 第一章函数、极限与连续(10学时) 第二章导数和微分(12学时) 第三章微分中值定理与导数的应用(12学时) 第四章函数的积分(16学时) 第五章定积分的应用(8学时) 第六章无穷级数(10学时) 高等数学(下) 第七章向量与空间解析几何(6学时) 第八章多元函数微分学(14学时) 第九章多元函数微分学的应用(10学时) 第十章多元函数积分学(I)(16学时) 第十一章多元函数积分学(II)(10学时) 第十二章常微分方程(12学时) 四、教学重点、难点 重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。 难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。 五、教学时数分配:教学时数136学时,其中理论讲授136学时,实践教学0学时。(具体安排见附表) 六、教学方式: 本课程的特点是理论性强,思想性强,与相关基础课及专业课联系较多,教学中应注重启发引导学生掌握重要概念的背景思想,理解重要概念的思想本质,避免学生死记硬背。要善于将有关学科或生活中常遇到的名词概念与微积分学的概念结合起来,使学生体会到学习

相关主题
文本预览
相关文档 最新文档