当前位置:文档之家› 深大高等代数真题

深大高等代数真题

深大高等代数真题
深大高等代数真题

2004年深圳大学硕士研究生入学考试试题

专业:应用数学 考试科目:高等代数

一、必做题(共120分)

1.(10分)设5阶方阵12341234A [,r ,r ,r ,r ],B [r ,r ,r ,r ,]ααβ==+,其中1234,,r ,r ,r ,r αβ均为5维列向量,并且|A|=4,|B|=5,求12342,r ,r ,r ,r β=? 2.(15分)计算n 阶行列式的值:

210000012

1

0000

121000001200

000001210

1

2

--------- 3.(15分)设A 为5阶方阵,并且|A|=5,计算

(1)*A ?=

(2)**(A )?=

(3)*1(A )?-=

(4)1*3A 2A ?--=

4.(40分)设123,,ααα和123,,βββ是三维线性空间V 的两组基,V 上的线性变换A 在基123,,ααα下的矩阵为

222A 222222--??

??=--??

??--??

而123,,ααα到123,,βββ的过渡矩阵为

102S 011221-??

??=-??

??-??

(1)求A 的全部特征值和分别属于不同特征值之间的极大线性无关的特征向量 (2)求一可逆矩阵T 使得1T AT -为对角形

(3)设0X (1,1,2)'=-,计算k 0A X ,其中k 为任意正整数

(4)求一正交矩阵Q 使得Q AQ '为对角线 (5)求A 在基123,,βββ下的矩阵 5.(15分)求由向量12αα,生成的子空间1W 与向量12,ββ生成的子空间2W 的交与和的维数及一组基,其中

12(2,0,1,3,1)

(0,2,1,5,3)

αα=-??

=--?

12(1,1,0,1,1)

(1,3,2,9,5)

ββ=-??

=-? 6.(15分)已知n 元实二次型12n 12342n 12n f (x ,x ,x )x x x x x x -=+++,用非退化的线性替换将该二次型化成

标准型,并确定它的秩和符号差

7.(10分)设齐次线性方程组1111221n n 2112222n n n11n22

nn n a x a x a x 0

a x a x a x 0

a x a x a x 0

+++=??

+++=??+++=?的系数行列式D=0,而D 中某一元素ij

a

的代数余子式ij A 0≠,证明:这个方程的解都可以写成i1i2in kA ,kA kA 的形式,此处k 是任意数

二、选做题:以下五题任选三题(共30分)

8.(10分)设矩阵n n A ?满足2A A =,求证:

(1):rank(A)+rank(A-E)=n (2): A 的特征值只能为0和1 9.(10分)设A 是欧氏空间V 的一个线性变换,求证:如果A 保持内积不变,即对任意的,V αβ∈,都有(A ,A )(,)αβαβ=,那么,A 一定是线性的,因而它是正交变换

10.(10分)A ,B 均为n 阶方阵,E 为n 阶单位矩阵,并且E-AB 可逆,证明:E-BA 也可逆 11.(10分)设r 为一整数,证明:如果一n m ?级(r

2006年深圳大学硕士研究生入学考试试题 专业:应用数学 考试科目:高等代数

一、必做题(共120分)

1.(15分)计算n 阶行列式的值:n 31111231112

2311D 222312

2

2

2

3

=

2.(20分)设3阶矩阵A 的特征值为0,-2,3,对应的特征向量分别为

123X (2,3,1),X (0,2,1),X (1,2,0)'''=-=-=-

(a )矩阵A

(b )将向量0X (2,3,1)'=-用123X ,X ,X 线性表出 (c )设0X (2,3,1)'=-,计算m 0A X 3.(15分)设

111A 111111-??

??=-??

??-??

求解矩阵方程*3/4(AA X)3A 2AX =+

4.(20分)设222f a(x y z )2xy 2xz 2yz =++++-,问:

(1)a 满足什么条件时,f 是正定的?

(2)a 满足什么条件时,f 是负定的?

5.(20分)设A 是一个m k ?矩阵,B 是一个k n ?矩阵,T 12n X (x ,x ,

,x )=,

又已知rank(A)=k ,证明:

(1)齐次线性方程组ABX=0与BX=0是同解方程组 (2)rank(AB)=rank(B)

6.(15分)设复数域上3维线性空间3C 上的线性变换A 在3C 的一个基下的矩阵为

311A 020111-??

??=??

????

求A 的最小多项式。并判定A 是否可对角化

7.(15分)设A 是线性空间V 上的一个线性变换,证明下列两个条件是等价的;

(1)A 把V 中某一组线性无关的向量变成一组线性相关的向量 (2)A 把V 中某个非零向量变成零向量

二、选做题:以下五题任选三题(共30分)

8.(10分)证明:数域P 上线性空间V 的一个向量组的任意线性无关部分组都可以扩充成其一极大无关组 9.(10分)设A 是n 维线性空间V 上的线性变换,并且12s V ,V ,,V 是A -子空间,满足:12s V V V V =⊕+⊕⊕,证明:存在V 的一个基12n ,,,ααα使得A 在此基下的矩阵为如下形状的分块对角矩阵(其中i A 为i dim V 阶方阵):

1

2

s A A A ???????????

?

10.(10分)设σ是n 维线性空间V 上的线性变换,且2E σσ=,证明:

(1)σ的特征值只能是1± (2)11V V V -=+ 11.(10分)设域F 上n 维线性空间V 的线性变换A 有n 个不同的特征值12n ,,,λλλ,而W 是A 的一个r 维的不变子空间,证明:A 在W 上的限制W A 有r 个不同的特征值,并且是

12n ,,,λλλ中的r 个 12.(10分)设A 为n m ?矩阵,B 为m n ?矩阵,m n E ,E 分别为m 和n 阶单位矩阵,证明:

m m n

E B E BA A

E =-

2007年高代

2008年高代

2009年高代

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

深圳大学 《矩阵分析》教学大纲

《矩阵分析》教学大纲 英文名称:Matrix Analysis 一、课程目的与要求 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。本课程要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 二、学时/学分:60学时/3学分 三、课程内容及学时安排 (1) 线性空间与线性变换 10学时 理解线性空间的概念,掌握基变换与坐标变换的公式; 掌握子空间与维数定理,了解线性空间同构的含义; 理解线性变换的概念,掌握线性变换的矩阵表示。(不变子空间不作要求)(2) 内积空间 8学时 理解内积空间的概念,掌握正交基及子空间的正交关系; 了解内积空间的同构的含义,掌握判断正交变换的判定方法; 理解酋空间的概念,会判定一个空间是否为酋空间的方法,掌握酋空间与实内积空间的异同; 掌握正规矩阵的概念及判定定理和性质,理解厄米特二次型的含义。 (3) 矩阵的相似标准形与若干分解形式18学时 掌握矩阵相似对角化的判别方法;会求矩阵的约当标准形; 掌握哈密顿—开莱定理,会求矩阵的最小多项式; 会求史密斯标准形; 掌握正规矩阵及其酉对角化。 掌握多项式矩阵的互质性与既约性的判别方法,会求有理分式矩阵的标准形及其仿分式分解; 了解舒尔定理及矩阵的满秩分解、QR分解、奇异值分解及谱分解。 (4) 赋范线性空间10学时 了解赋范线性空间的及范数导出的度量,了解Lebsaque积分与L p空间; 掌握矩阵的各种范数定义、谱半径及其性质。, (5) 矩阵函数及其应用6学时 理解向量范数、矩阵范数及向量和矩阵的极限的概念; 掌握矩阵幂级数收敛的判定方法,会求矩阵函数; 会求矩阵的微分与积分; 了解矩阵函数在线性系统理论中的应用。 (6) 广义逆矩阵6学时 了解矩阵的Moore-Penrose广义逆及其性质 (7) 复习 2学时

高数一试题(卷)与答案解析

《 高等数学(一) 》复习资料 一、选择题 1. 若23lim 53 x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6- 2. 若21lim 21 x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.4 3. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+ 4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.1 32 y x =-+ 5. 211 lim sin x x x →-=( ) A.0 B.3 C.4 D.5 6.设函数0()(1)(2)x f x t t dt =+-?,则(3)f '=( ) A 1 B 2 C 3 D 4 7. 求函数43242y x x =-+的拐点有( )个。 A 1 B 2 C 4 D 0

8. 当x →∞时,下列函数中有极限的是( )。 A. sin x B. 1x e C. 21 1x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3) lim 2h f h f h →--=( ) 。 A. 32 B. 3 2 - C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。 A. 极小值 B. 极大值 C. 最小值 D. 最大值 11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( ) A.至少有两个零点 B. 有且只有一个零点 C. 没有零点 D. 零点个数不能确定 12. [()'()]f x xf x dx +=? ( ). A.()f x C + B. '()f x C + C. ()xf x C + D. 2()f x C + 13. 已知2 2 (ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 22 2(ln )() f x f x x ' 14. ()d f x ? =( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =?( D ) A.2ln x x C + B. ln x C x + C.2ln x C + D.()2ln x C +

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

高数上试题及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

高等代数试题附答案

高等代数试题附答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 4232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( )

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

深圳大学数理金融实验班本科人才培养方案

深圳大学“数理金融实验班”本科人才培养方案 一、培养目标 “数理金融实验班”培养具有优良的思想道德、职业道德、创新及敬业精神、较高人文与科学素质,具备现代经济、金融理论和业务知识,尤其是具备现代银行业务、证券及金融衍生工具投资、金融衍生工具定价、风险控制、定量分析方法等方面的前沿知识和实践技能,能在各类金融企业、事业单位、公司财务部门和政府部门从事理财产品设计与开发、证券、期货及其他衍生工具投资、风险度量及控制等金融业务和管理工作的德、智、体、美全面发展的复合型人才。 二、培养要求 “数理金融实验班”以素质教育与专业教育相结合、经济、金融理论与实证方法相结合、课堂教案与实践教案相结合、个性发展与共性提高相结合为原则设置培养方案,达到以下培养要求: .掌握经济学、金融学基础理论知识和现代金融业经营管理方法,以及有效的应用数学方法与计算技术,具备较宽泛的人文社会科学和应用数学主干学科基础知识,能熟练运用计算机技术、数学方法,定性及定量分析、解决现代金融及社会经济领域问题。 .熟练运用外语工具,及时了解国际金融领域发展动态,把握世界金融业发展趋势。 .熟悉我国有关金融的方针、政策和法规,具备优良的职业道德、思想道德与社会责任感。 .具有良好的社会实践、社会沟通、合作及协调能力。 三、主干学科 经济学、数学 四、主要课程 微观经济学、宏观经济学、金融学、商业银行经营业务与管理、证券投资学、金融衍生工具、金融工程、国际金融(英文版)、利息理论、数理金融、公司理财学(英文版)、会计学原理、财政学、统计学、计量经济学、国际贸易、保险学、国际结算(英文版)、风险管理原理、投资项目评估、数学分析、高等代数、常微分方程、概率论与数理统计、数据结构、数据库原理及应用等。 五、标准修业年限 四年 六、授予学位 经济学学士理学学士

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

大学高数试卷及答案

浙江农林大学 2016 - 2017 学年第 一 学期期中考试 课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。 2、考试时间 120分钟。 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共21分) 1.下列各式正确的是: ( ) A. sin lim 1x x x →+∞= B. 0sin lim 0x x x →= C. 1lim 1x x e x →+∞??+=- ??? D. 1lim 1x x e x →+∞ ?? += ??? 2. 当0x +→ ( ) 1 B. ln C. 1- 1-3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是:( ) A.1lim ()()h h f a f a h →+∞?? +-???? 存在 B. 0(2)()lim h f a h f a h h →+-+存在 C. 0 ()()lim 2h f a h f a h h →+--存在 D. 0()() lim h f a f a h h →--存在 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

4. 函数33y x x =-在区间[0,1]上的最小值是: ( ) A. 0 B. 没有 C. 2 D. 29 - 5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0 B. 1 C. 1- D. 2 6.设函数2 ()(1)0 ax e x f x b x x ?≤=?->?处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b == 7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( ) A .'()0f a = B .()0f a = C .''()0f a = D .以上都不对 二、填空题(每小题3分,共21分) 1. 极限232)sin (1cos lim x x x x x +-+∞→= . 2 .极限lim n →∞ ?? +L =. 3.设函数f (x )=2310 22 2 x x x x a x ?+-≠? -??=?在点x =2处连续,则a = . 4. 函数()sin x f x x = 的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln y =dy = . 7.椭圆曲线cos sin x a t y b t =??=? 在4t π =相应的点处的切线方程为 .

高等代数试卷及答案一

一、填空题(共 10题,每题2分,共20分)。 1.多项式可整除任意多项式。 2.艾森施坦因判别法是判断多项式在有理数域上不可约的一个条件。 3.在n 阶行列式D 中,0的个数多于个是0D =。 4.若A 是n 阶方阵,且秩1A n =-,则秩A * =。 5.实数域上不可约多项式的类型有种。 6.若不可约多项式()p x 是()f x 的k 重因式,则()p x 是(1) ()k f x -的重因式。 7.写出行列式展开定理及推论公式。 8.当排列12n i i i L 是奇排列时,则12n i i i L 可经过数次对换变成12n L 。 9.方程组12312322232 121x x x ax bx cx d a x b x c x d ++=?? ++=??++=?,当满足条件时,有唯一解,唯一解为。 10.若2 4 2 (1)1x ax bx -∣ ++,则a =,b =。 二、判断题(共10题,每题1分,共10分)。 1.任何两个多项式的最大公因式不因数域的扩大而改变。() 2.两个多项式互素当且仅当它们无公共根。() 3.设12n αααL 是n P 中n 个向量,若n P β?∈,有12,n αααβL 线性相关,则12n αααL 线性 相关。() 4.设α是某一方程组的解向量,k 为某一常数,则k α也为该方程组的解向量。()5.若一整系数多项式()f x 有有理根,则()f x 在有理数域上可约。() 6秩()A B +=秩 A ,当且仅当秩0 B =。() 7.向量α线性相关?它是任一向量组的线性组合。() 8.若(),()[]f x g x P x ∈,且((),())1f x g x =,则(()(),()())1f x g x f x g x +=。() 9.(),()[]f x g x Z x ∈,且()g x 为本原多项式,若()()()f x g x h x =则()[]h x Z x ∈。() 10.若,,,n n A B C D P ?∈,则 A B AD BC C D =-。() 三、选择题(共5题,每题2分,共10分)。 1.A 为方阵,则 3A =()

2019高数(下)试题及答案

第二学期期末考试试卷 一、 填空题(每空 3 分,共 15 分) 1. 已知向量()1,1,4r a =-,()3,4,0r b =,则以r a ,r b 为边的平行四边形的面积等于. 2. 曲面sin cos z x y =在点1,,442ππ?? ??? 处 的切平面方程是. 3. 交换积分次序()22 0,x dx f x y dy = ??. 4. 对于级数11 n n a ∞ =∑(a >0),当a 满足条件 时收敛. 5. 函数1 2y x =-展开成x 的幂级数为 . 二、 单项选择题 (每小题3分,共15分) 1. 平面20x z -=的位置是 ( ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面 2. 函数(),z f x y =在点()00,x y 处具有偏导数 ()00,x f x y ',()00,y f x y ',是函数在该点可微分的 ( ) (A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件 3. 设()cos sin x z e y x y =+,则10 x y dz ===( ) (A )e (B )()e dx dy +

(C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11n n n a x ∞ =-∑在1x =-处收敛, 则此级数在2x =处( ) (A )敛散性不确定 (B )发散 (C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( ) (A )212 1x y e =- (B )212 1x y e -=- (C )212 x y Ce -= (D )212 1x y Ce =- 三、(本题满分8分) 设平面通过点()3,1,2-,而且通过直线43521 x y z -+==, 求该平面方程. 四、(本题满分8分) 设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ??和2z x y ???. 五、(本题满分8分) 计算三重积分y zdxdydz Ω =???, 其中 (){},,01,11,12x y z x y z ≤≤-≤≤≤≤. 六、(本题满分8分) 计算对弧长的曲线积分L ?,

高等代数 矩阵练习题参考答案

第四章 矩阵习题参考答案 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错. 2. 如果20,A =则0A =. 错.如2 11,0,011A A A ??==≠ ?--?? 但. 3. 如果2A A E +=,则A 为可逆矩阵. 正确.2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ?????? === ? ? ?------?????? ,有,AC AB =但B C ≠. 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使 .00 0??? ? ? ?=s I PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆. 正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11 (*)|| A A A -=. 8.设 B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又 ()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====. 因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆

深圳大学2018年二外考研大纲

深圳大学2018年高等代数考研初试大纲 各大院校的考研大纲在近期相继公布,各位考研的同学肯定已经为复习做好了准备。前面研途小姐姐给大家介绍了北京工商大学翻译硕士的考研大纲,这里给大家继续介绍深圳大学二外考研大纲。 英语(二外) 一、考试基本要求 本考试大纲适用于报考深圳大学日语语言文学专业的硕士研究生第二外国语入学考试。要求考生已经修完《大学英语》1-4课程,较熟练地掌握英语语法和词汇方面的知识,并能够运用这些知识进行阅读、理解、翻译和写作。 二、考试内容和考试要求(注:总分100分) 考生应掌握下列语言知识和技能: (一)语言知识 1. 语法知识:考生应能熟练地运用基本的语法知识。 2. 词汇:考生应能掌握5500左右的词汇及相关词组。除掌握词汇的基本含义外,考生还应掌握词汇之间的词义关系,如同义词、近义词、反义词等;掌握词汇之间的搭配关系,如动词与介词、形容词与介词、形容词与名词等;掌握词汇生成的基本知识,如词源、词根、词缀等。考虑到交际的需要,考生还应自行掌握与本人工作或专业相关的词汇,以及涉及个人好恶、生活习惯和宗教信仰等方面的词汇。 (二)语言技能 1、阅读:考生应能读懂选自各类书籍和报刊的不同类型文字材料(生词量不超过所读材料总词汇量地3%),还应能读懂与本人学习或工作有关的文献资料、技术说明和产品介绍等。对所读材料,考生应能: 1)理解主旨要义; 2)理解文中的具体信息; 3)理解文中的概念性含义; 4)进行有关的判断、推理和引申; 5)根据上下文推测生词的词义; 6)理解文章的总体结构以及上下文之间的关系; 7)理解作者的意图、观点或态度; 8)区分论点和论据。 2、翻译:考生应有一定的中英文语言素质,能将两种语言进行转换,考生应能: 1)准确理解文中传达的信息; 2)能将文中的信息用另一种语言表达出来; 3)能够灵活地、熟练地运用语法手段和修辞技巧; 4)体现一定的文化素养和逻辑思维能力。 3、写作:考生应能写不同类型的应用文,包括私人和公务信函、备忘录、摘要、报告等,以及一般描述性、叙述性或议论性的文章。写作时,考生应能: 1)做到语法、拼写、标点正确,用词恰当; 2)遵循文章的特定文体格式; 3)合理文章结构,使其内容统一、连贯; 4)根据写作目的和特定读者,恰当选用语域。

高等代数试题及答案

. . 中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,,是V 上的线性变换,且= . 证明: 的值域与核都是 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ????????? ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 610210 2 2T ?-????-? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

高等代数试题及答案

------------------------------------------------------------------------------------------------------------中国海洋大学 2007-2008学年 第2学期 期末考试试卷 数学科学 学院 《高等代数》课程试题(A 卷) 共 2 页 第 1 页

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共2 页第2 页 ------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

深圳大学 高数试题

函数的连续性与可微性 拉格朗日从1772年就开始了他那重建微积分基础的雄心勃勃的尝试。导数概念就是拉格朗日引进的。拉格朗日认为微积分面临的困境和逻辑矛盾是由使用无穷小量引起的,如果在微积分中不用无穷小量,也就是说寻找一种不用无穷小量的方法建立微积分的基础,那么,所有对微积分的攻击就都不攻自破了。拉格朗日认为当时的代数学的严密性是毋庸置疑的。因此,他力图用纯代数的方法建立微各分基础。他把微积分建立在任一连续函数都存在泰勒展式这一假设上。他认为,如果将连续函数展在无穷级数,那么由所得到的无穷级数的各项系数就可以得到该函数的各阶导数,从而就避免了用无穷小量和求极限。他没有考虑到各阶导数的存在问题。拉各朗日确信连续函数一定是可微的。 在18世纪寻求建立微积分基础的工作中数学巨匠尤其是欧拉和拉格朗日给出了不正确的思路和逻辑基础。因为他们是数学界的权威,他们的思想和方法给同时代的大大小小的数学家以巨大的影响,以至许多数学家不加分析,不加批判地重复他们提出的观点,甚至在他们给出的基础上进一步发展。因而在18世纪结束之际,微积分和建立微积分基础上的其它分支的逻辑处于一种混乱的状态中。 人们总以为在社会科学和社会发展史上,政治家、思想家方面的权威对政治和社会形势的错误估计会造成政治思想上的混乱,会影响社会的发展,从上面的例子也可以看到,科学技术上的权威对对新生事物的错误认识也会造成逻辑上的混乱,也会影响科学技术的发展。欧拉和拉格朗日虽然在重建微积分基础的逻辑上出现了失误,但他们的失误和他们对人类作出的贡献相比,错误只是沧海一粟,他们的失误是英雄的失误。 柯西把函数的连续性和导数概念的严密化提到了相当的高度,柯西给出的连续函数的定义为: 如果在两个界限之间(即某一区间)变量的无穷小增量总使函数产生一个 无穷小增量,则称函数在这两个界限之间连续。 连续性和可微性是微积分的基本概念。认为连续函数一定是可微的,在今天对一个学过高等数学的学生来说都是不可原谅的,然而犯错误的人都是当时的伟人:欧拉、拉格朗日、柯西、

《高等代数》月测试试题与及答案

《高等代数》月测试试题与及答案(行列式与线性方程组部分) 一、(共12分)叙述下列概念或命题: (1)线性相关;(2)极大线性无关组;(3)行列式按一行(列)展开定理. 答:(1)向量组 称为线性相关,如果有数域 中不全为零的数 ,使 . 注对如下定义也视为正确:如果向量组 ( )中有一个向量可由其余的向量线性表出,那么向量组 称为线性相关的. (2)一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身 是线性无关的,并且从这向量组中任意添加一个向量(如果还有的话),所得的部分向量组都线性相关. 注对如下定义也视为正确:向量组 的一个部分组 称为一个极大线性无关组,是指:(ⅰ) 线性无关;(ⅱ) 可由 线性表出.

(3)行列式等于某一行(列)的元素分别与它们代数余子式的乘积之和. 注用公式写出按行(或列)展开定理亦可. 二、判断题:(在括号里打“√”或“×”,共20分) 1. . (×) 2.若向量组 ( )线性相关,则其中每个向量都是其余向量的线性组合.(×)3.在全部 ( )级排列中,奇排列的个数为 .(√)4.若排列 为奇排列,则排列 为偶排 列.(×)5.若矩阵 的秩是 ,则 的所有高于 级的子式(如果有的话)全为零.(√)

6.若一组向量线性相关,则至少有两个向量的分量成比 例.(×) 7.当线性方程组无解时,它的导出组也无 解.(×) 8.对 个未知量 个方程的线性方程组,当它的系数行列式等于0时,方程组一定无 解.(×) 9.等价向量组的秩相 等. (√) 10.齐次线性方程组解的线性组合还是它的 解.(√) 三、(共18分)计算行列式 (1) 解原式 . 注用其它方法计算出结果的给满分,方法正确而计算错误的,酌情给分.(2)

相关主题
文本预览
相关文档 最新文档