当前位置:文档之家› 大学物理13章习题详细答案

大学物理13章习题详细答案

习题13

13-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为

因而板间电场强度为 S

Q E 02ε=

电势差为 S

Qd

Ed U 0AB 2ε=

= (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 S

Q E 0ε=

电势差为 S

Qd

Ed U 0AB ε=

= B A

-Q/2Q/2Q/2Q/2A B -Q

Q

13-4 两块靠近的平行金属板间原为真空。使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求

(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?

13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。圆柱面B 上带电荷,A 和C 都接地。求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=

r

E 02

II 2πελ= A

B 0101I BA ln 2d 2d A

B

A B

R R

r r U R R R R πελπελ=-==⎰

⎰r E II

I

B C 020

2II BC ln 2d 2d C

B C

B

R R r r U R R R R πελ

πελ===⎰

⎰r E

B

C 02A B 01ln 2ln 2R R R R πελ

πελ= 因此 A

B B

C 21ln :ln

:R R R R =λλ

13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。 [解] 导体板内场强0=内E ,由高斯定理可得板外场强为

2εσ

=E

故A 、B 两点间电势差为

()a b x x x U b

d a d

a d a a a

B A

-=

++-

=⋅=⎰

⎰⎰⎰++++0

00

AB 2d 2d 0d 2d εσ

εσεσ

l E

13-7.为了测量电介质材料的相对电容率,将一块厚为 1.5cm 的平板材料慢慢地插进一

电容器的距离为2.0cm 的两平行板中间。在插入过程中,电容器的电荷保持不变。插入之后,两板间的电势差减小到原来的60%,求电介质的相对电容率。

[解] 设两平行板间距离为d ,介质板厚度为d ',插入前电容器电势差为U ,插入后为U ',电容器上面电荷密度为σ

插入介质板前电容器内场强0

εσ=

E ,电势差0εσd Ed U ==

插入介质板后,电容器内空气中场强仍为E ,介质内场强r

0εεσ

='E 两板间的电势差

()()r

00εεσεσ

d d d d E d d E U '+'-=

''+'-=' 已知U .U 600=',因此有

()r

00060

.0εεσεσεσd d d d '

+'-= 解此方程得

B

A

1.20

.240.05.15

.14.0r =⨯-=-''=

d d d ε

13-8.半径都是R 的两根无限长均匀带电直导线,其线电荷密度分别为λ+和λ-,两直导线平行放置,相距为d (d >>R )。试求该导体组单位长度的电容。

[解] 可用叠加原理及高斯定理计算两导线间垂直连线上任意点P 的场强。

如图所示,过P 分别做两个长为L ,与两条直导线共轴的闭合圆柱面作为高斯面。根据高斯定理分别计算每条线上电荷产生的场强。

l l rLE λελεπ0

111

d 1

2d =

=

=⋅⎰⎰⎰S Ε

所以 r

E 012πελ

=

同理 ()

r d E -=

022πελ

根据叠加原理,P 点总场强为

⎪⎭

⎫ ⎝⎛-+=

+=r d r E E E 1121021πε 两条线间电压为

R R d r r d r U R

d R

R

d R

-=

⎪⎭⎫ ⎝⎛-+=⋅=⎰

--ln d 11

2d 0

0πελπελl E 故单位长度电容

R

R

d U

C -=

=

ln

πελ

13-9.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1=2cm ,R 2 =5cm ,其间充满相对电容率为εr 的各向同性均匀电介质,电容器接在U =32V 的电源上(如习题13-9图所示)。试求距离轴线R =3.5cm 的点A 处的电场强度和点A 与外筒间的电势差。 [解] 由

Q =⋅⎰⎰S D d L L r D λπ=⋅⋅2

因此 r

D πλ2=

r E r 02επελ=

1

2r 0ln 2d 322

1

R R r E U R R επελ

=

==⎰

因此 1

2r 0ln 2R R U επελ=

R

r P

d

R

所以 1

-1

2

r 01

2r 0r 0A m 998ln 21ln 212⋅====

V R R R U

R R R U R E επεεπεεπελ

1-m 998⋅=V r A e E

⎰⎰==2

2

2d d AR R R

R R

r E r E U =12.5 V

13-10.置于球心的点电荷+Q 被两同心球壳所包围,大球壳为导体,小球壳为电介质,相对电容率为εr ,球壳的尺寸如习题13-10图所示。试求以下各量与场点矢径r 的关系:(1)电位移D ;(2)电电场强度度E ;(3)极化强度P ;(4)束缚电荷激发的电电场强度度E ';(5)面电荷密度σ;(6)电能密度ωe 。 [解] (1) 由有介质的高斯定理

Q =⋅⎰⎰S D d 1

()()

⎪⎩

⎪⎨

⎧<<><=d r c d r c r r Q

42

或r

e D π (2) 由静电场的性能方程 E D r 0εε=得

()()()⎪⎪⎪⎩

⎪⎪⎨⎧<<<<<<<=d r c b r a r Q c r b a r r

Q

0442r 020r

r

e e E επεπε或 (3) 由 ()ΕP 1r 0-=εε得

()()()

⎪⎩⎪

⎨⎧><<<-=b r a r b r a r Q 或0

412r r r

e P πεε

(4) 在电介质内 E E E '+=0

所以r e E E E ⎪⎪⎭⎫

⎝⎛-=-='114r 200επεr Q

在其它位置0='E

(5) 由束缚电荷 ()2112n P P ⋅-='σ,在电介质中

()2

r r 2a

41a Q P πεεσ--=-='

a

21

()2

r r 1b

41b Q P πεεσ-=='

在导体中,自由电荷 n D ⋅=σ

2c c 4c Q

D πσ-=

-= 2

d d 4d Q

D πσ=

= (6) 由 DE w 2

1

=

得 ()()()⎪⎪⎪⎩

⎪⎨⎧<<<<><<<=d r c b r a r Q d r c r b a r r Q 032324

r 0224

022

e εεπεπω或或

13-11.一电容为C 的空气平行板电容器,接端电压为U 的电源充电后随即断开。试求把两个极板间距增大至n 倍时外力所作的功。 [解] 断开电源后Q 不变,电容由原来的d

S

C 0ε=

,变为nd

S

C 0ε=

'

外力所做的功即相当于系统静电能的改变量

221

CU W =

22

1

U C W ''='

由于Q 不变,C n C '=,所以nU U ='

因此222

1

U n C W '=

' ()()121

21222-=-'=-'=n CU C n C U W W W ∆

即外力做功()12

1

2-=n CU A

13-12.球形电容器由半径为R 1的导体球和与它同心的导体球壳构成,壳的内半径为R 2,其间充有两层均匀电介质,分界面的半径为r ,内外层电介质的相对电容率分别为εr 1和εr 2。已知内球带电量为-Q ,试求:(1)各介质表面上的束缚面荷密度σ';(2)电容器的静电能和电场总能量。

[解] (1) 1R

D '-=

π 2

r101

4r Q E '-=επε

b 21

r

D '-=

π 2

r202

4r Q E '-=επε 1

R r ='时

()()()

()2

1

r112

1

r10r10r1012112R 414111

R Q R Q E P r πεεεπεεεεεσ-=

---=--=-=⋅-='n P P

r r ='时,()()()2r201r10122112r 11E E P P ---=-=⋅-='εεεεσn P P

()()()2

r1r2r1r22

r20r202r10r1044141r Q

r Q r Q επεεεεπεεεεπεεε-=-----

= 2

R r ='时

()()()()22

2222202022022112R

414112

R Q R Q E P r r r r r πεεεπεεεεεσ--=--=-==⋅-='n P P

(2) DE w 2

1

=

r r r Q r r r Q V DE W R r r R e '''+'''==⎰⎰⎰⎰⎰d 41621d 41621d 212

4r202224r1

02221πεεππεεπ ()()r R R r R R R r R Q R r Q r R Q 21r2r121r112r2022r2

02

1r102

8118118εεεεπεεπεεπε-+-=⎪⎪⎭⎫ ⎝

⎛-+⎪⎪⎭⎫ ⎝⎛-=

大学物理课本答案习题 第十三章习题解答

习题十三 13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r , 2r 。已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为 时间。导线框长为a ,宽为b ,求导线框中的感应电动势。 解:无限长直电流激发的磁感应强度为02I B r μ= π。取坐标Ox 垂直于 直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。取回路的绕行正方向为顺时针。由场强的叠加原理可得x 处的磁感应强度大小 00122() 2() I I B r x r x μμ= + π+π+ 方向垂直纸面向里。 通过微分面积d d S a x =的磁通量为 00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ?? =?==+??++?? 通过矩形线圈的磁通量为 00m 01 2d 2()2()b I I a x r x r x μμΦ??=+??π+π+???012012ln ln sin 2a r b r b I t r r μω?? ++=+ ?π?? 感生电动势 0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω?? ++=- =-+ ?π?? 012012()()ln cos 2a r b r b I t r r μωω?? ++=- ??π?? 0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向 为逆时针。 13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。圆形线圈可绕通过圆心的轴O 1O 2转动,转速1 600r min n -=? 。求圆线圈自图示的初始位置转过 题图13-1 题图 13-2 解图13-1

大学物理第13章 量子物理习题解答(1)

习题 13-1 设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。 【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位 时间得到的辐射能为1E 。 ()484720 5.671061007.8510W/m E T σ-==??=? 22 014π4πE R E R →=太阳地球太阳 () () ()2 92 3210 2 110.7107.85 1.7110W/m 1.510R E E R →?==? =??太阳 2 地球太阳 太阳每年损失的质量 ()() ()79 01722 87.851040.710365243600 1.6910kg 3.010E S t m c π?????????===??太阳 13-2 用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。 【解】由4 0E T σ=得 ()1/4 1/4 40822.810 1.416 K 5.6710E T σ-?????=== ? ? ??? ?? 13-3 黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍? 【解】由普朗克公式 ()5 /1,1 hc k T T e λρλλ-∝- 348 239 11 6.6310310 6.861.3810600035010hc k T λ---???==???? 2112 3.43 5.88hc hc k T k T λλ==

昆明理工大学物理习题集(下)第十三章元答案

第十三章 波动 一、选择题 1、一平面简谐波的波函数为))(3cos(1.0SI x t y πππ+-=,0=t 时的波形曲线如左下图所示,则:[ C C ] (A )O 点的振幅为-0.1m ; (B )波长为3m ; (C )a 、b 两点间的相位差为2/π; (D )波速为9m/s 。 2、一简谐波沿Ox 轴传播。若Ox 轴上1P 和2P 两点相距8/λ(其中λ为该波的波长),则在波的传播过程中,这两点振动速度的[ C C ] (A )方向总是相同 (B )方向总是相反 (C )方向有时相同,有时相反 (D )大小总是不相等。 3、如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则其波函数为:[ A A ] (A )}]/)([cos{0φω+--=u l x t A y (B )})]/([cos{0φω+-=u x t A y (C ))/(cos u x t A y -=ω (D )}]/)([cos{0φω+-+=u l x t A y 4、一平面简谐波,沿x 轴负方向传播,圆频率为ω,波速为u ,设4/T 时刻波形如左下图所示,则该波的表达式为:[ D D ] (A ))](cos[u x t A y - =ω (B) ]2)(cos[πω+-=u x t A y (C ))](cos[u x t A y +=ω (D )])(cos[πω++=u x t A y 5、一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点。已知P 点的振动方程为 t A y ωcos =,则:[ C C ] (A )O 点的振动方程为)/cos(u l t A y -=ω (B )波的表达式为)]/()/([cos u x u l t A y --=ω (C )波的表达式为)]/()/([cos u x u l t A y -+=ω (D )C 点的振动方程为)/3(cos u l t A y -=ω 6、如右图所示为一平面简谐波在0=t 时刻的波形图,该波的波速u =200m/s ,则P 处质点的振动曲线为: [ C C ]

湖南大学物理(2)第13章课后习题参考答案

第13章 静电场中的导体和电解质 一、选择题 1(D),2(A),3(C),4(C),5(C),6(B),7(C),8(B),9(C),10(B) 二、填空题 (1). 4.55×105 C ; (2). σ (x ,y ,z )/ε 0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ; (5). σ ,σ / ( ε 0ε r ); (6). R q 04επ ; (7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 452; (10). εr ,εr 三、计算题 1.如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ⎰-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 2. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183) 解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为 ⎰⎰⋅π==R r R r r r r E U d 2d ελ 0ln 2r R ελπ= 电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有

大学物理第13章习题解答

第十三章习题解答 1选择题:1B ,2A ,3B ,4A ,5D 2填空题:1,2sin /d πθλ;2,0.45mm ;3,900nm ;4,变密;5,向上;6,向下;7,棱边,保持不变。 3计算题: 1 用λ=500nm 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹。若劈尖上面媒质的折射率n 1大于薄膜的折射率n (n =1.5).求: ⑴ 膜下面媒质的折射率n 2与n 的大小关系; (2) 第10条暗纹处薄膜的厚度; ⑶ 使膜的下表面向下平移一微小距离e ?,干涉条纹有什么变化?若e ?=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据? 解:⑴ n 2>n 。因为劈尖的棱边是暗纹,对应光程差为:2 ) 12(2 2λ λ +=+=?k ne , 膜厚e =0处,有k =0,只能是下面媒质的反射光有半波损失 2 λ 才合题意; (2) 3995009 1.5102 22 1.5 n e n λλ-??=? = ==?? mm (因10个条纹只有9个条纹间距) ⑶ 膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=?e μm ,原来第10条暗纹处现对应的膜厚为)100.210 5.1(33 --?+?='?e mm 34 3.5102 1.5212 5.010 n e N λ--'?????===? 现被第21级暗纹占据. 2 ⑴ 若用波长不同的光观察牛顿环,λ1=600nm ,λ2=450nm ,观察到用λ1时的第k 个暗环与用λ2时的第k +1个暗环重合,已知透镜的曲率半径是190cm .求用λ1时第k 个暗环的半径. (2) 又如在牛顿环中用波长为500nm 的第5个明环与用波长为λ2的第6个明环重合,求未知波长λ2. 解: ⑴ 由牛顿环暗环公式:λkR r k = 据题意有 21)1(λλR k kR r +== ,∴ 2 12λλλ-= k ,代入上式得: 2 121λλλλ-=R r =3 1085.1-?=m (2) 用1500λ=nm 照射,51=k 级明环与2λ的62=k 级明环重合,则有: 2)12(2)12(2211λλR k R k r -=-= ∴1 21221251 500409.121261k k λλ-?-==?=-?-nm 3 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由d 1= 1.40×10-2m 变为d 2=1.27×10-2m ,求液体的折射率. 解: 由牛顿环明环公式

大学物理第十三章课后答案

习题十三 13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象? 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成. 13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ? 答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动. 13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带 ? λ 答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用 2 来划分?对应于第 3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k ? 1) “ =(2 3 ■ 1) “ =7 ?.?由 2 2 2 a Sin -4 ' - 8 — 2 13-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则 asin 「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是 由一个半波带的光能量决定的,所以亮度减小. 13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化 ?如果此时用公 m λ asin = (2k 1) (k =1,2,) 式 2 来测定光的波长,问测出的波长是光在空气中的还是 在水中的波长? k ■ 解:当全部装置浸入水中时,由于水中波长变短,对应 asin 「= k ? = n ,而空气中为 asi n 「= k ? ,?. Si n 「=n Si n ",即「=n : ,水中同级衍射角变小,条纹变密. λ 如用 asin (2k ■ I) 2 (k = 1,2, …)来测光的波长,则应是光在水中的波长.(因 asin ‘ 只代表光在 水中的波程差)? 13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由 asin ' =k'知,衍射角「变大,条纹变稀; (2) , 变大,保持a , k 不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时 asin 即=k ? ;斜入射时, a(Sin 「- Sin ^)^k -, 保持a ,'不变,则应有 ^ k 或k 二::k ?即原来的k 级条纹现为k 级. 13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样 说明? λ 答:不矛盾?单缝衍射暗纹条件为.asin =k' =2k 2 ,是用半波带法分析(子波叠加问 题)? 相邻两半波 带上对应点向 '方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,

大学物理第13章学习题答案

习题十三 13-1 衍射的本质是什么?衍射和干涉有什么联系和区别? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成. 13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动? 答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动. 13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带? 答:半波带由单缝A 、B 首尾两点向?方向发出的衍射线的光程差用2 λ 来划分.对应于第3 级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由2 72 )132(2 )12(sin λ λλ??=+?=+=k a 2 84sin λ λ?? ==a 13-4 在单缝衍射中,为什么衍射角?愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角?愈大则?sin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式 ),2,1(2 )12(s i n =+±=k k a λ ?来测定光的波长,问测出的波长是光在空气中的还是在水 中的波长? 解:当全部装置浸入水中时,由于水中波长变短,对应= '='λ?k a s i n n k λ,而空气中为 λ?k a =s i n ,∴??'=s i n s i n n ,即??'=n ,水中同级衍射角变小,条纹变密. 如用) 12(s i n +±=k a ?2 λ ),2,1(???=k 来测光的波长,则应是光在水中的波长.(因? s i n a 只代表光在水中的波程差). 13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由λ?k a =s i n 知,衍射角?变大,条纹变稀; (2)λ变大,保持a ,k 不变,则衍射角?亦变大,条纹变稀; (3)由正入射变为斜入射时,因正入射时λ?k a =s i n ;斜入射时,λθ?k a '=-)s i n (s i n ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级. 13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样

大学物理习题答案13波动

大学物理练习题十三 一、选择题 1. 下列函数f (x, t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常数。其中哪个函数表示沿X 轴负方向传播的行波? [ A ] (A )()()bt ax A t x f +=cos , (B ))cos(),(bt ax A t x f -= (C )bt ax A t x f cos cos ),(?= (D )bt ax A t x f sin sin ),(?= 2. 如图所示为一平面简谐波在t=2s 时刻的波形图,质点P 的振动方程是 [ C ] (A )[]3/)2(cos 01.0ππ+-=t y p (SI) (B )[]3/)2(cos 01.0ππ++=t y p (SI) (C )[]3/)2(2cos 01.0ππ+-=t y p (SI) (D )[]3)2(2cos 01.0ππ--=t y p (SI) 解:m A 01.0=,m 200=λ,s m u /200=, πλ π πνω222===u 设P 点振动方程为)cos(φω+=t A y p ,t=2s 时 ?????<+?-==+?=0)22cos(sin 005.0)22cos(01.0φπωφπA v y p p ,???>+?=+?0)22sin(5 .0)22cos(φπφπ 3 22π φπ= +? , 34π πφ+-= =+-=)3 42cos(01.0π ππt y p )3)2(2cos[01.0π π+-t 3. 一平面简谐波在弹性媒质中传播,在某一瞬时,波传播到的媒质中某质元正处于平衡位置,此时它的能量是 [ C ] (A )动能为零,势能最大。 (B )动能为零,势能为零。 (C )动能最大,势能最大。

大学物理课后习题详解(第十三章)中国石油大学

习 题 十 三 13-1 求各图中点P 处磁感应强度的大小和方向。 [解] (a) 因为长直导线对空间任一点产生的磁感应强度为: ()210cos cos 4θθπμ-= a I B 对于导线1:01=θ,2 2π θ=,因此a I B πμ401= 对于导线2:πθθ==21,因此02=B a I B B B πμ4021p = += 方向垂直纸面向外。 (b) 因为长直导线对空间任一点产生的磁感应强度为: ()210cos cos 4θθπμ-= a I B 对于导线1:01=θ,22π θ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。 对于导线2:21π θ=,πθ=2,因此r I a I B πμπμ44002==,方向垂直纸面向内。 半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的 圆形导线在圆心处产生的磁感应强度的一半,即 r I r I B 4221003μμ= =,方向垂直纸面向内。 所以,r I r I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++= (c) P 点到三角形每条边的距离都是 a d 6 3= o 301=θ,o 1502=θ 每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是 ()a I d I B πμπμ23150cos 30cos 400000=-= 故P 点总的磁感应强度大小为 a I B B πμ29300= = 方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =3 10166-?.T 的磁场,问该螺线管每单位长度应多少匝? [解] 已知载流螺线管轴线上场强公式为 ()120cos cos 2 θθμ-= nI B 由图知: 104 10cos 2= θ,104 10cos 1-= θ, 所以,??? ? ?? ?= 10410220nI B μ, 所以,匝=1000101040I B n μ= 13-3 若输电线在地面上空25m 处,通以电流3 1081?.A 。求这电流在正下方地面处产生的磁感应强度。 [解]输电线可看作无限长直导线,直线电流所产生的磁场为: = B r I πμ20 T 1044.125 2108.1104537--?=????=ππ 13-4 在汽船上,指南针装在距载流导线0.80m 处,该导线中电流为20A 。(1)将此导线作无限长直导线处理,它在指南针所在处产生的磁感应强度是多大?(2)地磁场的水平分量(向北)为 41018.0-?T 。由于电流磁场的影响,指南针的N 极指向要偏离正北方向。如果电流的磁场是水平的,而且与地磁场垂直,指南针的指向将偏离多大?求在最坏情况下,上述汽船中的指南针的N 极将偏离北方多少度? [解] (1) 电流在指南针所在处的磁感应强度的大小为 T 100.580 .020********--?=??==T r I B πμ (2) 如果电流的磁场是水平的而且与地磁场的水平分量2B 垂直,指南针偏离正北方向的角度为?,则 28.010 18.0100.5tan 4 6 21=??==--B B ? 13150'=? 设指南针由于电流磁场偏离正北方向的角度为1?, 2112sin sin ??B B = O θ1 θ2

大学物理13章答案

第13章 静电场中的导体和电介质 13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零) [解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为 204q E r πε= . 当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为 04c q U r πε= . 13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少? [解答]介质中的电场强度和电位移是轴对称分布 的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2. 通过高斯面的电位移通量为 ??=ΦS d D d 0 1 2 d d d 2S S S rlD π=?+?+?=???D S D S D S , 可得电位移为 D = λ/2πr , 其方向垂直中心轴向外. 电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外. 13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3

大学物理第十三章课后习题答案

第十三章 热力学基础 13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B). 13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( ) (A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热

分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确. 13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为 ( ) (A) 6J (B) 3 J (C) 5 J (D) 10 J 分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2 Δ= ,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪ ⎪⎭ ⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C). 13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为 ( )

大学物理(许瑞珍_贾谊明) 第13章答案

第十三章 振动 13-1 一质点按如下规律沿x 轴作简谐振动:x = 0.1 cos (8πt +2π/3 ) (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。 解:周期T = 2π/ ω= 0.25 s 振幅A = 0.1m 初相位φ= 2π/ 3 V may = ωA = 0.8πm / s ( = 2.5 m / s ) a may = ω2 A = 6.4π2m / s ( = 63 m / s 2) 13-2 一质量为0.02kg 的质点作谐振动,其运动方程为:x = 0.60 cos( 5 t -π/2) (SI)。 求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力。 解:(1) )( )2 5sin(0.3 SI t dt dx v π--== 0.3 20x m ma x ω-== (2) 2 x m ma F ω-== 5.13.052.0,2/ 2N F A x -=??-==时 13-3 如本题图所示,有一水平弹簧振子,弹簧的倔强系数k = 24N/m ,重物的质量m = 6kg ,重物静止在平衡位置上,设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05m ,此时撤去力F ,当重物运动到左方最远位置时开始计时,求物体的运动方程。 解:设物体的运动方程为: x = A c o s (ωt +φ) 恒外力所做的功即为弹簧振子的能量: F ? 0.05 = 0.5 J 当物体运动到左方最位置时,弹簧的最大弹性势能为0.5J , 即: 1 / 2 kA 2 = 0.5 J ∴A = 0.204 m A 即振幅 ω2 = k / m = 4 ( r a d / s )2 ω= 2 r a d / s 按题目所述时刻计时,初相为φ= π ∴ 物体运动方程为 x = 0.204 c o s (2 t +π) ( SI ) 13-4 一水平放置的弹簧系一小球。已知球经平衡位置向右运动时,v =100cm ?s -1,周期T =1.0s ,求再经过1/3秒时间,小球的动能是原来的多少倍?弹簧的质量不计。 解:设小球的速度方程为: v = v m c o s (2π/ Tt +φ) 以经平衡位置的时刻为t = 0 根据题意t = o 时 v = v 0 = 100 c m s -1 且 v >0 ∴v m = v 0 φ= 0 小球的动能 E k0 = 1 / 2 m v 02 过1 / 3秒后,速度为 v = v 0 c o s ( 2π/T. 1/ 3) = - V 0 / 2 x 习题13-3图

大学物理 第十三章 静电场中的导体和电介质习题解答

第十三章 静电场中的导体和电介质习题解答(仅作参考) 13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为 0001 11444o q q Q q U r a b πεπεπε-+=++ 13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少? [解答]球形电容器的电容为 120 01221 1 441/1/R R C R R R R πεπε==--. 对于半球来说,由于相对面积减少了一半,所以电容也减少一半: 012 121 2R R C R R πε= -. 当电容器中充满介质时,电容为: 012 221 2r R R C R R πεε= -. 由于内球是一极,外球是一极,所以两个电容器并联: 012 1221 2(1)r R R C C C R R πεε+=+= -. 13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容. [解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为 122112********* d d d d C C C S S S εεεεεε+=+=+=, 总电容为 122112 S C d d εεεε= +. 图13.3

大学物理课后习题及答案 第13章

第13章 光学 一 选择题 * 13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里, 其顶角为( ) (A)48.8o (B)41.2o (C)97.6o (D)82.4o 解:选(C)。利用折射定律,当入射角为1=90i o 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i o ,因此倒立圆锥顶角为22=97.6i o 。 * 13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼 镜是( ) (A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜 解:选(C)。利用公式 111 's s f +=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。 13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大 (B) 中央明纹向上移动,且条纹间距不变 (C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变 解:选(B)。光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当 习题13-3图

向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距d D x λ = ?,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。 13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ] (A) 3个 (B) 4个 (C) 5个 (D) 6个 解:选(B)。暗纹半波带数目为2k ,第二级2k =,代入数据,得半波带数目为4。 13-5 波长550nm λ=的单色光垂直入射于光栅常数41.010cm d a b -=+=?的光栅上,可能观察到的光谱线的最大级次为[ ] (A) 4 (B) 3 (C) 2 (D) 1 解:选(D)。由光栅方程sin d k θλ=±,当1sin =θ时,得d k λ =,代入数据, 得 1.8k =,k 取整数,最大级次为1。 13-6 三个偏振片1P 、2P 与3P 堆叠在一起,1P 与3P 的偏振化方向相互垂直,2 P 与1P 的偏振化方向间的夹角为30?,强度为0I 的自然光入射于偏振片1P ,并依次透过偏振片1P 、2P 与3P ,则通过三个偏振片后的光强为[ ] (A) 316I (B) (C) 0332 I (D) 0 解:选(C)。设自然光光强为0I ,自然光通过偏振片1P ,光强减半,变为0 2 I ;由马吕斯定律α20cos I I =,通过偏振片2P ,光强变为2003cos 3028 I I ?=,通过偏振片3P ,光强变为20033cos 60832 I I ?=。

大学物理习题答案第十三章

[习题解答] 13-2光源S1 和S2 在真空中发出的光都是波长为l的单色光,现将它们分别放于折射率为n1 和n2的介质中,如图13-5所示。界面上一点P到两光源的距离分别为r1 和r2。 (1)两束光的波长各为多大? (2)两束光到达点P的相位变化各为多大? (3)假如S1 和S2 为相干光源,并且初相位相同,求点P 图13-5 干涉加强和干涉减弱的条件。 解 (1)已知光在真空中的波长为λ,那么它在折射率为n的介质中的波长λ'可以表示为 , 所以,在折射率为n1和n2的介质中的波长可分别表示为 和. (2)光传播r的距离,所引起的相位的变化为 , 所以,第一束光到达点P相位的变化为 , 第二束光到达点P相位的变化为 .

(3)由于两光源的初相位相同,则两光相遇时的相位差是由光程差决定的,所以,点P干涉加强的条件是 , ; 点P干涉减弱的条件是 , . 13-3若用两根细灯丝代替杨氏实验中的两个狭缝,能否观察到干涉条纹?为什么? 解观察不到干涉条纹,因为它们不是相干光源。 13-4在杨氏干涉实验中,双缝的间距为0.30 mm,以单色光照射狭缝光源,在离开双缝1.2 m 处的光屏上,从中央向两侧数两个第5条暗条纹之间的间隔为22.8 mm。求所用单色光的波长。 解在双缝干涉实验中,暗条纹满足 , 第5条暗条纹的级次为4,即,所以 , 其中。两个第5条暗条纹的间距为 , 等于22.8 mm,将此值代入上式,可解出波长为 . 13-5在杨氏干涉实验中,双缝的间距为0.30 mm,以波长为6.0 102nm的单色光照射狭缝,求在离双缝50 cm远的光屏上,从中央向一侧数第2条与第5条暗条纹之间的距离。

大学物理13章光的干涉习题答案

第13章习题答案 13—7 在双缝干涉实验中,两缝的间距为mm 5.0,照亮狭缝S 的光源是汞弧灯加上绿色滤光片。在m 5.2远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为mm 2。试计算入射光的波长。 解:已知条纹间距32210-==⨯x mm m ∆,缝宽405510-==⨯d .mm m ,缝离屏的距离25=D .m =D x d ∆λ ∴ 43751021041025 ---⨯==⨯⨯=⨯d x m D .λ∆ 13—8用很薄的云母片(58.1=n )覆盖在双缝实验中的一条缝上,这时屏幕上的零级明条纹移到原来的第七级明条纹的位置上,如果入射光波长为nm 550,试问此云母片的厚度为多少 解: 设云母片厚度为e ,则由云母片引起的光程差为 e n e ne )1(-=-=δ 按题意 λδ7= ∴ 610 106.61 58.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 13—9 用包含两种波长成分的复色光做双缝实验,其中一种波长nm 5501=λ。已知双缝间距为mm 6.0,屏和缝的距离为m 2.1,求屏上1λ的第三级明条纹中心位置。已知在屏上1λ的第六级明条纹和未知波长光的第五级明条纹重合,求未知光的波长。 解:屏上1λ的三级明纹中心的位置 m 103.31055010 6.02.133933---⨯=⨯⨯⨯⨯==λd D k x 依题意屏上1λ的第六级明条纹和波长为λ的第五级明条纹重合于x 处 则有 λλd D k d D k x 516== 即 λλ516k k = m 106.6105505 679156--⨯=⨯⨯==λλk k 13—10平板玻璃(5.1=n )表面上的一层水(33.1=n )薄膜被垂直入射的光束照射,光束中的光波波长可变。当波长连续变化时,反射强度从nm 500=λ时的最小变到nm 750=λ时的同级最大,求膜的厚度。 习题13-10图

大学物理下(毛峰版)课后习题答案ch13+机械波+习题及答案

第13章 机械波 习题及答案 1、振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同? 解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =. (2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律. 当谐波方程)(cos u x t A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一. (3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图. 2、下列几种说法中,有哪些是正确的? (1) 波源的震动频率与波动的频率是不同的。 (2) 波源的振动速度与波速相同。 (3) 波源的震动周期与波动的周期相同。 (4) 在波传播方向上任一质点的振动相位比波源相位滞后。 答:(1)不正确,对于简谐振动,波源的振动频率与波动频率相同。 (2)不正确,波源的振动速度与波速是两个不同概念,两者不相等。 (3)正确。 (4)正确。 3、有人在写沿x 轴正方向传播的波动方程时,认为波从原点O 传播到坐标为x 的P 店,P 点的振动要比O 点的晚一段时间 ,因而点O 在t 时刻的相位在 时刻才能传到P 点,因而平面简 谐波的振动方程为

大学物理13章习题详细答案

习题13 13-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。(2)板B 接地时,两板间的电势差。 [解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为 因而板间电场强度为 S Q E 02ε= 电势差为 S Qd Ed U 0AB 2ε= = (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 S Q E 0ε= 电势差为 S Qd Ed U 0AB ε= = B A -Q/2Q/2Q/2Q/2A B -Q Q

13-4 两块靠近的平行金属板间原为真空。使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求 (1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大? 13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。圆柱面B 上带电荷,A 和C 都接地。求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。 [解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-= r E 02 II 2πελ= A B 0101I BA ln 2d 2d A B A B R R r r U R R R R πελπελ=-==⎰ ⎰r E II I

大学物理Ⅰ第13章光的干涉与衍射习题答案

第13章 光的干涉与衍射训练题(含答案) 一、选择题 1. 如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3。若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是 [ ] (A ) e n 22 (B) 2 22λ -e n (C) λ-e n 22 (D) 2 222n e n λ - 2.真空波长为λ的单色光,在折射率为n 的均匀透明介质中从A 点沿某一路径传播到B 点,路径的长度为l 。若l 等于下列各选项给出的值,A 、B 两点光振动位相差记为ϕ∆,则 [ ] (A) 3, 32 l λϕπ=∆= (B) πϕλ n n l 3,23=∆= (C) πϕλ3,23=∆=n l (D) πϕλn n l 3,23=∆= 3. 在双缝干涉实验中,两缝隙间距离为d ,双缝与屏幕之间的距离为)(d D D >>。波长为λ的平行单色光垂直照射到双缝上。屏幕上干涉条纹中相邻暗纹之间的距离是 [ ] (A) d D λ2 (B) D d λ (C) λdD (D) d D λ 4. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动。 (B) 间隔变小,向上移动。 (C) 间隔不变,向下移动。 (D) 间隔不变,向上移动。 5. 把一平凸透镜放在平玻璃上,构成牛顿环装置。当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环 [ ] (A) 向中心收缩,条纹间隔变小。 S λ3

相关主题
文本预览
相关文档 最新文档