当前位置:文档之家› 酵母细胞壁生理功能及其应用

酵母细胞壁生理功能及其应用

酵母细胞壁生理功能及其应用
酵母细胞壁生理功能及其应用

酵母在生活中的应用

酵母在生活中的运用 酵母与人类的伙伴关系,已经有几千年的历史。古代人类在几千年前就利用酵母来加工美味食品。如建造金字塔的劳工已使用酵母发酵制作面包,古代中国人应用酵母酿酒并形成了中国特有的酒文化。 酵母帮助人类将面粉发酵,才有了全人类的主食——面包、馒头等。 酵母将糖类物质转化成食用酒精,才有了美味的葡萄酒、威士忌、中国白酒;在人类遇到能源紧缺的今天,酵母正在将更多的糖类物质转化成燃料乙醇,使人类得以持续创造新文明。 酵母把自己的内涵物质转化成人类青睐的鲜味剂——酵母抽提物,还把细胞壁分解成葡聚糖,奉献给人们食用和医用。酵母帮助养殖业增强动物机体免疫功能,促进人类食物安全和营养健康! 在发现微量元素是人类不可或缺营养的今天,酵母将无机微量元素吸收体内,创造了安全、天然的生物态微量元素补充剂,帮助人类预防疾病、延年益寿。如酵母锌、酵母硒、酵母铬等。 酵母是单细胞的微生物,其细胞组织结构与人体非常接近,是理想的天然营养源。酵母菌本身具有很高的营养价值,特别是含有较多蛋白质,很多B族维生素、核酸和矿物质,同时也能产生一些保健功能活性物质。维生素B群可控制人体的代谢功能,保持正常的神经作用。维生素B2与维生素B6对皮肤是很重要的维生素。维生素B12有防止贫血的作用,且有促进肠内维生素合成的作用,所以对肠或肝功能不强的人有增强体力的效果。而酒酵母作为酵母中的一个分支——浑身是宝,无比神奇,是人类健康的小伙伴;经过现代生物技术加工的营养酵母也已经成为时尚的天然营养健康食品。 中国发酵工业协会酵母分会理事长、高级工程师莫湘筠女士曾经建议,酵母对人体不仅没有任何副作用,反而可以提供必需的营养物质,是有益人类的生物膨松剂。消费者大可不必为它的安全性担心,轻信传言、走进误区。

食品中的酵母及应用

食品制造中的酵母及其应用几千年来劳动人民利用酵母菌制作出酵母 菌与人们的生活有着十分密切的关系,酵母菌在食品工业中占有极其重要的味美的食品和饮料。目前,许多营养丰富、地位。利用酵母菌生产的食品种类很多,下面仅介绍几种主要产品。面包2.1 它是以面粉为主要几乎世界各国都有生产。面包是产小麦国家的主食, 原料,以酵母菌、糖、油脂和鸡蛋为辅料生产的发酵食品,其营养丰富,组织蓬松,易于消化吸收,食用方便,深受消费者喜爱。酵母 2.1.1 1 酵母菌种1) 面包酵母是一种单细胞生物,酵母是生产面包必不可少的生物松软剂。 属真菌类,学名为啤酒酵母。面包酵母有圆形、椭圆形等多种形态。以椭圆形的在有氧及无氧条件下都可以进行发酵。用于生产较好。酵母为兼性厌氧性微生物,酵母耐高温的能力。pH为5.0~5.8酵母生长与发酵的最适温度为26~30℃,最适℃下仍具有活力。℃以上会很快死亡,而-60不及耐低温的能力,60鲜酵母是生产上应用的酵母主要有鲜酵母、活性干酵母及即发干酵母。 鲜酵母发酵力较低,分离、压榨而制成。酵母菌种在培养基中经扩大培养和繁殖、℃可保存二个月,其使用受到一定限制。活性0~5发酵速度慢,不易贮存运输,干酵母是鲜酵母经低温干燥而制成的颗粒酵母,发酵活力及发酵速度都比较快,是活性干酵母的即发干酵母又称速效干酵母,且易于贮存运输,使用较为普遍。换代用品,使用方便,一般无需活化处理,可直接生产。安琪牌、目前,我国市场上的活性干酵母有中外合资企业生产的梅山牌、 东莞牌等产品,另外还有进口法国、荷兰、德国的产品。在选购时应注意产品的且必须注意选购适合配方要求的酵母如耐高糖与低糖生产日期、包装是否密封,1 / 24 对于贮存时间过长的酵只有酵母质量有保障才能生产出高质量的面包。的酵母。母在生产前要对其活力进行测定。酵母菌在面包制作中的作用2) 体积大、组织松软。酵母在发酵时利用原料中的葡萄糖、果糖、麦芽糖等糖类及,使面团体积淀粉酶对面粉中淀粉进行转化后的糖类进行发酵作用,产生CO2a- 膨大,结构疏松,呈海绵状结构;改善面包的风味。发酵后的面包与其他各类主食品相比,其风味自有特异之处。产品中有发酵制品的香味,这种香气的构成极其复杂。酵母中的各种酶对面团中的各种有机增加面包的营养价值。在面团制作过程中,相对分子质量物发生的生化反应,将高分子的结构复杂的物质变成结构简单的、如淀粉中的一部分变成麦较低能为人体直接吸收的中间生成物和单分子有机物,这对人体消化吸收非常肽和氨基酸等生成物。芽糖和葡萄糖,蛋白质水解成胨、有利,提高了谷物的生理价值。酵母本身蛋白质含量甚高,且含有多种维生素,使面包的营养价值增高。生产面包的主要原辅料 2.1.2 面粉1) 面筋延伸性大、面粉的质量通常表现在面筋的量和质上。质量好的面粉, 弹性好,做出的面包体积大而膨松;反之面筋延伸性小、弹性差,调制的面团板以互所以生产中常将面筋量大质差和量小质优的面粉搭配使用,结,不易起发。相弥补不足。 2) 糖葡萄使用最多的为蔗糖,糖是面包的重要辅料之一。其次为淀粉糖浆、

酵母多糖

酵母多糖 1、酵母多糖就分子量而论,有从0.5万个分子组成的到超过106个的多糖。由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖才称为多糖。比10个少的短链的称为寡糖。不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖)。 2、酵母多糖的生物学功能通常具有贮藏生物能〔如:淀粉、糖原、菊粉(inulin)〕和支持结构〔如:纤维素、几丁质(chitin)、粘多糖〕的作用。但是,细胞膜和细胞壁的多糖成份不仅是支持物质,而且还直接参与细胞的分裂过程,在许多情况下成为细胞和细胞,细胞和病毒,细胞和抗体等相互识别结构的活性部位。多糖无甜味,在水中不能形成真溶液,只能形成胶体,无还原性,无变旋性,但有旋光性。 3、多糖的分类均一多糖:由一种单糖分子缩合而成的多糖,叫做均一多糖。常见的有:淀粉、糖原、纤维素等。不均一多糖:有不同的单糖分子缩合而成的多糖,叫做不均一多糖。常见的有:透明质酸、硫酸软骨素等。 4、酵母多糖生物学特性某些多糖,如纤维素和几丁质,可构成植物或动物骨架。淀粉和糖原等多糖可作为生物体储存能量的物质。不均一多糖通过共价键与蛋白质构成蛋白聚糖发挥生物学功能,如作为机体润滑剂、识别外来组织的细胞、血型物质的基本成分等。多糖类化合物广泛存在于动物细胞膜和植物、微生物的细胞壁中,是由醛基和酮基通过苷键连接的高分子聚合物,也是构成生命的四大基本物质之一。多糖是存在于灵芝、香菇、酵母等真菌类生物中的一种功能因子;酵母多糖:侧重于抗辐射(电脑族),抗病毒(增强免疫力),特殊环境职业者;清肠排毒(清除体内毒素和垃圾),瘦身族主推酵母葡聚糖,配合酵母B族维生素服用。 啤酒酵母多糖提取工艺条件的研究 吴小刚吴周和吴传茂 摘要试验研究了从啤酒酵母中提取胞壁多糖的提取工艺。提取工艺路线为: 酵母溶解→冻融→超声波破碎→碱溶→中和→沉淀→洗涤→烘干。通过正交试验对酵母破壁和碱溶条件进行优化,寻求最佳的工艺条件,多糖得率为19.4%,用苯酚-硫酸法测定多糖的含量为51.9%。 关键词酵母多糖;破壁;碱溶:提取工艺 中图分类号Q815 Studying on craft condition of beer yeast polysaccharide - extracting Wu Xiaogang, Wu Zhouhe, Wu Chuanmao Abstract This experiment is studying on the craft of polysaccharides extraction from beer yeast cell-wall.The craft route drawn: yeast dissolve→freeze thawing→ultrasoinc crush→alkali abstraction→neutralize→deposit→solvent wash→dry. Seek the best craft condition,as well as optimize conditions of crush wall and alkali dissolving by orthogonal experiment, yield of polysaccharide is19.4%. Determination with phenol-sulphuric aicd law, content of polysaccharide is51.9%. Key words yeast polysaccharide;crash wall;alkali dissolving;extracting craft 近年来,多糖及多糖复合物在生物体的作用越来越受到生物学家们的重视,成为生物学

酵母葡聚糖

酵母葡聚糖研究 摘要:酵母葡聚糖作为一类免疫多糖,其具有生物活性强,毒副作用低,属高效生物应答剂等特点而被广泛应用。文章论述了酵母葡聚糖的结构特点和生物活性及免疫作用机理,介绍了酵母葡聚糖的免疫学功能以及医学方面的应用现状,并综述了酵母葡聚糖在各种工业中的应用前景。 关键词:酵母葡聚糖结构特性免疫学作用应用 在1939 年人们提出啤酒酵母具有免疫增强作用,到20世纪60年代,研究人员发现提供免疫特性的主要因素是存在于酵母细胞壁的多糖成分[1]。1957年,Benacerarf和Sebestyn 发现静脉注射酵母细胞壁的酵母多糖可以提高巨噬细胞的吞噬活性,促进肝脏、脾脏巨噬细胞的增殖。随后,他们对酵母细胞壁多糖进行了纯化;发现酵母多糖的主要成分是β-葡聚糖、甘露聚糖和几丁质[2]。终于在1961年,Riggi等确定酵母多糖的活性成分是β-D-葡聚糖,所以人们就将这种具有免疫活性的酵母多糖称作酵母葡聚糖。 酵母葡聚糖具有免疫活性的这一发现开启了葡聚糖作为免疫活性物质的新纪元。酵母葡聚糖是第1个被发现具有免疫活性的葡聚糖,随后,酵母葡聚糖又被发现具有抗感染、抗肿瘤、抗辐射和促进伤口愈合等功能,是一种重要的生物效应应答剂(biological response modifiers ,BRM)。因此,开发利用酵母葡聚糖具有重要的应用前景。 1 酵母葡聚糖的结构研究 酿酒酵母细胞壁约占细胞干重15%-30%,糖成分约占细胞壁干重的50%~60%,酵母葡聚糖包括碱溶性和碱不溶性两种,其中碱溶性和碱不溶性的含量大致相当[3]。关于两种葡聚糖成分的详尽化学分析,Bacon 等(1969)提出酵母葡聚糖是由以β-1,3-葡聚糖为主、β-1,6-葡聚糖为辅的混合物组成。Manners 等所作的葡聚糖结构分析发现:85%的碱不溶性葡聚糖是β-1,3-连接,同时在链间穿插3%β-1,6-葡聚糖苷键,并且有着1450±150 的聚合度(DP),相当于240kDa 的分子量;其余15%的碱不溶性葡聚糖是β-1,6-键连接的,呈高度分支,含有约19%β-1,3-葡聚糖苷键,聚合度141±10,相当于22kDa的分子质量。从他们的结构分析来看,尚不清楚存在单分支还是多重分支,分子是呈层状、梳状还是树状结构。一些学者认为,低度的分支可便于线性链段的排列并形成螺旋结构,从而使得大分子具有一定的刚性和在水中不溶。 关于葡聚糖和其它细胞壁成分的相互关系,Peter等研究显示:壳聚糖通过其还原末端的β-1,4-糖苷键与β-1,3-葡聚糖链的非还原末端连接;甘露糖蛋白质(O-和N-糖苷键)与壳聚糖及β-1,3-葡聚糖相连接,这种连接是通过其与C-末端葡聚糖磷酸基肌醇(GPI)残基突起端连接而实现的。另外,Kapteyn等提出的所有4种细胞壁成分连接聚集成一个模块,以及充当着酵母细胞壁构建基团的其它物质。

酵母细胞壁在动物生产中的应用

酵母细胞壁在动物生产中的应用 摘要酵母细胞壁是从啤酒酵母中提取的全天然绿色添加剂,对动物的免疫功能有促进作用,在动物生产中已经得到广泛的 应用,并取得良好的效果。文中主要综述酵母细胞壁的主要结构和功能,以及酵母细胞壁在畜禽和水产动物生产中的应用。 关键词酵母细胞壁免疫动物生产 酵母细胞壁(Yeast cell wall,YCW)是生产中应 用最多的多糖。酵母细胞壁是将啤酒酵母培养增殖 后,收集菌种细胞,音波震碎,多次清洗过滤,将其可 溶物在高温、酸碱处理后离心分离,提取的细胞壁于 特定的温度和压强下进行喷雾干燥而得到的一种全 天然绿色添加剂。产品为淡黄色粉末,无苦味。啤酒 酵母细胞壁占整个细胞干重的 20%~30%,它在维持 细胞形态和细胞与细胞间的识别中起重要作用。 1 酵母细胞壁的结构和功能 酵母细胞壁分为 3 层,内、外层为甘露寡糖和糖 蛋白,在细胞与细胞、细胞与环境之间的识别和相互 作用及决定酵母免疫特异性中起作用;中间层为β- 葡聚糖和几丁质,其作用是保持细胞壁的稳定性,维 持其形态 [1] 。酵母细胞壁主要成分是β-葡聚糖(β- Glucan),占 30%;甘露寡糖(Manna oligosaccharide, MOS),占 30%;糖蛋白(Glucoprotein),占 20%;几丁 质(Chitin);其他成分有蛋白质、核酸、类脂和灰分, 占细胞壁干重的 20%以内 [2] 。 1.1 β-葡聚糖β-葡聚糖广泛存在于许多细菌、真 菌、蘑菇、海藻及高等植物中,因其具有免疫刺激、抗 炎症、抗感染、抗微生物、抗肿瘤、降低胆固醇、抗辐 射以及治愈创伤等生物活性和医学特性 [3] ,日益引 起人们的关注。 β-葡聚糖是细胞壁最重要的结构物质,对侵入 人和动物体内的微生物具有防御功能。一些研究表 明,磷酸化葡聚糖的医疗价值在于它能与所感染的 致病细菌、真菌和病毒结合,从而起到缓解病情的作 用。β-葡聚糖是葡萄糖的一种聚合物,β-1,3-D-葡 聚糖构成了它的骨架,β-1,6-D-葡聚糖作为它的侧

酿酒酵母不对称遗传分析(设计)

酿酒酵母不对称遗传分析 生物科学10300700042 周博言周五下午108 注:这个实验设计我上传了百度文库,老师如果在百度发现和我这个一模一样的设计不要误会,那个就是我设计的,不是我抄袭。 原理 在酵母细胞出芽过程中,细胞衰老造成的损伤在母细胞和子细胞之间的分配是不对称的,绝大部分损伤被母细胞所保留。然而,这种不对称遗传也不总是这样,在母细胞衰老到达一定程度时,它所产生的子细胞将不可避免地带有母细胞的部分衰老物质。 酿酒酵母很早就被当做研究衰老的模式生物,早在1989年,Egilmez和Jazwinski就提出了“细胞质衰老因子”假说。1997年,Sinclair等人提出了酵母复制衰老的ERC积累学说,认为染色体外rDNA环——ERC可能就是“细胞质衰老因子”。酿酒酵母rDNA座占整个基因组的10%,由编码rRNA的9.1kb重复单元串联重复100~200个拷贝组成,定位于染色体ⅩⅡ。ERC可以通过胞内DNA加工系统的作用,由串联重复的rDNA经同源重组从基因组中切出。而ERC具有自身ARS(autonomously replicating sequence),能在每一次S期复制1次,而在母细胞内呈指数型增长。同时由于酵母细胞出芽分裂的不对称遗传,ERC在分裂时保留在母细胞中而不进入子细胞,从而使母细胞中大量积累ERCs。但随着母细胞持续地衰老,这种不对称遗传将无法维持下去,最终极度衰老的母细胞产生的子细胞中也将不可避免地带有ERCs。 本实验将通过培养酿酒酵母,分离检测ERCs,对比不同代数母细胞产生的子细胞及衰老母细胞中ERCs的含量,验证酿酒酵母的不对称遗传。 注: 关于ERCs的不对称遗传的机制,Shcheprova等人提出了一种氯苄乙胺依赖的细胞核扩散屏障,它阻碍了母细胞核孔通向子细胞的通道。而环形DNA分子,比如ERCs,缺乏一种着丝粒序列而无法通过该屏障,最终被留在了母细胞中。 尽管ERCs如何造成酵母细胞衰老的机制尚未明确,但很多假说已被提出。一种猜测是,ERCs会与那些在复制、转录过程中起重要作用的因子发生物理上的相互作用,从而使它们无法行使正常的功能。另一种可能性是,过多的ERCs导致了rRNA和核糖体蛋白之间数量的不平衡,进一步削弱了核糖体其本身的功能。而Ganley等人的研究则认为,ERCs通过诱导rDNA使其不稳定性限制了酵母细胞的RLS(复制型寿命),并且,他们认为这正是衰老的最根本的原因。 材料 酿酒酵母细胞 培养基1(单位均为g):葡萄糖25、酵母浸粉2、(NH4)2SO42、KH2PO45、MgSO4?7H2O0.4、CaCl20.2、1000ml蒸馏水 培养基2(单位均为g):葡萄糖10、酵母浸粉2、(NH4)2SO42、KH2PO45、MgSO4?7H2O0.4、CaCl20.2、1000ml蒸馏水 仪器与试剂 1.仪器

细菌,酵母菌,霉菌在食品中的应用

细菌,酵母菌,霉菌在食品中的应用 细菌,酵母菌,霉菌在食品中的应用广泛,在食品加工中已被应用了几千年,从酿酒、制醋到生产酸奶、面包发酵,人们生活中各种风味各异的各色食品的生产几乎都离不开他们。 细菌在食品中的应用: 细菌在食品中应常用的菌种主要是醋酸杆菌,乳酸菌,非致病棒杆菌等。 醋酸杆菌: 醋酸杆菌主要常见于腐烂的水果蔬菜、酸果汁、醋和饮料等物质中,属于革兰氏阴性无芽孢杆菌,兼性好氧。醋酸杆菌能把乙醇氧化为乙酸。醋酸菌如果在糖源充足的情况下,可以直接将葡糖糖变成醋酸;在氧气充足的情况下,能将酒精氧化成醋酸,从而制成醋,因此常用于制造食醋,果醋等方面的发酵。乳酸菌: 乳酸菌指发酵糖类主要产物为乳酸的一类无芽孢、革兰氏染色阳性细菌的总称。凡是能从葡萄糖或乳糖的发酵过程中产生乳酸的细菌统称为乳酸菌。这是一群相当庞杂的细菌,目前至少可分为18个属,共有200多种,发酵乳制品主要包括酸奶和奶酪两大类,生产菌种主要是乳酸菌。乳酸菌的种类较多,常用的有干酪乳杆菌(Lactobacillus casei)、保加利亚乳杆菌(L. bulgaricus)、嗜酸乳杆菌(L. acidophilus)、植物乳杆菌(L. plantarum)、乳酸乳杆菌(L. Lactis)、乳酸乳球菌(Lactococcus lactis)、嗜热链球菌(Streptococcus thermophilus)等。除极少数外,其中绝大部分都是人体内必不可少的且具有重要生理功能的菌群,其广泛存在于人体的肠道中。它常用于酸牛奶、果蔬发酵饮料、酸泡菜等方面。具有提供营养,改善胃肠道功能的功效。 非致病杆菌: 非致病杆菌主要以谷氨酸棒杆菌,力士棒杆菌,解烃棒杆菌等,它们经常从土壤、空气、水等分离出。常用于味精的制作。它们能将糖分解成有机酸,并将含氮物质分解成铵离子,再进一步合成谷氨酸并积累于发酵液中。 酵母菌在食品中的应用: 酿酒酵母: 酿酒酵母是酵母菌属中的典型菌种,也是重要的菌种,广泛应用与啤酒、葡萄酒、白酒、果酒的酿造和面包的制造中。由于酵母菌含有丰富的维生素和蛋白质,因而可作为药用,也可用于饲料,具有较大的经济价值。 面包酵母: 酵母是生产面包必不可少的生物松软剂。面包酵母是一种单细胞生物,属真菌类,学名为啤酒酵母。面包酵母有圆形、椭圆形等多种形态。以椭圆形的用于生产较好。酵母为兼性厌氧性微生物,在有氧及无氧条件下都可以进行发酵。酵母生长与发酵的最适温度为26~30℃,最适pH为5.0~5.8。酵母耐高温的能力不及耐低温的能力,60℃以上会很快死亡,而-60℃下仍具有活力。生产上应用的酵母主要有鲜酵母、活性干酵母及即发干酵母。 霉菌在食品中的应用: 霉菌在食品制造中用途非常广泛,许多酿造发酵食品、食品原料的制造,如豆腐乳、豆鼓、酱、酱油、柠檬酸等都是在霉菌的参与下来进行生产的。霉菌在食品中的应用主要体现在酱类和酱油两个方面。 酱类: 酱类包括大豆酱、蚕豆酱、面酱、豆瓣酱、豆豉及其加工制品,都是由一些

酵母菌的应用

酵母菌在工业上的应用 酵母是一种单细胞生物,有着天然丰富的营养体系。酵母细胞中含有大量的有机物、矿物质和水分。有机物占细胞干重的90%~94%,其中蛋白质的含量占细胞干重的35%~60%,碳水化合物的含量在35%~60%,脂类物质的含量在1%~5%。酵母细胞中还富含多种维生素、矿物质和多种酶类,能促进其被消化吸收。此外它还含有多种鲜为人知的活性物质,如麦角固醇、谷胱甘肽、超氧化物歧化酶、辅酶A等。酵母由于具有很高的营养成分,不仅直接被开发为营养食品,还可进一步制成多种营养活性物质,作为营养食品的载体,进一步深加工则成为更具营养和保健价值的食品。 1.酵母菌在面包制作中的作用 酵母在发酵时利用原料中的葡萄糖、果糖、麦芽糖等糖类及a-淀粉酶对面粉中淀粉进行转化后的糖类进行发酵作用,产生CO2,使面团体积膨大,结构疏松,呈海绵状结构; 改善面包的风味。发酵后的面包与其他各类主食品相比,其风味自有特异之处。产品中有发酵制品的香味,这种香气的构成极其复杂。 增加面包的营养价值。在面团制作过程中,酵母中的各种酶对面团中的各种有机物发生的生化反应,将高分子的结构复杂的物质变成结构简单的、相对分子质量较低能为人体直接吸收的中间生成物和单分子有机物,如淀粉中的一部分变成麦芽糖和葡萄糖,蛋白质水解成胨、肽和氨基酸等生成物。这对人体消化吸收非常有利,提高了谷物的生理价值。酵母本身蛋白质含量甚高,且含有多种维生素,使面包的营养价值增高。 2.酵母菌在酒工业中的应用 1啤酒酿造 啤酒酿造是以大麦、水为主要原料,以大米或其它未发芽的谷物、酒花为辅助原料;大麦经过发芽产生多种水解酶类制成麦芽;借助麦芽本身多种水解酶类将淀粉和蛋白质等大分子物质分解为可溶性糖类、糊精以及氨基酸、肽、胨等低分子物质制成麦芽汁;麦芽汁通过酵母菌的发酵作用生成酒精和CO2以及多种营养和风味物质;最后经过过滤、包装、杀菌等工艺制成CO2含量丰富、酒精含量仅3%~4%、富含多种营养成份、酒花芳香、苦味爽口的饮料酒即成品啤酒。 2果酒酿造 果酒酿造是以多种水果如葡萄、苹果、梨、桔子、山楂、杨梅、猕猴桃等为原料,经过破碎、压榨,制取果汁;果汁通过酵母菌的发酵作用形成原酒;原酒再经陈酿、过滤、调配、包装等工艺制成酒精含量8.5%以上、含多种营养成分的饮料酒称为果酒。在各种果酒中葡萄酒是主要品种,其产量居世界第二位饮料酒种。 3白酒酿造 酒曲的主要种类 (1)大曲大曲是固态发酵法酿造大曲白酒的糖化发酵剂。它以小麦或大麦、豌豆为曲料,经过粉碎、加水拌料、踩曲制坯、堆积培养,依靠自然界带入的各种酿酒微生物(包括细菌、霉菌和酵母菌)在其中生长繁殖制成成曲,再经贮存后制成陈曲。大曲有高温曲(制曲温度60℃以上)和中温曲(制曲温度不超过50℃)两种类型。目前国内绝大多数著名的大曲白酒均采用高温曲生产,如茅台、泸州、西风、五粮液等。 (2)麸曲麸曲是固态发酵法酿造麸曲白酒的糖化剂。它以麸皮为主要曲料,以新鲜酒糟为配料,经过润水、蒸煮、冷却后,接种黑曲霉和黄曲霉混和(混和比例为7:3),再经通风培养制成成曲。 (3)小曲(米曲)小曲(米曲)是半固态发酵法酿造小曲白酒(米酒)的糖化发酵剂。它以米粉或米糠为原料,添加或不添加中草药,经过浸泡、粉碎,接入纯种根霉和酵母

酵母菌在人类生活中的应用

酵母菌在人类生活中的应用 摘要:涉及到人类食品中的酵母菌种类繁多,其中不同种类有不同的功能,这使得酵母菌在食品中有着广泛的用途,与人类的生活息息相关,随着科学技术的发展,酵母菌一定可以为人类的生活做出更大的贡献。 关键字:酵母菌应用前景 酵母菌是子囊菌、担子菌等几科单细胞真菌的通称。依照荷兰科学家Loddoy在1970年提出的分类系统,将有无形成有性孢子作为分类的起点,属上的分类主要依据形态,种的规划主要依据生理的特性,将酵母菌分为三个亚门:1.能形成子囊孢子的酵母属子囊亚门,共4个科22个属139种酵母。2.能产生冬孢子和担孢子的酵母菌,属于担子菌亚门、冬孢子纲、黑粉菌目、黑粉菌科共9个科。3.能产生掷孢子的酵母菌,属于担子菌亚门、东孢子纲、掷包酵母科、科内有三属。4.不能产生有性孢子,尚未发现有性过程的酵母属于半知菌亚门,共12个属170个种。但就我国目前所常用的分类是将酵母菌分为:鲜酵母、活性干酵母、即发酵母。酵母菌在生物界中的种类繁多,其在人类生活中也得到广泛的应用。据科学家推测,早在史前三千多年,人类就已经懂得酵母的发酵技术,虽不知原理,但却已有相当丰富的经验。据考古学家考证,在史前2500年的埃及Theban法王填墓内找到经发酵的面包实体和证明酒和啤酒酿造的壁画和宝物,以及在公元前2698年中国史记记载了自黄帝开始已有教民烹煮面食的记载,都证明人类在这之前就已懂得种植稻米、小麦以及储存、磨粉和利用酵

母调制不同的食物。由此看来,酵母菌的利用已深入人类的发展史。 1.酵母菌在发酵乳制品中的应用 随着科学技术的发展,酵母菌在酿造、奶制品、焙烤食品等有着飞速的发展。内蒙古农业大学的贺银风教授探究了国内外传统的发酵乳制品中乳酸菌和酵母菌的相互作用关系,指出了酵母菌在发酵品中的与乳酸菌有着同样的作用,菌种间相互促进和相互制约控制产品的风味特点、营养特征、医疗和保健作用。这为研究酵母菌在乳制品中的应用提供了理论的参考,不同的乳制品中的酵母菌存在着多样性,往往是多种酵母菌的共同作用形成不同的风味,不同的品质,而不同地区也有着自己特有的酵母菌,这是由于酵母菌的多样性所决定的。酵母菌在发酵乳制品中存在着许多的优点,主要是对于干酪的成熟有着诸多作用,例如:“(1)酵母菌能利用凝乳中由于乳酸菌的乳糖发酵所产生的乳酸,使凝乳的pH值有所提高,由起初的5到6左右。酸度的降低,刺激了对干酪成熟也有促进作用的细菌的生长繁殖;(2)某些酵母菌能产生胞外蛋白分解酶和脂肪分解酶,分解干酪中的蛋白质和脂肪,加速干酪的成熟,使干酪中可溶性含蛋物和辛酸、癸酸等其他高级脂肪酸增加L3J,对干酪的风味和结构起着至关重要的作用;(3)干酪内部的某些酵母菌能发酵牛奶中的乳糖,产生少量的CO,影响干酪的组织结构;(4)某些酵母菌能影响干酪某些风味物质如甲基酮的形成[IJ];(5)酵母菌能产生多种水溶性维生素,增加干酪的营养价值;(6)酵母菌在干酪中的生长繁殖和代谢作用,还能抑制腐败微生物和梭状芽孢杆菌的生长LIJ5。酵母菌在乳制食品中的主要

食品中的酵母及应用

食品制造中的酵母及其应用 酵母菌与人们的生活有着十分密切的关系,几千年来劳动人民利用酵母菌制作出许多营养丰富、味美的食品和饮料。目前,酵母菌在食品工业中占有极其重要的地位。利用酵母菌生产的食品种类很多,下面仅介绍几种主要产品。 2.1 面包 面包是产小麦国家的主食,几乎世界各国都有生产。它是以面粉为主要原料,以酵母菌、糖、油脂和鸡蛋为辅料生产的发酵食品,其营养丰富,组织蓬松,易于消化吸收,食用方便,深受消费者喜爱。 2.1.1 酵母 1) 酵母菌种 1 酵母是生产面包必不可少的生物松软剂。面包酵母是一种单细胞生物,属真菌类,学名为啤酒酵母。面包酵母有圆形、椭圆形等多种形态。以椭圆形的用于生产较好。酵母为兼性厌氧性微生物,在有氧及无氧条件下都可以进行发酵。酵母生长与发酵的最适温度为26~30℃,最适pH为5.0~5.8。酵母耐高温的能力不及耐低温的能力,60℃以上会很快死亡,而-60℃下仍具有活力。 生产上应用的酵母主要有鲜酵母、活性干酵母及即发干酵母。鲜酵母是酵母菌种在培养基中经扩大培养和繁殖、分离、压榨而制成。鲜酵母发酵力较低,发酵速度慢,不易贮存运输,0~5℃可保存二个月,其使用受到一定限制。活性干酵母是鲜酵母经低温干燥而制成的颗粒酵母,发酵活力及发酵速度都比较快,且易于贮存运输,使用较为普遍。即发干酵母又称速效干酵母,是活性干酵母的换代用品,使用方便,一般无需活化处理,可直接生产。 目前,我国市场上的活性干酵母有中外合资企业生产的梅山牌、安琪牌、牌

等产品,另外还有进口法国、荷兰、德国的产品。在选购时应注意产品的生产日期、包装是否密封,且必须注意选购适合配方要求的酵母如耐高糖与低糖的酵母。只有酵母质量有保障才能生产出高质量的面包。对于贮存时间过长的酵母在生产前要对其活力进行测定。 2) 酵母菌在面包制作中的作用 体积大、组织松软。酵母在发酵时利用原料中的葡萄糖、果糖、麦芽糖等糖类及a-淀粉酶对面粉中淀粉进行转化后的糖类进行发酵作用,产生CO2,使面团体积膨大,结构疏松,呈海绵状结构; 改善面包的风味。发酵后的面包与其他各类主食品相比,其风味自有特异之处。产品中有发酵制品的香味,这种香气的构成极其复杂。 增加面包的营养价值。在面团制作过程中,酵母中的各种酶对面团中的各种有机物发生的生化反应,将高分子的结构复杂的物质变成结构简单的、相对分子质量较低能为人体直接吸收的中间生成物和单分子有机物,如淀粉中的一部分变成麦芽糖和葡萄糖,蛋白质水解成胨、肽和氨基酸等生成物。这对人体消化吸收非常有利,提高了谷物的生理价值。酵母本身蛋白质含量甚高,且含有多种维生素,使面包的营养价值增高。 2.1.2 生产面包的主要原辅料 1) 面粉 面粉的质量通常表现在面筋的量和质上。质量好的面粉,面筋延伸性大、弹性好,做出的面包体积大而膨松;反之面筋延伸性小、弹性差,调制的面团板结,不易起发。所以生产中常将面筋量大质差和量小质优的面粉搭配使用,以互相弥补不足。

酵母细胞壁生产工艺.

酵母细胞壁工艺流程及说明 徐州赛傅生物科技有限公司生产工艺流程 一、工艺流程 1、预处理工艺 酵母泥→过滤→加水稀释→过滤除杂→沉淀分离 2、酵母细胞壁的加工工艺 脱苦→除臭→离心分离→自溶→酶解→破碎→酶处理→灭酶灭菌→离心分离→浓缩→喷雾干燥→包装 二、工艺流程说明 1、对酵母泥进行简单过滤,除去一些较大杂质。 2、加水稀释:为了酵母泥筛分顺利进行,必须将酵母泥加水稀释,以减少筛分的阻力。 3、过筛除杂:将稀释的酵母泥充分搅拌均匀,用不同目数的两层滤网过滤,即可除去酵母泥中的全部可见杂质。 4、沉降分离:经过筛分后的酵母乳液,静止一定时间,使自动沉淀,倾出上清液,即得不含杂质的酵母。 5、脱苦、脱臭:在啤酒生产过程中,由于酒花的苦味物质及一些代谢产物吸附在酵母泥中,使酵母泥带有令人不愉快的苦味和气味,故要进行脱苦脱臭处理。其方法:将上述酵母用无菌水以与酵母量一定比例进行清洗数次,再用一定比例NaCl

溶液洗一次,即可达到脱苦脱臭的目的。 6、离心分离:经脱苦脱臭的酵母乳进行离心分离,即得脱苦脱臭的酵母泥。 7、自溶:将上述酵母泥和水按一定比例混合,搅拌均匀,使干酵母比例在一定范围,调pH值为M,并加入助溶剂,然后在A温度水浴放置几十分钟,再调温至B℃保持Q小时,注意每间隔一段时间开动搅拌一下。 8 、酶解:自溶结束后,调整pH值至中性,调整温度到合适指标,加入一定标准的蛋白酶,进行酶解一定时间, 9、破碎:酶解结束后,利用超声波设备对酵母细胞进行破碎 10、酶处理:破碎结束后,加入另外的一种复合酶进行进一步酶解,达到指定指标。 11、灭菌灭酶:在一定温度条件下加热H分钟,达到灭酶灭菌的效果。 12、离心分离: 把酵母细胞壁与抽取物分离出来。 13、浓缩:采用真空浓缩(一定压力),将其浓缩为一定比例。 14、喷雾干燥:采用离心喷雾干燥设备,对浓缩物进行喷雾干燥,至成品。 关键因素 1、自溶过程中的时间、温度、pH值、助溶剂成分组成及浓度等参数会影响到 破碎的效果 2、酶解过程中的酶制剂选择及参数的控制会影响到主要成分的含量 3、破碎设备参数的控制会影响到成品的纯度 4、酶处理过程处理的质量影响到主要成分活性功效。

酵母水解物的功能作用最新

酵母水解物的功能 酵母水解物(YH)也称复合酵母,是采用纯培养酵母,利用内源酶(细胞内自溶酶)及外源酶水解,充分释放核酸、小肽等功效成分而获得的酵母自溶物。酵母水解物富含大量的核酸、核苷酸(呈味核苷酸)、小肽、消化酶、游离氨基酸及丰富的B族维生素及酵母细胞壁。自溶酵母粉选用特异酵母为原料,采用高效破壁和多联酶解等高新技术,经提纯精制而成。不含载体,耐高温、可制粒,对动物具有极佳的诱食性、免疫性和促生长性,适用于水产、畜禽及宠物饲料。 一、外源酵母核苷酸的功能 1、核苷酸对肠道微生物区系平衡的调节 日粮中添加核苷酸后,大肠杆菌和乳酸菌群之间的比率发生了向有利于有益微生物方向的改变,日粮中核苷酸可促进肠道中双歧杆菌和乳酸菌的生长,而双歧杆菌可以将糖水解成乳酸,同乳酸杆菌一起降低肠道内的pH值,从而抑制了厌酸型病原菌和大肠杆菌的繁殖,减少腹泻的发生。 2、核苷酸促进肠道的发育成熟 快速生长的动物肠道细胞周转较快,对核苷酸需求较多,但是体内和体外试验发现,14C标记的甘氨酸不能整合进小鼠小肠细胞的核苷酸池,标明小肠细胞缺乏利用氨基酸从头合成核苷酸的能力,但在小肠中的嘌呤补救合成(Salvage)途径的酶含量较肝脏和盲肠多,在进化过程中,肠道核苷酸补救合成途径较从头合成途径具优势。 3、核苷酸促进肠道的损伤修复 核苷酸可有效对应激、感染或肠道切除等引起的肠道损伤进行恢复,核苷酸有促进肠细胞增殖的功能,并且可以弥补谷氨酰胺不足和肠局部缺血带来的影响。另外,核苷酸可保护小肠细胞免受自由基的攻击和降低小肠炎症发生。

4、核苷酸增强肠道免疫功能 外源核苷酸促进B淋巴细胞核Th细胞抗原的表达,进而促进肠淋巴细胞的分化和成熟。此外,还能够促进应激状态下白细胞的分裂,提高白细胞的吞噬能力,从而提高机体的免疫力,减少了动物肠道疾病的发生。核苷酸除对动物肠道有强大的保护功能外,还可提高动物抗氧化能力,参与动物免疫和脂蛋白的合成。 二、酵母小肽的生理功能 小肽是指含有2个或者3个氨基酸残基的一类化合物。根据所发挥的功能把小肽分为两大类,即营养性小肽和功能性小肽。营养性小肽是指不具有特殊生理调节功能,只为蛋白质合成提供氮架的小肽;功能性小肽是指参与调节动物的某些生理活动或具有某些特殊作用的小肽,如免疫肽、抗菌肽、抗氧化肽、表皮生长因子等。 1、促进氨基酸的吸收,加快蛋白质的合成 小肽的吸收与游离氨基酸的吸收是相互独立的,日粮中的氨基酸形式,对动物蛋白质吸收和代谢有着重要的影响。小肽吸收具有吸收速度快、耗能低、载体不易饱和等特点,同时可消除以游离氨基酸形式吸收时,氨基酸之间的相互竞争,加速蛋白质的合成。动物的消化道能完整的吸收小肽,肝脏、肾脏、肌肉都能完整地利用小肽,肾脏是消化吸收小肽和重新捕获氨基酸的主要场所,经消化道吸收进入血液中的小肽能直接参与体蛋白的合成。与游离氨基酸相比,小肽在吸收和体蛋白合成代谢方面存在着优势。很多研究表明,以小肽形式作为氮源时,动物机体蛋白质沉积高于相应氨基酸日粮或完整氨基酸日粮,整体蛋白质沉积高于相应游离氨基酸饲粮。 2、促进矿物质元素的吸收 小肽的氨基酸残基可与多种金属离子螯合,从而避免肠腔中拮抗因子对矿物元素的沉淀或吸附作用,这种螯合物能直接到达小肠刷状缘,并在吸收位点处发

酵母菌用做饲料添加剂的作用

一种新型水产饲料添加剂酵母细胞壁 摘要:酵母细胞壁是一种新型地环保型饲料添加剂,在水产养殖中应用十分广泛.影响肠道微生态平衡.增殖肠道有益菌,抑制有害菌,提高动物免疫机能.促进新陈代谢大量试验表明,它能,从而提高动物地生产性能和经济效益.综述了酵母细胞壁地组成成分、免疫机理及其在水产养殖中地应用情况,并展望了酵母细胞壁作为水产饲料添加剂地应用前景. 前言 抗生素和化学药物引起病原菌耐药性和养殖水体中微生态环境失衡等问题逐渐成为水产养殖业中日益严峻地问题.随着绿色养殖模式地推广,抗生素和化学药物地使用在水产养殖中受到越来越多地限制.年月日,欧盟公布地一项旨在提高欧洲食品安全水平地计划显示,欧盟将在之后地几年内全面禁止在动物饲料中添加抗生素类药物.欧盟食品安全官员称,到年将全面禁止抗生素用于动物饲料.这促使水产科技工作者寻找既能提高水产动物生产性能厂能预防疾病而又不会明显增加生产成本地营养和管理新措施.此类措施主要依据养鱼八字经“水、种、饵、管、密、混、轮、防”进行设计,如水环境地控制、改良水产动物地遗传品系药物及免疫程序地使用、饲料配方设计和饲料添加剂地开发、养殖管理、放养密度、混养种类、轮捕轮放、预防疾病等.这些措施多数要么改变动物胃肠道微生物菌群.要么增强动物地免疫能力,而后者是最受政府和消费市场欢迎地策略. 因此水产饲料配方师和饲料加工厂商开始着重于通过设计饲料配方和加人新型添加剂而增强水产动物地免疫能力.酵母提取物,尤其酵母细胞壁就是在这方面具有很大潜力地一种新型添加剂. 酵母是一类单细胞微生物,结构简单,属于真菌类.目前已知地酵母菌有余种.酵母及酵母饲料用作饲料添加剂始于世纪年代中期,最早是用做反当动物地蛋白质补充饲料.酵母细胞中含有丰富地蛋白质、族维生素、脂肪、糖、酶等多种营养成分和某些协调因子.酵母菌具有地众多生理功能,使其在饲料工业中得到了广泛地研究与应用. 酵母细胞壁是一种全新、天然、绿色添加剂,其产品淡黄色,粉末状,无苦味,是生产啤酒酵母过程中由可溶性物质提取地一种特殊地副产品,占整个细胞干质量地,在维持细胞形态和细胞与细胞间地识别中起重要作用.近年研究认为,酵母细胞壁含有地甘潺寡糖( 或一)和卜葡聚糖可对细菌、病毒引起地疾病及环境因素引起地应激反应产生非特性免疫力. 酵母细胞壁地成分及其免疫机理 酵母细胞壁地成分 酵母细胞壁地结构是一个动态且被调控地结构,其结构和组成可以被严格调控并能对环境变化作出广泛地响应[].酵母细胞壁主要由葡聚糖、甘露寡糖、糖蛋白和几丁质组成,葡聚糖构成细胞壁地基质,其上覆盖一层甘露寡糖,占细胞壁干质量地左右.酵母细胞壁物质对酸解过程比较稳定,其碎片能完好无损地通过胃或皱胃.这种能抵抗酸消化地能力,造就了它在不同种类动物中地广泛应用. 酵母细胞壁活性成分主要由一葡聚糖()、甘露寡糖()、糖蛋白()和几丁质组成,其它成分如蛋白质、核酸、类脂和灰分占其干质量地以下.酵母细胞壁可作为一种免疫促进剂,通过激发和增强机体免疫力,改善动物健康来提高生产性能,尤其是能充分发挥幼龄动物地生长潜力.其功能主要由甘露寡糖和一葡聚糖来发挥.个人收集整理勿做商业用途 甘露寡糖地免疫机理 吸附肠道病原菌,调节非免疫防御机制 胃肠道非免疫防御系统地主要组成部分是内源微生物菌群.有益微生物菌群覆盖在胃肠道豁膜上皮,能防止其它微生物附着,阻断病原微生物定殖和感染动物地关键步骤茹附到翻膜组织[].以甘露寡糖为主地聚寡糖能够干扰肠道病原体地定殖.个人收集整理勿做商业用途

综述(酵母菌在食品工业中的应用)

酵母菌在食品工业中的应用 *** (*******************************) 摘要:乳酸菌是应用于食品工业的重要菌种,本文阐述了乳酸菌的基本特征和分类,综述了酵母菌在面包制作,酒工业发酵中的应用,并对酵母菌的应用前景进行了展望。 关键词:乳酸菌生理功能应用 The application of the yeast in the food industry ********************* (*************************************************************************** *******************************) Abstract :The Lactobacillus is an important s trains be used in food industry,this paper expounds the basic characteristics and classification of the lactic acid bacteria,summarize the application of yeast be used in the bread manufacturing and fermented wine industry,and application prospect of yeast was prospected. Key words:Lactic acid bacteria Physiological function Application

酵母细胞壁在反刍动物上的应用进展

朱金林康坤蔡学敏李彪安琪酵母股份有限公司 近年来,抗生素滥用引起了人们食品安全、环境危害极大关注。寻找一种安全有效的替代品已迫在眉睫。以酵母细胞壁为主的多糖类的产品是一种绿色安全高效的免疫增强剂产品,被认为是替代抗生素的主要手段之一,引起了人们极大兴趣。 一般认为,酵母细胞壁可通过激发免疫功能,维持微生态平衡,增强动物免疫力,改善动物健康状况。酵母细胞壁产品的生产是酸解、酶解处理的,因此对酸、酶比较稳定,可以完整的通过胃或皱胃,造就了它在不同种类动物的广泛应用。酵母细胞壁在畜禽、水产等动物上的应用已相当成熟和稳定。 近年来随着奶牛养殖业的发展,奶牛养殖户对奶牛疾病、乳品质量、生产性能越来越重视,牧场管理者一直在寻找一种好的解决措施,在此契机下,酵母细胞壁逐步被牧场客户所接受,许多牧场已将酵母细胞壁多糖的使用作为一种必要手段,用于奶牛营养调控。 酵母细胞壁 酵母细胞壁是以酿酒酵母为原料,经特异性酸、酶解处理,获得的绿色营养性产品。酵母细胞壁主要成分是葡聚糖、甘露寡糖、糖蛋白和几丁质。葡聚糖是主要由D-葡萄糖通过β-1,3/1,6键结合而成,这种特殊结构,能激活巨噬细胞、自然杀伤细胞、T细胞和B细胞,提高动物的抗病能力。甘露寡糖(简称MOS)是酵母细胞壁另一重要的多糖成分,具有多种生物活性。甘露寡糖与众多病原菌在动物肠壁上定值的受体相似,能与病原菌结合,抢占结合位点,吸附并排除肠道病原菌。同时它也是一种很好的益生元,有效促进有益菌的增殖,调节动物机体微生物平衡。 酵母细胞壁在反刍上的作用机理 多糖类产品在奶牛上应用比较广泛,常见的多糖有黄芪多糖、乳糖、酵母细胞壁多糖等。 酵母细胞壁在奶牛上的作用机制相比与畜禽、水产动物更加复杂,酵母多糖作为一种功能性多糖,一部分酵母多糖,在瘤胃中,通过双螺旋结构与奶牛饲料中霉菌毒素结合,吸附霉菌毒素,预防奶中黄曲霉毒素B1超标问题。另一部分酵母多糖,被瘤胃微生物降解,变成可消化糖类,参与瘤胃微生物蛋白合成,促进乳蛋白合成,提高乳蛋白水平。还有部分未被降解的酵母多糖,随着饲料营养物质,进入肠道,在肠道发挥刺激免疫功能,提高奶牛体况,减少奶牛发病。 酵母细胞壁在反刍动物上的应用 提高免疫力,减少疾病发生

酵母细胞壁对霉菌毒素作用的研究进展

酵母细胞壁对霉菌毒素作用的研究进展 摘要霉菌毒素给养殖业每年造成严重的经济损失,研究霉菌毒素的危害和正确选择霉菌毒素吸附剂进而减少霉菌毒素造成的危害已刻不容缓。文章介绍了国内外在此领域的最新研究进展,探讨了酵母细胞壁在实际应用中的优势以及今后的研究方向。 关键词霉菌毒素吸附剂;酵母细胞壁 Abstract: The mycotoxins result in serious economy lose to the livestock breeding in every year. It's high time that the study on hazard of mycotoxins and making the right choice absorbent of mycotoxins to reduce hazard of mycotoxins. Keyword: mycotoxin adsorbent ;yeast cell wall32 霉菌毒素研究自 60 年代以来一直是个热门课题,世界霉菌毒素研讨会及美国霉菌毒素委员会为我们提供了丰富的资料。中国在霉菌毒素研究领域比较落后,而中国饲料业及养殖业对霉菌毒素的了解严重不足,这种认识上不足导致中国市场出现许多低效或无效产品。消费者使用后达不到脱除毒素的目的,有可能继发免疫系统抑制,导致传染病的爆发。如在发达国家及世界卫生组织公认黄曲霉毒素是危害最严重的毒素,在中国却有许多公司利用毒素自然存在的浓度差异,片面夸大次要毒素如呕吐毒素,T2毒素的危害,从而误导客户,反观目前在中国市场上,大部分毒素吸附剂功效甚微,原因是多数吸附剂是用膨润土,沸石粉制作。目前在中国市场注册的毒素吸附剂,大部分没有做过系统的研究, 有些产品在国外根本不是作为毒素吸 附剂被批准及使用,但在中国注册后 作为毒素吸附剂使用,在使用非真正 毒素吸附剂或低效毒素吸附剂后,会 种下诱发传染病的隐患。毒素吸附剂 的吸附能力是否可靠需要实验室试验 及动物实验双重证明。根据美国的研 究资料,一般膨润土及沸石粉能吸附 较多的营养物质,而对霉菌毒素的吸 附能力比较小。美国国家农业技术委 员会及曼谷大学的霉菌毒素吸附剂吸 附能力排行榜显示不同毒素吸附剂吸 附能力差别极大,而这种吸附能力的 差异主要由于制作吸附剂的原料的表 面积的差别所决定。 1 不同毒素吸附剂的性能 根据 Phillips 教授 1998 年在毒 理科学上发表的研究结果显示,沸石 粉及膨润土对黄曲霉素几乎没有吸 附效果,使用后动物胚胎早期受黄 曲霉素攻击导致的胚胎早期吸收率到 80%,没有被吸收的胚胎难以发育成

相关主题
文本预览
相关文档 最新文档