2020年洛阳市中考数学一模试卷附答案
- 格式:doc
- 大小:730.50 KB
- 文档页数:19
河南省洛阳市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在Rt ABC ∆中,90C =o ∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .432.如图,等边△ABC 的边长为4,点D ,E 分别是BC ,AC 的中点,动点M 从点A 向点B 匀速运动,同时动点N 沿B ﹣D ﹣E 匀速运动,点M ,N 同时出发且运动速度相同,点M 到点B 时两点同时停止运动,设点M 走过的路程为x ,△AMN 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .3.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C.D.4.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣bPA=,5.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B,如果60∠=o,8APB那么弦AB的长是()A.4B.43C.8D.836.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°8.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°9.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1. 其中合理的是( ) A .①B .②C .①②D .①③10.1﹣2的相反数是( ) A .1﹣2B .2﹣1C .2D .﹣111.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .4212.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( ) A .12B .14C .16D .116二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在Rt △ABC 内有边长分别为2,x ,3的三个正方形如图摆放,则中间的正方形的边长x 的值为_____.14.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分. 15.化简))201720182121的结果为_____.16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.17.分解因式:2x2﹣8=_____________18.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)20.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.21.(6分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.22.(8分)先化简,再求值:(x﹣2﹣5 2x+)÷2(3)2xx++,其中x=3.23.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)24.(10分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.25.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.26.(12分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.27.(12分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为3BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴2222=108=6AB AC--,∴sinA=63105 BCAB==.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.2.A【解析】【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可.【详解】∵BD=2,∠B=60°,∴点D到AB3当0≤x≤2时,y=2133•224x x x ⨯=; 当2≤x≤4时,y=13 •32x x =. 根据函数解析式,A 符合条件. 故选A . 【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式. 3.A 【解析】 【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AB 的交点即为所求作的点. 【详解】如图,点E 即为所求作的点.故选:A .【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D 作一角等于∠B 或∠C ,并熟练掌握做一个角等于已知角的作法式解题的关键. 4.D 【解析】试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误; B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确. 故选D .考点:实数与数轴 5.C 【解析】 【分析】先利用切线长定理得到PA PB =,再利用60APB ∠=o 可判断APB V 为等边三角形,然后根据等边三角形的性质求解. 【详解】解:PA Q ,PB 为O e 的切线,PA PB ∴=,60APB ∠=o Q ,APB ∴V 为等边三角形,8AB PA ∴==.故选C . 【点睛】本题考查切线长定理,掌握切线长定理是解题的关键. 6.B 【解析】试题分析:当x 1<x 2<0时,y 1>y 2,可判定k >0,所以﹣k <0,即可判定一次函数y=kx ﹣k 的图象经过第一、三、四象限,所以不经过第二象限,故答案选B .考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系. 7.B 【解析】 【分析】由图形可知AC =AC ,结合全等三角形的判定方法逐项判断即可. 【详解】解:在△ABC 和△ADC 中 ∵AB =AD ,AC =AC ,∴当CB =CD 时,满足SSS ,可证明△ABC ≌△ACD ,故A 可以;当∠BCA =∠DCA 时,满足SSA ,不能证明△ABC ≌△ACD ,故B 不可以; 当∠BAC =∠DAC 时,满足SAS ,可证明△ABC ≌△ACD ,故C 可以; 当∠B =∠D =90°时,满足HL ,可证明△ABC ≌△ACD ,故D 可以; 故选:B. 【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键. 8.D【解析】解:∵EC=EA .∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB ∥CD ,∴∠BAF=∠AED=60°.故选D .点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.9.B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.10.B【解析】【分析】根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,11.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.11.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.12.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.14.1【解析】【详解】∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,∴第7个数是1分,∴中位数为1分,故答案为1.15+1【解析】【分析】利用积的乘方得到原式=[﹣1)+1)]2017•),然后利用平方差公式计算.【详解】原式=[1)+1)]2017•+1)=(2﹣1)2017•+1.+1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.1.【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O 为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.17.2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.1【解析】试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米,则根据题意推得第一次在同一边上时可以为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)9﹣3π【解析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD 得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD 为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.20.(1)6π;(2)GB=DF,理由详见解析.【解析】【分析】(1)根据弧长公式l=计算即可;(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.【详解】解:(1)∵AD=2,∠DAE=90°,∴弧DE的长l1==π,同理弧EF的长l2==2π,弧FG的长l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.【点睛】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.21.(1)见解析;(2)4924;(1)DE的长分别为92或1.【解析】【分析】(1)由比例中项知AM AEAE AN=,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知DE DCDC AD=,据此求得AE=8﹣92=72,由(1)得∠AEM=∠DCE,据此知AM DEAE DC=,求得AM=218,由求得AM AEAE AN=MN=49 24;(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【详解】解:(1)∵AE是AM和AN的比例中项∴AM AE AE AN=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴DE DC DC AD=,∵DC=AB=6,AD=8,∴DE=92,∴AE=8﹣92=72,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴AM DE AE DC=,∴AM=218,∵AM AE AE AN=,∴AN=143,∴MN=49 24;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=92;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=68 EH DCAH AD==,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为92或1.【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.22.32- 【解析】 【分析】 根据分式的运算法则即可求出答案.【详解】原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+. 当3x =时,原式3333-=+ 32=- 【点睛】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.23.塔杆CH 的高为42米【解析】【分析】作BE ⊥DH ,知GH=BE 、BG=EH=4,设AH=x ,则BE=GH=23+x ,由CH=AHtan ∠CAH=tan55°•x 知CE=CH-EH=tan55°•x -4,根据BE=DE 可得关于x 的方程,解之可得.【详解】解:如图,作BE ⊥DH 于点E ,则GH=BE 、BG=EH=4,设AH=x ,则BE=GH=GA+AH=23+x ,在Rt △ACH 中,CH=AHtan ∠CAH=tan55°•x ,∴CE=CH ﹣EH=tan55°•x ﹣4,∵∠DBE=45°,∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH的高为42米.【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.24.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.25.(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48% 考点:频数分布直方图26.(1)14;(2)112【解析】【分析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐A B C DA (A,B)(A,C) (A,D)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果有1种:(A ,B ).∴P (姐姐抽到A 佩奇,弟弟抽到B 乔治)112=【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.27.旗杆AB 的高度为6.4米.【解析】分析:(1)根据坡度i 与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD ,根据正切的概念求出AG 、BG ,计算即可.本题解析:(1)∵斜坡BC 的坡度tan ∠BCD=BD DC = ∴∠BCD=30°;(2)在Rt △BCD 中,CD=BC×cos ∠×2=9, 则DF=DC+CF=10(米),∵四边形GDFE 为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt △BEG 中,BG=GE×tan ∠BEG=10×0.36=3.6(米), 则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB 的高度为6.4米。
河南省洛阳市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若|x|+x=0,则x一定是()A . 负数B . 0C . 非正数D . 非负数2. (2分)(2017·江西) 在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A . 0.13×105B . 1.3×104C . 1.3×105D . 13×1033. (2分) (2020八上·长春月考) 下列运算正确的是()A .B .C .D .4. (2分)(2020·卧龙模拟) 一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A . 5B . 6C . 7D . 85. (2分)下列说法中错误的是()A . 三角形的中线、角平分线、高线都是线段B . 任意三角形的内角和都是180°C . 三角形的一个外角大于任何一个内角D . 三角形的三条高至少有一条高在三角形的内部6. (2分) (2016九上·南岗期中) 如图,AB为⊙O的直径,PD是⊙O的切线,点C为切点,PD与AB的延长线相交于点D,连接AC,若∠D=2∠CAD,CD=2,则BD的长为()A . 2 ﹣2B . 2﹣C . 2 ﹣1D . ﹣17. (2分)(2016·河南模拟) 某学校九年级8班10名学生积极奉献爱心,自发组织捐款,支援贫困山区儿童,若他们捐款的数额分别是(单位:元):10,15,20,10,5,15,10,5,10,5,则这组捐款的众数和中位数分别是()A . 5元、10元B . 15元、5元C . 10元、15元D . 10元、10元8. (2分)若关于的一元二次方程的两个实数根分别是,且满足=,则的值为()A . -1或B . -1C .D . 不存在9. (2分) (2017八下·庆云期末) 下列命题中是真命题的由()个.①顺次连接任意四边形各边中点得到的四边形是平行四边形;②三内角之比为3:4:5的三角形是直角三角形;③一组对边平行,另一组对边相等的四边形是平行四边形;④对角线互相垂直平分的四边形是正方形;⑤三边a、b、c满足关系式a2﹣b2=c2的三角形是直角三角形.A . 0B . 1C . 2D . 310. (2分) (2019九上·马山月考) 某蔬菜种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A .B .C .D .11. (2分) (2019七下·呼和浩特期末) 关于x的不等式组只有4个整数解,则a的取值范围是()A .B .C .D .12. (2分) (2017七下·兴化期末) 如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共8分)13. (2分) (2017七下·杭州月考) 分解因式:(1)=________;(2) 18x3+24x2+8x=________.14. (1分) (2016八上·东港期中) 若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.15. (1分)对分式方程去分母时,应在方程两边都乘以________16. (1分)(2020·安阳模拟) 如图,正方形ABCD的顶点A、B在圆O上,若,圆O的半径为2cm,则阴影部分的面积是________ .(结果保留根号和)17. (2分)(2020·金华模拟) 如图,点A(-1,0),点P是射线AO上一动点(不与O点重合),过点P作直线y=x的平行线交y轴于C,过点P作x轴的垂线交直线y=x于B,连结AB,AC,BC。
河南省洛阳市2020年数学中考一模试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·淮安) ﹣2的相反数是()A . 2B . ﹣2C .D . ﹣2. (2分) (2018八上·临安期末) 不等式 1-x>0 的解在数轴上表示正确的是()A .B .C .D .3. (2分) (2019七下·岐山期末) 下面四个图形中,是轴对称图形的是()A .B .C .D .4. (2分)数轴上点到原点的距离是,则点表示的数是()A . 5B . -5C . 5或-5D . 不能确定5. (2分) (2019八上·绥化月考) 下列根式化简后,被开方数与的被开方数相同的是()A .B .C .D .6. (2分)(2017·孝义模拟) 如图所示是某长方体形状包装盒的表面展开图,根据图中的数据,该包装盒的容积是(包装盒材料的厚度忽略不计)()A . 40×70×80B . 80×80×40C . 40×40×70D . 70×70×807. (2分) (2017八下·蒙城期末) 一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,这两个方程的所有实数根之和为()A . 4B . ﹣4C . ﹣6D . 18. (2分)有四条线段,它们的长分别为1cm, 2cm, 3cm, 4cm, 从中选三条构成三角形,其中正确的选法有()A . 1种B . 2种C . 3种D . 4种9. (2分)(2019·新田模拟) 如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的 ,得到△COD,则CD的长度是()A . 1B . 2C . 2D .10. (2分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC= ,则△ABC移动的距离是()A .B .C .D . ﹣11. (2分) (2019九上·武威期末) 下列关于抛物线y=(x+2)2+6的说法,正确的是()A . 抛物线开口向下B . 抛物线的顶点坐标为(2,6)C . 抛物线的对称轴是直线x=6D . 抛物线经过点(0,10)12. (2分)(2017·曹县模拟) 如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为()A .B .C . πD . 2π二、填空题 (共6题;共6分)13. (1分)(2020·马龙模拟) 如图,AB∥CD,FE⊥DB,垂足为点E,∠2=40°,则∠1的度数是________.14. (1分)(2020·天津) 计算的结果等于________.15. (1分)分解因式:x3y﹣2x2y+xy= ________.16. (1分) (2017八下·顺义期末) 小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是:________理由是:________17. (1分) (2020八下·南召期末) 如图,点是反比例函数的图象上任意一点,轴交反比例函数的图象于点,以为边作平行四边形,其中、在轴上,则为________.18. (1分) (2019八下·水城期末) 如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为________cm.三、解答题 (共8题;共75分)19. (5分) (2019七下·北京期中) 计算:20. (5分) (2019八上·德州开学考) 解方程组:21. (10分)(2017·海珠模拟) 中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了解该校九年级学生对观看“中国诗词大会”节目的喜爱程度,对该校九年级部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为:A 级(非常喜欢),B 级(较喜欢),C 级(一般),D 级(不喜欢).请结合两幅统计图,回答下列问题:(1)本次抽样调查的样本容量是________,表示“D级(不喜欢)”的扇形的圆心角为________°;(2)若该校九年级有200名学生.请你估计该年级观看“中国诗词大会”节目B 级(较喜欢)的学生人数;(3)若从本次调查中的A级(非常喜欢)的5名学生中,选出2名去参加广州市中学生诗词大会比赛,已知A级学生中男生有3名,请用“列表”或“画树状图”的方法求出所选出的2名学生中至少有1名女生的概率.22. (10分)(2019·北京模拟) 如图,在△ABC中,AB=AC,点D是BC边的中点,连接AD,分别过点A,C 作AE∥BC,CE∥AD交于点E,连接DE,交AC于点O.(1)求证:四边形ADCE是矩形;(2)若AB=10,sin∠COE=,求CE的长.23. (5分)(2019·梧州模拟) 2018年底我市新湖一路贯通工程圆满竣工,若要在宽为40米的道路AD 两边安装路灯,灯柱AB高10米,路灯的灯臂BC与灯柱AB成130°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路的中心线时照明效果最好,此时路灯的灯臂BC应为多少米?(结果精确到0.01)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).24. (15分)(2020·岳阳模拟) 有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?25. (10分) (2019九上·无锡月考) 如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.(1)求证:四边形ABCD是矩形;(2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.26. (15分)(2017·埇桥模拟) 已知抛物线y=x2+bx+c,点An(an ,﹣4)为抛物线的顶点,且a1=1,an+1=an+1(n>0).以A1为顶点的抛物线记为C1 ,以A2为顶点的抛物线记为C2 ,…以An为顶点的抛物线记为Cn .(1)求抛物线C1的解析式;(2)如图1,C1与x轴交于B、C两点(点B在点C的右侧),与y轴交于点D,抛物线上是否存在一点P,使△POB与△POD全等?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,C2017与x轴交于B、C两点(点B在点C的右侧),直线x=2016与C2017、直线A2017B、x轴分别交于点D、E、F,试判断以线段A2017B为直径的圆与直线x=2016的位置关系,并说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
洛阳市2020版数学中考一模试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·武汉模拟) 某种食品保存的温度是-2±2℃,以下几个温度中,适合储存这种食品的是()A . 1℃B . -8℃C . 4℃D . -1℃2. (2分) (2019七上·南宁月考) 四位同学画的数轴如下,正确的是()A .B .C .D .3. (2分)下列计算正确的是()A . 4a﹣3a=1B . a6÷a3=a2C . 2a2•a=2a3D . 3a+2b=5ab4. (2分) (2019七下·南通月考) 若点A(a+1,a-2)在第二、四象限的角平分线上,则点B(-a,1-a)在()A . 第一象限B . 第二象限C . 第三象跟D . 第四象限5. (2分)(2017·连云港) 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A . 方差B . 平均数C . 众数D . 中位数6. (2分)如图,在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC的长为()A . 10B . 8C . 6D . 57. (2分)下列结论:①一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角度数之比为5:3:1;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°;④一个五边形最多有3个内角是直角;⑤两条直线被第三条直线所截,同位角的角平分线互相平行.其中正确结论有()A . 2个B . 3个C . 4个D . 5个8. (2分)(2018·深圳模拟) 将抛物线向左平移3个单位得到的抛物线的解析式是()A .B .C .D .9. (2分)(2016·鄂州) 如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A .B .C .D .10. (2分) (2019八上·句容期末) 小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用时 .小东骑自行车以的速度直接回家,两人离家的路程与各自离开出发地的时间之间的函数图象如图所示,下列说法正确的有几个.()①家与图书馆之间的路程为;②小玲步行的速度为;③两人出发以后8分钟相遇;④两人出发以后,、时相距 .A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分) (2017九上·东台月考) 若实数a、b满足,则 ________.12. (1分)如图所示,△ABC三个顶点的坐标分别是A(________,________)、B(________,________)、C (________,________).13. (1分) (2018八下·越秀期中) 如图,已知菱形ABCD中,∠BAD=120°,AD=8,则这个菱形的面积为________。
洛阳市2020版中考数学一模考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·淮滨模拟) 计算-10+5的结果是()A . 5B . -5C . 15D . -152. (2分) (2019七上·宝安期末) 下列调查方式中正确的是()A . 为了了解外地游客对我市景点“世界之窗”的满意程度,采用普查的方式B . 为了了解兵工厂生产的一批炮弹的爆炸半径,采用抽样调查的方式C . 为了了解全班学生的身高情况,采用抽样调查的方式D . 为了了解宝安电视台某栏目的收视情况,采用普查的方式3. (2分)(2019·贺州) 如图,已知直线a∥b,∠1=60°,则∠2的度数是()A . 45°B . 55°C . 60°D . 120°4. (2分) (2020七上·双台子期末) 经统计,2019年国庆七天全国共接待游客782000000人,那么782000000用科学记数法表示()A .B .C .D .5. (2分)(2020·江都模拟) 图是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是()A .B .C .D .6. (2分) (2017八上·南宁期末) 若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A . a=5,b=﹣6B . a=5,b=6C . a=1,b=6D . a=1,b=﹣67. (2分)三角形三个内角之比为1:2:3,则该三角形三个外角之比为()A . 5:4:3B . 3:2:1C . 1:2:3D . 2:3:48. (2分)(2019·衡水模拟) 先化简,再求值:,小明的解题步骤如下:原式= 第一步= 第二步= 第三步= 第四步请你判断一下小明的解题过程从第几步开始出错()A . 第一步B . 第二步C . 第三步D . 第四步9. (2分)(2016·历城模拟) 如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A .B .C . 3D . 410. (2分)(2019·白山模拟) 若一个扇形的弧长l=,面积S=2π,则这个扇形的圆心角为()A . 50°B . 60°C . 70°D . 80°二、填空题 (共5题;共5分)11. (1分)(2020·鞍山模拟) 已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是________.12. (1分)如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有________对;若∠BAC=50°,则∠EDF=________13. (1分)(2013·崇左) 如图是三种化合物的结构式及分子式.请按其规律,写出后面第2013种化合物的分子式________.14. (1分) (2019七上·东莞期末) 当代数式2x﹣2与3+x的值相等时,x=________.15. (1分)(2017·滨海模拟) 如图,设△ABC和△CDE都是等边三角形,且∠EBD=62°,则∠AEB的度数是________.三、解答题 (共8题;共86分)16. (10分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围(2)化简:|m﹣3|﹣|m+2|(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.17. (5分)如图所示,已知平行四边形ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,求证:OE=OF.18. (10分) (2018八上·大田期中) 根据题意,解答问题:(1)如图,已知直线与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图,类比的解题过程,请你通过构造直角三角形的方法,求出点与点之间的距离.19. (20分) (2016九上·吴中期末) 2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ________ ;扇形统计图中的圆心角α等于 ________ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20. (10分) (2019七下·香洲期末) 有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.21. (5分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,≈1.732,≈1.414)22. (11分) (2018九上·晋江期中) 如图△ABC中,∠A=90°,∠C=30°,BC=12cm,把△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,DF交BC于点H.(1) PH=________cm.(2)△ABC与△DEF重叠部分的面积为________cm2 .23. (15分)(2017·瑞安模拟) 如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.点P是线段BC上的动点(点P不与B,C重合),连接并延长AP交抛物线于另一点Q,设点Q的横坐标为x.(1)①写出点A,B,C的坐标:A(________),B(________),C(________);②求证:△ABC是直角三角形;(2)记△BCQ的面积为S,求S关于x的函数表达式;(3)在点P的运动过程中,是否存在最大值?若存在,求出的最大值及点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共86分)16-1、16-2、16-3、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、23-3、第11 页共11 页。
河南省洛阳市2020版中考数学一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2019七上·利辛月考) -3的倒数是()A .B .C . -3D . 32. (2分) (2017七上·西城期中) 据统计,2014年国庆黄金周期间,北京全市公园风景区共接待游客约13550000人次,将13550000用科学记数法表示应为()A . 1355×104B . 1.355×106C . 0.1355×108D . 1.355×1073. (2分)长度为1㎝、2㎝、3㎝、4㎝、5㎝的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有()A . 2个B . 3个C . 4个D . 5个4. (2分)在数轴上表示不等式的解集,下列表示正确的是()A .B .C .D .5. (2分) (2019九上·博白期中) 抛物线的顶点坐标是()A . (-2.-3)B . (2,3)C . (-2,3)D . (-3,2)6. (2分)(2011·希望杯竞赛) 若一个三角形的三条边的长是a,b,c,并且满足恒等式,则这个三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等边三角形7. (2分) (2020九上·西安月考) 在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,卡片除数字外其余都相同,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是()A .B .C .D .8. (2分)王明同学随机抽查某市10个小区所得到的绿化率情况,结果如下表:小区绿化率(%)20253032小区个数2431则关于这10个小区的绿化率情况,下列说法错误的是()A . 方差是13%B . 众数是25%C . 中位数是25%D . 平均数是26.2%9. (2分)如图,Rt△ABC绕O点旋转90°得Rt△BDE,其中∠ACB=∠E= 90°,AC=3,DE=5,则OC的长为()A .B .C .D .二、填空题 (共8题;共10分)10. (1分) (2017七上·吉林期末) 如果x-2y=-3,那么5+x-2y=________.11. (2分)为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如表,则这15名同学每天睡眠时间的众数是________ 小时,中位数是________ 小时.每天睡眠时间(单位:小时)77.588.59人数2453112. (1分)(2018八上·港南期中) 如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=________.13. (1分) (2018九上·宁城期末) 小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为________.14. (1分)(2019·乐清模拟) 如图,矩形OABC的边OA,OC分别在x轴,y轴上,OC=7,点B在第一象限,点D在边AB上,点E在边BC上,且∠BDE=30°,将△BDE沿DE折叠得到△B′DE.若AD=1,反比例函数y=(k≠0)的图象恰好经过点B′,D,则k的值为________.15. (1分)如图,小明在楼AB顶部的点A处测得楼前一棵树CD的顶端C的俯角为37°,已知楼AB高为18m,楼与树的水平距离BD为8.5m,则树CD的高约为________ m(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16. (1分) (2017八下·蒙阴期中) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为________.17. (2分)(2016·江都模拟) 如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(﹣1,﹣1),则两个正方形的位似中心的坐标是________,________.三、解答题 (共8题;共92分)18. (15分) (2019九上·成都月考)(1)计算:(2)解方程:(3)用公式法解方程:19. (10分)计算:(1)(﹣2)0+(﹣1)2010﹣()﹣1(2)先化简,再求值:()÷ ,其中m=﹣3,n=5.20. (5分) (2020八下·中卫月考) 如图,∠A=∠D=90°,AC=BD,求证:OB=OC.21. (15分) (2020七下·乌鲁木齐期中) 九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?22. (5分)(2018·大连) 甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.23. (15分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C 的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.24. (15分)(2017·揭阳模拟) 如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O 于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC= ,求BN的长.25. (12分)(2017·全椒模拟) 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是________,当α=90°时,的值是________.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP= BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共8题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共92分)18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。
河南省洛阳市2020版数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·黄岩模拟) ﹣|﹣3|的倒数是()A . ﹣3B . ﹣C .D . 32. (2分) (2019七下·瑶海期末) “厉害了,华为!”2019年1月7日,华为宣布推出业界最高性能ARM﹣based处理器一梨鹏920.据了解,该处理器采用7纳米制造工艺.已知1纳米=0.000 000 001米,则7纳米用科学记数法表示为()A . 7×10﹣9米B . 7×10﹣8米C . 7×108米D . 0.7×10﹣8米3. (2分) (2019七下·乌兰浩特期末) 如图,直线l1//l2 ,∠1=55°,∠2=65°,则∠3为()A . 60°B . 65°C . 55°D . 50°4. (2分)(2020·中牟模拟) 下列运算正确的是()A .B .C .D .5. (2分)(2017·陕西模拟) 如图,是某几何体的俯视图,则该几何体可能是()A .B .C .D .6. (2分)(2019·武昌模拟) 方程x2﹣2x+3=0的根的情况是()A . 两实根的和为﹣2B . 两实根的积为3C . 有两个不相等的正实数根D . 没有实数根7. (2分) (2019九上·梁平期末) 某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A . 240B . 120C . 80D . 408. (2分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A . 5B . 6C . 7D . 89. (2分) (2019九上·吴兴期中) 对于函数y=(x-2)2+5,下列结论错误的是()A . 图象顶点是(2,5)B . 图象开口向上C . 图象关于直线x=2对称D . 函数最大值为510. (2分)(2017·建昌模拟) 正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 ,…按如图所示放置,点A1 , A2 ,A3 ,和点C1 , C2 , C3 ,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1 , B2 , B3 , B4的坐标分别为(1,1)(3,2),(7,4),(15,8),则Bn的坐标是()A . (2n﹣1,2n﹣1)B . (2n , 2n﹣1)C . (2n﹣1 , 2n)D . (2n﹣1﹣1,2n﹣1)二、填空题 (共5题;共7分)11. (1分) (2019七下·蔡甸月考) 表示一个整数,那么表示n的最小正整数是________.12. (1分) (2019七下·肥东期末) 如果关于x的不等式2x-3≤2a+3只有4个正整数解,那么a的取值范围是________.13. (1分)(2016·宝安模拟) 现有甲、乙、丙三位好朋友随机站成一排照合影,则甲站在中间的概率为________.14. (2分) (2019八下·北京房山期末) 如图,在平面直角坐标系中,点, .以原点为旋转中心,将顺时针旋转,再沿轴向下平移一个单位,得到,其中点与点对应,点与点对应.则点的坐标为________,点的坐标为________.15. (2分)(2020·卧龙模拟) 如图,在边长为3的等边△ABC中,点D在AC上,且CD=1,点E在AB上(不与点A、B重合),连接DE,把△ADE沿DE折叠,当点A的对应点F落在等边△ABC的边上时,AE的长为________.三、解答题 (共8题;共70分)16. (5分)(2020·玉泉模拟)(1)计算.(2)先化简,再求,,其中.17. (15分)(2012·扬州) 扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有________人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是________度.(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.18. (10分)(2020·江岸模拟) 如图,⊙ 过的顶点A、B,交于D,连接、、,.(1)证明:为⊙ 的切线;(2)平分交于,且分别交、⊙ 于M、N.已知,,求的值.19. (5分)(2019·海南模拟) 如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C、楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度.(sin30°=0.50,cos30°≈0.87,tan30°≈0.58)20. (10分)(2017·河北模拟) 星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.21. (12分) (2019九上·蜀山月考) 已知二次函数的解析式是y=x2﹣2x﹣3.(1)与y轴的交点坐标是________,顶点坐标是________.(2)在坐标系中利用描点法画出此抛物线;x……y……(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是________.22. (11分)(2017·盘锦) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC 上的动点(不与点B,点C重合),连接OC,OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长23. (2分) (2018九上·巴南月考) 已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共70分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80°B.80°或50°C.20°D.80°或20°解析:D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.2.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°解析:C【解析】【详解】解:A .∵∠1与∠2是直线a ,b 被c 所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B .∵∠2与∠3是直线a ,b 被c 所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C .∵∠3与∠5既不是直线a ,b 被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D .∵∠3与∠4是直线a ,b 被c 所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C .【点睛】本题考查平行线的判定,难度不大.3.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定解析:B【解析】【分析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD ,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B .【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.4.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查解析:D【解析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.5.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°解析:B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.6.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29解析:D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.7.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A.45B.54C.43D.34解析:D【解析】【分析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA=BCAC=34,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.8.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为»AB上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.45解析:D【解析】【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣36。
2020年河南省洛阳市孟津县中考数学一模试卷一、选择题1.﹣的相反数是()A.3B.﹣3C.D.﹣2.如图所示的图形中,是中心对称图形的是()A.B.C.D.3.到3月份金融机构累计发放优惠利率贷款共1114亿元,对支持企业复工复产发挥了重要作用.请将数据1114亿用科学记数法表示为()A.111.4×109B.1.114×1010C.1.114×1011D.1.1×10124.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣b2D.(﹣a)3﹣a3=﹣2a35.如图所示的几何体的左视图是()A.B.C.D.6.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°7.一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6B.3.8C.3.6或3.8D.4.28.若关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1B.k>1且k≠2C.k≤1D.k≥1且k≠2 9.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°10.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.二、填空题(每题3分,共15分)11.计算:=.12.不等式组的解集是.13.一个不透明的袋子里装有的3个红球和1个绿球,这些球除颜色外都完全相同:随机从中摸出两球,则两球都是红球的概率是.14.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y 轴的正半轴上的点A'处,若AO=OB=2,则图中阴影部分面积为.15.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为.三、解答题(共8个小题,满分75分)16.先化简,再求值:÷(x+2﹣),其中x=3tan30°+3.17.某中学为了了解九年级学生“长跑”成绩的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑成绩依次分为A.B.C.D个等级进行统计,制作出如下两个不完整的统计图.根据所给信息,解答下列问题:(1)在扇形统计图中,C对应的扇形圆心角是度;(2)补全条形统计图;(3)所抽取学生的”长跑”测试成绩的中位数会落在等级;(4)该校九年级有477名学生,请估计“长跑”测试成绩达到A级的学生约有多少人?18.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上∠ACB=90°,点C坐标为(﹣1,0),点A的坐标为(0,2),一次函数y=kx+b的图象经过点B,C,反比例函数y=的图象也经过点B.(1)求反比例函数和一次函数的关系式;(2)观察图象直接写出图象在第二象限时,kx+b﹣<0的解集.19.如图,△ABC内接于⊙O,且AB为⊙O的直径OD⊥AB,与AC交于点E,与过点C 的⊙O切线交于点D.(1)若AC=6,BC=3,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.20.某数学课外兴趣小组为了测量池塘对岸山丘DE上的塔的高度,在山脚下的广场A处测得建筑物点D(即山顶)的仰角为20°,沿水平方向前进245米到达B点,测得建筑物顶部C点的仰角为45°,已知山丘DE高182米,求塔CD的高度.(结果精确到0.1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)21.坚持人与自然和谐共生、必须树立绿水青山就是金山银山的理念,清源村在践行活动中,计划购买甲、乙两种树木用于绿化山坡,若购买7棵甲种树和4棵乙种树需510元;若购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按清源村划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量,请用函数的有关知识设计出最省钱的购买方案,并说明理由.22.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.23.如图,直线y=﹣x+4与抛物线y=﹣x2+bx+c交于A,B两点,点A在y轴上,点B 在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.﹣的相反数是()A.3B.﹣3C.D.﹣【分析】一个数的相反数就是在这个数前面添上“﹣”号.解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选:D.【点评】此题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.到3月份金融机构累计发放优惠利率贷款共1114亿元,对支持企业复工复产发挥了重要作用.请将数据1114亿用科学记数法表示为()A.111.4×109B.1.114×1010C.1.114×1011D.1.1×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1114亿用科学记数法表示为:1.114×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣b2D.(﹣a)3﹣a3=﹣2a3【分析】分别根据同底数幂的除法法则,积的乘方运算法则、完全平方公式以及合并同类项法则逐一判断即可.解:A.a12÷a3=a9,故本选项不合题意;B.(3a2)3=27a6,故本选项不合题意;C.(a﹣b)2=a2﹣2ab+b2,故本选项不合题意;D.(﹣a)3﹣a3=﹣2a3,正确.故选:D.【点评】本题主要考查了合并同类项,完全平方公式,同底数幂的除法以及幂的乘方与积的乘方,熟记相关公式和运算法则是解答本题的关键.5.如图所示的几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.解:从左边看,是两个上下层矩形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.20°C.15°D.14°【分析】先根据平行线的性质得出∠BCD的度数,进而可得出结论.解:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD﹣∠BCE=45°﹣30°=15°.故选:C.【点评】本题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.7.一组从小到大排列的数据:a,3,4,4,6(a为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6B.3.8C.3.6或3.8D.4.2【分析】根据众数的定义得出正整数a的值,再根据平均数的定义求解可得.解:∵数据:a,3,4,4,6(a为正整数),唯一的众数是4,∴a=1或2,当a=1时,平均数为=3.6;当a=2时,平均数为=3.8;故选:C.【点评】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a的值是解题的关键.8.若关于x的一元二次方程(k﹣2)x2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1B.k>1且k≠2C.k≤1D.k≥1且k≠2【分析】利用一元二次方程的定义和判别式的意义得到k﹣2≠0且得△=22﹣4(k﹣2)×(﹣1)>0,然后求出两个不等式的公共部分即可.解:根据题意得k﹣2≠0且△=22﹣4(k﹣2)×(﹣1)>0,解得k>1且k≠2.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°【分析】连接O1P,O2P,如图,先根据O1P=O2P得到∠O1PO2=∠O1O2P=63°,然后根据三角形内角和求出∠PO1O2即可.解:连接O1P,O2P,如图,∵P在小量角器上对应的刻度为63°,即∠O1O2P=63°,而O1P=O2P,∴∠O1PO2=∠O1O2P=63°,∴∠PO1O2=180°﹣63°﹣63°=54°,即点P在大量角器上对应的刻度为54°(只考虑小于90°的角).故选:A.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.10.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A.B.C.D.【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.解:∵△ABC是等边三角形,∴∠A=∠C=∠ABC=60°,∵DE∥AC,∴∠EDF=∠A=60°,∠DEB=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠EDB=∠DEB=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),故选:A.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,特殊角的三角函数、三角形的面积等.二、填空题(每题3分,共15分)11.计算:=2.【分析】原式利用算术平方根定义,以及负整数指数幂法则计算即可求出值.解:原式=6﹣4=2.故答案为:2.【点评】此题考查了实数的运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.12.不等式组的解集是﹣5<x<﹣2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解:,解①得:x>﹣5,解②得:x<﹣2,则不等式组的解集是:﹣5<x<﹣2.故答案是:﹣5<x<﹣2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.13.一个不透明的袋子里装有的3个红球和1个绿球,这些球除颜色外都完全相同:随机从中摸出两球,则两球都是红球的概率是.【分析】画出树状图,得出所有等可能结果,求出两个球都是红球的结果数占总结果数的多少即可.解:画树形图得:一共有12种等可能结果,两个球都是红球的有6种结果,∴两球都是红球的概率是=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y 轴的正半轴上的点A'处,若AO=OB=2,则图中阴影部分面积为.【分析】根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′B=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=4,BC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′==.故答案为:.【点评】本题考查的是扇形面积的计算,旋转的性质,等腰直角三角形的性质,熟记扇形的面积公式是解答此题的关键.15.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为3或.【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC =,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;若B′不落在C点处,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.解:∵∠C=90°,BC=2,AC=2,∴tan B===,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB 于点F∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cos B=,∴BF=cos30°=,∴EF=﹣(4﹣x)=x﹣,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣),解得x=3,此时AE为3;若B′不落在C点处,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.综上所述,AE的长为3或.故答案为3或.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系和勾股定理.三、解答题(共8个小题,满分75分)16.先化简,再求值:÷(x+2﹣),其中x=3tan30°+3.【分析】首先将括号里面通分运算,再利用分式的混合运算法则化简,再把x的值代入求出答案.解:原式=÷=•=,∵x=3tan30°+3=3×+3=+3,∴原式==.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.17.某中学为了了解九年级学生“长跑”成绩的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑成绩依次分为A.B.C.D个等级进行统计,制作出如下两个不完整的统计图.根据所给信息,解答下列问题:(1)在扇形统计图中,C对应的扇形圆心角是90度;(2)补全条形统计图;(3)所抽取学生的”长跑”测试成绩的中位数会落在B等级;(4)该校九年级有477名学生,请估计“长跑”测试成绩达到A级的学生约有多少人?【分析】(1)根据统计图中的数据可以求得本次调查的人数,然后再求出C等级的人数,从而可以求得在扇形统计用中,C对应的扇形圆心角的度数;(2)根据(1)求得C等级的人数,即可将条形统计图补充完整;(3)根据统计图中的数据可以得到所抽取学生的“长跑”测试成绩的中位数会落在哪个等级;(4)用总人数乘以“长跑”测试成绩达到A级的学生所占的百分比即可.解:(1)本次调查的人数为:18÷=36(人),C等级的人数为:36﹣4﹣18﹣5=9(人),则在扇形统计用中,C对应的扇形圆心角是:360°×=90°,故答案为:90;(2)由(1)知,C等级的人数为9人,补全的条形统计图如图所示:;(3)由统计图可得,所抽取学生的“长跑”测试成绩的中位数会落在B等级,故答案为:B;(4)477×(4÷36)=53(人),答:测试成绩达到A级的学生有53人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上∠ACB=90°,点C坐标为(﹣1,0),点A的坐标为(0,2),一次函数y=kx+b的图象经过点B,C,反比例函数y=的图象也经过点B.(1)求反比例函数和一次函数的关系式;(2)观察图象直接写出图象在第二象限时,kx+b﹣<0的解集.【分析】(1)过B作BD⊥x轴,垂足为D,如图,证明△BDC≌△COA得到DC=AO=2,BD=CO=1,则点B的坐标是(﹣3,1),然后利用待定系数法求两个函数解析式;(3)在第二象限内,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.解:(1)过B作BD⊥x轴,垂足为D,如图,∵△ABC为等腰直角三角形,∴CB=CA,∠ACB=90°,∵∠DCB+∠ACO=90°,∠CAO+∠ACO=90°,∴∠DCB=∠CAO,在△BDC和△COA中∴△BDC≌△COA(AAS),∴DC=AO=2,BD=CO=1,∴点B的坐标是(﹣3,1),将点B(﹣3,1)代入y=得m=﹣3×1=﹣3,∴反比例函数的表达式是y=﹣;将B(﹣3,1)和点C(﹣1,0)代入y=kx+b得,解得∴一次函数的表达式为y=﹣x﹣;(2)在第二象限内,kx+b﹣<0的解集为﹣3<x<0.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.19.如图,△ABC内接于⊙O,且AB为⊙O的直径OD⊥AB,与AC交于点E,与过点C 的⊙O切线交于点D.(1)若AC=6,BC=3,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【分析】(1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB=,得出OA=AB=,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB=,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.【点评】本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.20.某数学课外兴趣小组为了测量池塘对岸山丘DE上的塔的高度,在山脚下的广场A处测得建筑物点D(即山顶)的仰角为20°,沿水平方向前进245米到达B点,测得建筑物顶部C点的仰角为45°,已知山丘DE高182米,求塔CD的高度.(结果精确到0.1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【分析】设CD=x米.在Rt△ADE中,根据tan20°=,构建方程即可解决问题.解:由题意可知CE⊥AE,又∵∠CBE=45°,设塔CD高为x米,∴BE=CE=CD+DE=(x+182)米.∴AE=AB+BE=245+x+182=x+427.在直角三角形AED中,tan∠DAE=.即=0.36.解得:x≈78.6.经检验:x=78.6是原方程的根,且符合题意.答:塔CD高约为78.6米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.21.坚持人与自然和谐共生、必须树立绿水青山就是金山银山的理念,清源村在践行活动中,计划购买甲、乙两种树木用于绿化山坡,若购买7棵甲种树和4棵乙种树需510元;若购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按清源村划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量,请用函数的有关知识设计出最省钱的购买方案,并说明理由.【分析】(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲种树m棵,则购买乙种树(200﹣m)棵,根据甲种树的数量不少于乙种树的数量的可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可找出最省钱的购买方案.解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,由题意得:,解得:,答:甲种树和乙种树的单价分别为50元和40元.(2)设购买甲种树m棵,总费用为w元.由题意得w=50m+40(200﹣m)=10m+8000,∵10>0,∴w随m的减小而减小.又∵m≥(200﹣m),解得m,∴当m=67时,W最小=10×67+8000=8670,此时,200﹣m=133.答:当购买67棵甲种树,133棵乙种树时最省钱.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.22.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.【分析】(1)先判断出∠AEB=90°,再判断出∠B=30°,进而的粗AE,再用勾股定理求出BE,即可得出结论;(2)先判断出=,进而得出△ACD∽△BCE,即可得出结论;(3)分点D在线段AE上和AE的延长线上,利用含30度角的直角三角形的性质和勾股定理,最后用线段的和差求出AD,即可得出结论.解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG﹣DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.【点评】此题是相似形综合题,主要考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的判定和性质,构造出直角三角形是解本题的关键.23.如图,直线y=﹣x+4与抛物线y=﹣x2+bx+c交于A,B两点,点A在y轴上,点B 在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.【分析】(1)由直线表达式求出点A、B的坐标,把A、B点坐标代入二次函数表达式,即可求解;(2)OA=OB=4,则OB为AC的垂直平分线,则点C坐标为(0,﹣4),求出直线BC的表达式,即可求解;(3)存在;分OB是平行四边形的一条边或一条对角线两种情况,分别求解即可.解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,故:点A、B的坐标分别为(0,4)、(4,0),把A、B点坐标代入二次函数表达式得:,解得:,则:求抛物线的解析式为:y=﹣x2+x+4…①;(2)∵OA=OB=4,∴∠ABO=45°,∠ABP=90°,则OB为线段AC的垂直平分线,则点C坐标为(0,﹣4),则:直线BC的表达式为:y=kx﹣4,把点B点坐标代入上式,解得:k=1,故:直线BC的表达式为:y=x﹣4…②,将①②联立解得:x=±4(舍去正值),故点P的坐标为(﹣4,﹣8);(3)存在;①当OB是平行四边形的一条边时,以E,F,B,O为顶点的四边形是平行四边形时,有如下图所示的两种情况:先求解左侧图中F点的坐标,此时EF=OB=4,则:点F的横坐标为5,把点F(或F″)的横坐标代入二次函数表达式,解得:y=﹣,即点F坐标为(5,﹣),同理:点F的坐标为(﹣3,﹣);②当OB是平行四边形的对角线时,以E,F,B,O为顶点的四边形是平行四边形时,有如下图所示的一种情况:∵OE′BF′为平行四边形,∴OE′=BF′,∠BOE′=∠F′BO,过点E′、F′分别作x轴的平行线,分别交y轴和y轴的平行线与点M、N,∠MOE′=90°﹣∠BOE′,∠NBF′=90°﹣∠F′BO,∴∠MOE′=∠NBF′,又OE′=BF′,∠OME′=∠BNF′=90°,∴△OME′≌△BNF′(AAS),∴OM=BN=1,ME′=F′N,设:BN=m,则:点F′坐标为:(3,m),把点F′坐标代入二次函数表达式,解得:m=,故:点F′坐标为(3,),综上所述:点F的坐标为(5,﹣)或(﹣3,﹣)或(3,).【点评】本题考查的是二次函数知识的综合运用,涉及到一次函数基本知识、平行四边形、全等三角形等相关知识,难点在于(3)中分情况确定平行四边形所处的位置.。
2020年洛阳市中考数学一模试卷附答案一、选择题1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( )A .27B .9C .﹣7D .﹣163.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .24.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .5.-2的相反数是( )A .2B .12C .-12D .不存在 6.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A.①②B.②③C.①②③D.①③⊥于点D,连接BD,BC,且7.如图,AB,AC分别是⊙O的直径和弦,OD ACAC=,则BD的长为()AB=,810A.25B.4C.213D.4.88.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.14cm B.4cm C.15cm D.3cm9.根据以下程序,当输入x=2时,输出结果为()A.﹣1B.﹣4C.1D.1110.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)=,连接AM、11.如图,在平行四边形ABCD中,M、N是BD上两点,BM DNMC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+二、填空题13.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.15.分解因式:x3﹣4xy2=_____.16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______19.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.20.已知10a b b -+-=,则1a +=__.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A .从一个社区随机选取1 000户家庭调查;B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.23.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240024.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面AC的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:2 1.414≈,3 1.732≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.2.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x =3,根据抛物线的对称性得到x =−2和x =8时,函数值相等,然后根据题意判断抛物线与x 轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y =x 2−6x +m 可求得m 的值.【详解】解:∵抛物线的对称轴为直线x =,∴x =−2和x =8时,函数值相等,∵当−2<x <−1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,∴抛物线与x 轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y =x 2−6x +m 得4+12+m =0,解得m =−16.故选:D .【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22=22.OA OB故选C.4.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.D解析:D【解析】如图,连接BE ,根据圆周角定理,可得∠C=∠AEB ,∵∠AEB=∠D+∠DBE ,∴∠AEB>∠D ,∴∠C>∠D ,根据锐角三角形函数的增减性,可得,sin ∠C>sin ∠D ,故①正确;cos ∠C<cos ∠D ,故②错误;tan ∠C>tan ∠D ,故③正确;故选D .7.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=, ∴22221086BC AB AC =-=-,∵OD AC ⊥, ∴142CD AD AC ===, 在Rt CBD ∆中,2246213BD =+=故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.8.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222+++=,x=(负值已舍),故选Ax(65)(5)109.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.10.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.11.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A . 考点:由实际问题抽象出分式方程. 二、填空题13.∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似; 解析:∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.14.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴A C⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积= 4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:415.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.17.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比. 20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.【详解】b ﹣1|=0,0≥,|1|0b -≥,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.三、解答题21.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程24.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P 坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.25.该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒, ∴103tan BC DB CDB==∠ ∴()DH AH AD AH DB AB =-=-- 101031020103 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.。