当前位置:文档之家› 酵母细胞壁多糖

酵母细胞壁多糖

酵母细胞壁多糖
酵母细胞壁多糖

酵母细胞壁多糖在养殖中的应用

饲用酵母细胞壁多糖不仅可以提高动物的非特异性免疫水平、增强抗感染能力,同时还具有吸附霉菌毒素和调节动物消化道微生态环境的作用。近年来,酵母细胞壁多糖凭借其天然高效、无残留、无耐药性等优点,得到广大养殖户的关注和认可。

1 酵母细胞壁多糖的功效成分和特点

酵母多糖的主要成分是葡聚糖和甘露聚糖。葡聚糖(β-glucan)层靠近细胞膜,位于细胞壁的内层,是细胞壁结构的主要成分,约占细胞壁干重的30%~34%。葡聚糖是由葡萄糖分子以β- (1-3)键为主链相连,并结合有以β- (1-6)键分支的大分子聚合物。这种葡聚糖通常称为β- (1-3)葡聚糖或β葡聚糖。甘露聚糖(MOS)位于细胞壁的外侧,约占细胞壁干重的30%。甘露聚糖是由多个α-甘露糖分子以α-(1→6)键为主链形成的;主链上联结有以α-(1→2)和α-(1→3)键联结数目不等的甘露糖侧链,有些侧链也结合有一些其他基团。

2 酵母细胞壁多糖的作用机理

3 酵母细胞壁多糖在养猪上的应用功效

3.1 酵母细胞壁多糖在提高动物免疫机能上的应用效果

应用实践表明,在猪场长期坚持使用酵母细胞壁多糖,可以起到净化部分病原的作用。吴义师等(2008)在生产实践中,对华东地区数个万头以上猪场应用酵母细胞壁多糖前后圆环病毒(PCV2)的阳性率进行了统计。所有猪场均在使用酵母细胞壁多糖前进行一次PCV2 抗体检测,然后再在坚持使用酵母细胞壁多糖半年或更长时间后进行第2 次检测,结果见表1。

3.2 酵母细胞壁多糖对猪生产性能的影响

由于适量的酵母细胞壁多糖可以改善猪的非特异性免疫水平,并起到吸附饲料霉菌毒素的作用,因而在饲粮中添加酵母细胞壁多糖对改善猪的生产性能具有积极意义。

3.3 酵母细胞壁多糖作为霉菌毒素吸附剂的效果

MOS 在霉菌毒素吸附方面具有如下诸多优势:①广谱吸附;②表面积大,吸附能力强;

③不受胃肠道p H 环境的影响;④不会干扰饲料内养分的吸收;⑤不破坏霉菌毒素的化学结构,在动物体内无残留,对人类健康无影响。国家酵母技术研究中心对酵母细胞壁多糖对主要霉菌毒素的吸附能力进行了分析,结果如表4。可见,酵母细胞壁多糖对霉菌毒素的吸附能力具有广谱和高效的优势。

4 养猪中应用酵母细胞壁多糖的注意事项

4.1 酵母细胞壁多糖的保质期

酵母细胞壁多糖一般采用铝箔包装或带有隔湿薄膜的复合牛皮纸袋包装,保质期在2 年以上。但包装打开后,若一次未用完,必须扎紧袋口,放于通风干燥处,否则由于酵母细胞壁多糖吸水后流散性变差,会影响到与饲料混合的均匀性。

4.2 酵母细胞壁多糖的用量

酵母细胞壁多糖可作为动物免疫增强剂或霉菌毒素吸附剂使用,用量不足或过量都达不到理想的效果。当用作免疫增强剂时,需要依据动物生长的不同阶段和动物体况确定合理的用量;而用作霉菌毒素吸附剂时,需要根据饲料受到霉菌毒素的污染程度确定合理的用量。

4.3 酵母细胞壁多糖与抗生素的联合使用

现阶段,我国养殖业并未全面禁用抗生素,而抗生素与酵母细胞壁多糖的复合使用往往可以达到协同增效的目的。一方面,酵母细胞壁多糖从长期防病方面改善动物状态,而抗生素在疾病暴发阶段可紧急预防和治疗疾病;另一方面,抗生素的使用会增加肝脏解毒的负担,而酵母细胞壁多糖的使用可以改善猪肝脏的功能,提高其解毒能力。酵母细胞壁多糖不能完全替代药物使用,其发挥作用需要一定周期。在转群、运输或气温变化等应激发生前2周以上使用酵母细胞壁多糖,可缓解上述应激对猪的负面影响。

4.4 酵母细胞壁多糖的耐热性

酵母细胞壁多糖能耐受饲料制粒的高温,因而,在颗粒饲料和膨化饲料中可以使用酵母细胞壁多糖。

5 小结综上所述,酵母细胞壁多糖对促进健康养猪、提高猪的非特异性免疫水平、减少饲料霉菌毒素的危害以及改善猪的生产性能具有良好的应用前景。

酵母类产品

徐州赛傅生物科技有限公司 王琳 破壁酵母 “赛傅特”破壁酵母是利用优质的啤酒酵母为原料,采用高效破壁和多联酶解等高新技术,使细胞破壁破壁分解,提纯精制干燥而成,产品富含各种氨基酸、核苷酸、B族维生素、功能性小肽、谷胱甘及酵母细胞壁多糖等多种营养成分,不含载体,耐高温,可制粒。对动物具有极佳的诱食性、免疫性和促生长性。在促进动物的快速生长、提高机体免疫能力、替代部分抗生素而实现绿色养殖等促生长方面有着极大的作用。适用于水产、禽蓄及宠物饲料中。产品特性: 1、诱食性强,可增强禽畜和水产饲料的适口性,提高动物摄食速度和摄食量。 2、改善动物消化道微生态,促进有益菌增殖,降低胃肠疾病的发生率。 3、富含免疫多糖,消化吸收率高,可有效提高饲料利用率,促进生长。 4、富含核苷酸、功能性小肽等活性成分,可显著提高动物的非特异性免疫li,增强抗病力。 5、破壁酵母与酵母细胞壁相比,前者高蛋白,兼顾诱食加免疫多糖,后者低蛋白,侧重免疫多糖。 感官:浅黄至黄棕色粉末,具有破壁酵母特有的气味。 成分保证:粗蛋白≥45.0% 多糖≥25.0% 氨基酸态氮≥2.0% 建议添加量: 动物类别畜禽水产宠物 添加量(kg/T) 5.0~15.0 5.0~10.0 10.0~20.0 包装规格:25千克/袋(纸塑复合包装) 保质期:12个月 注意事项:本产品易吸潮,置于阴凉干燥处存放,用后请密封,防潮。

酵母水解物 (酵母免疫多肽) 产品介绍 酵母水解物选用新鲜啤酒酵母为原料,采用现代生物工程技术,经除杂、自溶、酶解、浓缩、喷雾干燥等工艺精制而成。富含动物生长所必需的氨基酸、小肽、核酸、B族维生素、谷胱甘肽、微量元素等营养物质和功能性免疫多糖。具有促进摄食、消化吸收率高,促进动物免疫系统发育,提高动物抗应激和抗病能力等功效。 纯天然酵母菌体蛋白,生物安全性高,绿色无残留。在无抗时代无异于一剂强心针,推进我国饲料业健康发展。 产品特色 ■菌体蛋白:100%纯正优质啤酒酵母为原料,粗蛋白≥45%; ■高效吸收:富含小肽及游离氨基酸、维生素等促生长因子;蛋白溶解率高达80%以上;■性价比高:诱食、生长、免疫同步作用降低配方成本; ■先进工艺:高效破壁和定向酶解帮助机体释放功能营养。 产品功效 ■诱食——富含呈味谷核苷酸、谷氨酸等天然诱食成分,提高采食量; ■生长——游离氨基酸、小肽等消化吸收率高,提高鱼体蛋白沉积,降低氨氮的排放,净化水体; ■免疫——甘露寡糖促进有益菌增殖,高效吸附霉菌毒素,β-葡聚糖激活巨噬细胞,提高非特异性免疫力及特异性免疫力; ■修复——减少肠道刺激,加速肠绒毛和肝脏细胞的损伤修复。 添加量: 育苗:10g-15g/m3 特种水产:10-15kg/吨料 保质期:18个月 β-葡聚糖 利用生物技术研发生产的一种新的产品,其来源于特意啤酒酵母。它是一种多糖,其β-1,

酵母发展和现状

酵母的发展和现状 一、活性酵母在国民经济中的作用 活性酵母: 是指以粮食、糖类等为原料,利用生物工程技术、发酵通风培养得到的、具有发酵活性的纯微生物制品。 1. 食用酵母 食用酵母一般是指用发酵法生产的供人类食用或食品加工用的活性酵母制品。产品含有丰富的蛋白质、B 族维生素、脂肪、核酸、固醇和多种酶类等物质,同时又具有将糖类发酵产生酒精和CO2的特性。 从酵母所含的蛋白质量来衡量,它高于大豆,为瘦猪肉、牛肉、鱼类鸡蛋的2 倍多。 2. 酵母抽提物 酵母抽提物(yeast extract ) ,又称为酵母浸出物。它是将具有活性的酵母细胞经过加工得到,是酵母细胞内物质的浓缩物,产品本身已不具备发酵活性。 国内酵母抽提物的商品名称有酵母精、酵母味素和酵母调味料等。 3. 药用酵母 一般是将酵母制成酵母片或酵母粉供人摄取。如在酵母培养过程中加人微量元素制成硒酵母、铬酵母等特种酵母制品,用于补充不同人群微量元素的不足,以预防一些特殊病症的发生。 如含硒酵母用于治疗克山病和大骨节病,并有一定的防止细胞衰老的作用;含铬酵母可用于治疗糖尿病等。 4 饲料酵母 饲料酵母是将培养的酵母,或从酿酒过程中回收的废酵母经过干燥制成的粉末状或颗粒状产品,一般不具备发酵活性。 它含有丰富的蛋白质(40 %一48 % )、B 族维生素、氨基酸等物质,广泛用作动物饲料的蛋白质补充剂。 二、活性酵母发展史 从酵母在人类历史的发展过程中的作用来看,可以分为3 个阶段: 1. 利用啤酒和酒精生产副产物―废酵母的阶段

1781 年,荷兰人用离心机将上面发酵啤酒中的酵母除去酒花苦味、采用螺旋压榨机压干的块状产品,第一次在市场销售。产品被称为压榨酵母(compressed yeast )或面包鲜酵母,这是最早出现的商品酵母。 2. 形成专业化商品活性酵母生产的阶段 从19 世纪末至20 世纪中期约50 年期间,压榨酵母的生产在欧洲得到了快速的发展,生产工艺和生产装备逐步完善,生产原料从粮食改为废糖蜜,使面包酵母的生产水平大幅度提高。 3 活性干酵母产业的发展 最早出现的活性干酵母(active dry yeast , ADY )起源于19 世纪上半世纪。 20 世纪60 年代末,荷兰Gist 公司首先开发成功并生产出发酵活性高、保质期长、可直接与面粉混合制成面团的干酵母,产品被称为高活性干酵母(high active dry yeast 或instant active dry yeast ) ,发酵活性一般可以保持在1 一2 年。 三、酵母生长与生产 1 面包酵母的生长特性和要求 面包酵母(顾名思义是制造面包用的)和酿造酵母(造酒用的)在酵母分类中都划分在一种,即Sacchromyces cerevisiae。 酵母的自然的生境(habitat)大都是含糖丰富的,通气不良的中温场所。通常在花的蜜腺,水果,甘蔗表面等地方。它们以发酵的方式生活,即由糖产生乙醇和CO2,可以用下式表述: C6H12O6→2C2H5OH+2CO2 由于酵母菌体是活性干酵母的生产原材料,因此活性干酵母工厂必须对酵母菌体的生产倍加注意。 酵母的耐干性或对制造活性干酵母时所施的烘干工艺的配套性和酵母细胞内所含的海藻糖的量呈正相关,因此菌种的选择至关重要,如中科院微生物所的X 8、美国ATCC的7752菌株都是可用的优良菌株,而且极易由商品自行分得。 2 酵母生长的动态 由酵母的生长曲线(图19-1)可以看到酵母的细胞增殖主要是在对数期完成的。而且酵母的培养工艺要求接种到生产罐的酵母立即进入对数增殖状态,即在生产罐以前就完成了迟缓期。

酵母菌在废水处理中的应用

酵母菌在废水处理中的应用 系别专业:****** 姓名:** 学号:************ 摘要:酵母茵作为一种极为宝贵的微生物资源,既具有细菌单细胞、生长快、能形成很好的絮体、适应于各种不同的反应器等特点,又具有真菌细胞大、代谢旺盛,耐酸、耐高渗透压、耐高浓度的有机底物等特性,因此广泛地应用于废水的处理。随着对酵母茵研究的深入和其他相关水处理技术的开发,酵母茵在废水处理中将得到更多、更好、更深的应用,在实现环境、社会和经济等可持续发展具有特殊的优越性。 关键词:酵母菌废水处理高浓度有机废水有毒废水重金属离子废水酵母菌是一大类单细胞真核微生物的总称,主要分成两类:(1) 发酵型酵母,是一种只能利用六碳糖进行酒精发酵的酵母;大部分酵母菌是属于此类;(2)氧化型酵母,它包括假丝酵母、球拟酵母、汉逊酵母等,这类氧化型酵母菌正是水处理所利用的重点对象;因为它能利用多种有机物(简单糖,有机酸、醇等),有的种能利用复杂化合物,因为酵母菌体内含有特殊的氧化分解酶[1]。除了强悍的代谢能力,因为菌体较大,因此也比较容易沉降。另外,酵母菌在快速分解污 染物的同时,还能能获得酵母蛋白[5],既消除了环境污染,又进行综合利用,形成良性的生态循环,符合绿色化学的理念[2]。一般废水可分为高浓度有机废水,含有重金属离子的废水,有毒、含难降解污染物废水,以及生活废水[3],本文将通过酵母菌对这几种废水的处理简述一下酵母菌在废水处理中的应用。 一、高浓度有机废水 高浓度有机废水,废液的BOD5、COD较高,COD一般在2000mg/L,有的甚至高达几万乃至几十万mg/L,并含有少量残糖、氮类、有机酸和无机盐等营养物质,同时具有强酸强碱性,若不加处理排放,不仅浪费资源,而且严重污染水体。一般以淀粉质原料生产柠檬酸、土霉素、味精,色拉油废水,赖氨酸生产废水等,都会产生大量的高浓度有机废水[4]。下面我们就以嗜酸性酵母处理味精废水母液简述酵母菌对高浓度有机废水的处理。 味精生产主要工艺流程包括原科处理、淀粉液化和糖化、微生物发酵,谷氮酸分离提取和最后味精精制过程。而污染最为严重的是提取谷氮酸后的母液,其一般具有都具有“五高一低”的特点,即COD高,BOD5高,硫酸根含量高,氨氮含量高,菌体含量高,低PH的特点。而经过离子束诱变后的苹果洒酵母菌,变异生成的嗜酸性酵母菌对味精废水母液有非常强的适应性,以母液中的污染成分为碳源、氮源,从而产生了针对母液非常强的处理能力[6][7][8]。利用酵母菌处理该废水是合理高效廉价的方法,不仅在工艺中可以得到单细胞蛋白,创造一定的经济效益,同时还克服了传统采用具有较高容积负荷能力的厌氧处理法,具有一定的选择性,对于不能形成颗粒污泥的废水,含硫、含氮量高的废水不太合适的缺点。 二、含重金属离子废水 含重金属离子废水主要是含有汞、镉、铅、锌、铜、钴、镍、铬以及砷等毒性显著的重金属的废水。主要来源于矿冶、化工、电子、仪表和机械制造等行业。酵母菌可以通过表面络合、离子交换、氧化还原等作用(活性生物体还有酶促机理)吸附废水中重金属离子,净化废水并可以回收某些贵重金属。下面我们就以自絮凝酵母对的Pb2+吸附研究酵母菌对含重金属离子废水的处理。

酵母多糖

酵母多糖 1、酵母多糖就分子量而论,有从0.5万个分子组成的到超过106个的多糖。由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖才称为多糖。比10个少的短链的称为寡糖。不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖)。 2、酵母多糖的生物学功能通常具有贮藏生物能〔如:淀粉、糖原、菊粉(inulin)〕和支持结构〔如:纤维素、几丁质(chitin)、粘多糖〕的作用。但是,细胞膜和细胞壁的多糖成份不仅是支持物质,而且还直接参与细胞的分裂过程,在许多情况下成为细胞和细胞,细胞和病毒,细胞和抗体等相互识别结构的活性部位。多糖无甜味,在水中不能形成真溶液,只能形成胶体,无还原性,无变旋性,但有旋光性。 3、多糖的分类均一多糖:由一种单糖分子缩合而成的多糖,叫做均一多糖。常见的有:淀粉、糖原、纤维素等。不均一多糖:有不同的单糖分子缩合而成的多糖,叫做不均一多糖。常见的有:透明质酸、硫酸软骨素等。 4、酵母多糖生物学特性某些多糖,如纤维素和几丁质,可构成植物或动物骨架。淀粉和糖原等多糖可作为生物体储存能量的物质。不均一多糖通过共价键与蛋白质构成蛋白聚糖发挥生物学功能,如作为机体润滑剂、识别外来组织的细胞、血型物质的基本成分等。多糖类化合物广泛存在于动物细胞膜和植物、微生物的细胞壁中,是由醛基和酮基通过苷键连接的高分子聚合物,也是构成生命的四大基本物质之一。多糖是存在于灵芝、香菇、酵母等真菌类生物中的一种功能因子;酵母多糖:侧重于抗辐射(电脑族),抗病毒(增强免疫力),特殊环境职业者;清肠排毒(清除体内毒素和垃圾),瘦身族主推酵母葡聚糖,配合酵母B族维生素服用。 啤酒酵母多糖提取工艺条件的研究 吴小刚吴周和吴传茂 摘要试验研究了从啤酒酵母中提取胞壁多糖的提取工艺。提取工艺路线为: 酵母溶解→冻融→超声波破碎→碱溶→中和→沉淀→洗涤→烘干。通过正交试验对酵母破壁和碱溶条件进行优化,寻求最佳的工艺条件,多糖得率为19.4%,用苯酚-硫酸法测定多糖的含量为51.9%。 关键词酵母多糖;破壁;碱溶:提取工艺 中图分类号Q815 Studying on craft condition of beer yeast polysaccharide - extracting Wu Xiaogang, Wu Zhouhe, Wu Chuanmao Abstract This experiment is studying on the craft of polysaccharides extraction from beer yeast cell-wall.The craft route drawn: yeast dissolve→freeze thawing→ultrasoinc crush→alkali abstraction→neutralize→deposit→solvent wash→dry. Seek the best craft condition,as well as optimize conditions of crush wall and alkali dissolving by orthogonal experiment, yield of polysaccharide is19.4%. Determination with phenol-sulphuric aicd law, content of polysaccharide is51.9%. Key words yeast polysaccharide;crash wall;alkali dissolving;extracting craft 近年来,多糖及多糖复合物在生物体的作用越来越受到生物学家们的重视,成为生物学

酵母葡聚糖

酵母葡聚糖研究 摘要:酵母葡聚糖作为一类免疫多糖,其具有生物活性强,毒副作用低,属高效生物应答剂等特点而被广泛应用。文章论述了酵母葡聚糖的结构特点和生物活性及免疫作用机理,介绍了酵母葡聚糖的免疫学功能以及医学方面的应用现状,并综述了酵母葡聚糖在各种工业中的应用前景。 关键词:酵母葡聚糖结构特性免疫学作用应用 在1939 年人们提出啤酒酵母具有免疫增强作用,到20世纪60年代,研究人员发现提供免疫特性的主要因素是存在于酵母细胞壁的多糖成分[1]。1957年,Benacerarf和Sebestyn 发现静脉注射酵母细胞壁的酵母多糖可以提高巨噬细胞的吞噬活性,促进肝脏、脾脏巨噬细胞的增殖。随后,他们对酵母细胞壁多糖进行了纯化;发现酵母多糖的主要成分是β-葡聚糖、甘露聚糖和几丁质[2]。终于在1961年,Riggi等确定酵母多糖的活性成分是β-D-葡聚糖,所以人们就将这种具有免疫活性的酵母多糖称作酵母葡聚糖。 酵母葡聚糖具有免疫活性的这一发现开启了葡聚糖作为免疫活性物质的新纪元。酵母葡聚糖是第1个被发现具有免疫活性的葡聚糖,随后,酵母葡聚糖又被发现具有抗感染、抗肿瘤、抗辐射和促进伤口愈合等功能,是一种重要的生物效应应答剂(biological response modifiers ,BRM)。因此,开发利用酵母葡聚糖具有重要的应用前景。 1 酵母葡聚糖的结构研究 酿酒酵母细胞壁约占细胞干重15%-30%,糖成分约占细胞壁干重的50%~60%,酵母葡聚糖包括碱溶性和碱不溶性两种,其中碱溶性和碱不溶性的含量大致相当[3]。关于两种葡聚糖成分的详尽化学分析,Bacon 等(1969)提出酵母葡聚糖是由以β-1,3-葡聚糖为主、β-1,6-葡聚糖为辅的混合物组成。Manners 等所作的葡聚糖结构分析发现:85%的碱不溶性葡聚糖是β-1,3-连接,同时在链间穿插3%β-1,6-葡聚糖苷键,并且有着1450±150 的聚合度(DP),相当于240kDa 的分子量;其余15%的碱不溶性葡聚糖是β-1,6-键连接的,呈高度分支,含有约19%β-1,3-葡聚糖苷键,聚合度141±10,相当于22kDa的分子质量。从他们的结构分析来看,尚不清楚存在单分支还是多重分支,分子是呈层状、梳状还是树状结构。一些学者认为,低度的分支可便于线性链段的排列并形成螺旋结构,从而使得大分子具有一定的刚性和在水中不溶。 关于葡聚糖和其它细胞壁成分的相互关系,Peter等研究显示:壳聚糖通过其还原末端的β-1,4-糖苷键与β-1,3-葡聚糖链的非还原末端连接;甘露糖蛋白质(O-和N-糖苷键)与壳聚糖及β-1,3-葡聚糖相连接,这种连接是通过其与C-末端葡聚糖磷酸基肌醇(GPI)残基突起端连接而实现的。另外,Kapteyn等提出的所有4种细胞壁成分连接聚集成一个模块,以及充当着酵母细胞壁构建基团的其它物质。

酵母细胞壁在动物生产中的应用

酵母细胞壁在动物生产中的应用 摘要酵母细胞壁是从啤酒酵母中提取的全天然绿色添加剂,对动物的免疫功能有促进作用,在动物生产中已经得到广泛的 应用,并取得良好的效果。文中主要综述酵母细胞壁的主要结构和功能,以及酵母细胞壁在畜禽和水产动物生产中的应用。 关键词酵母细胞壁免疫动物生产 酵母细胞壁(Yeast cell wall,YCW)是生产中应 用最多的多糖。酵母细胞壁是将啤酒酵母培养增殖 后,收集菌种细胞,音波震碎,多次清洗过滤,将其可 溶物在高温、酸碱处理后离心分离,提取的细胞壁于 特定的温度和压强下进行喷雾干燥而得到的一种全 天然绿色添加剂。产品为淡黄色粉末,无苦味。啤酒 酵母细胞壁占整个细胞干重的 20%~30%,它在维持 细胞形态和细胞与细胞间的识别中起重要作用。 1 酵母细胞壁的结构和功能 酵母细胞壁分为 3 层,内、外层为甘露寡糖和糖 蛋白,在细胞与细胞、细胞与环境之间的识别和相互 作用及决定酵母免疫特异性中起作用;中间层为β- 葡聚糖和几丁质,其作用是保持细胞壁的稳定性,维 持其形态 [1] 。酵母细胞壁主要成分是β-葡聚糖(β- Glucan),占 30%;甘露寡糖(Manna oligosaccharide, MOS),占 30%;糖蛋白(Glucoprotein),占 20%;几丁 质(Chitin);其他成分有蛋白质、核酸、类脂和灰分, 占细胞壁干重的 20%以内 [2] 。 1.1 β-葡聚糖β-葡聚糖广泛存在于许多细菌、真 菌、蘑菇、海藻及高等植物中,因其具有免疫刺激、抗 炎症、抗感染、抗微生物、抗肿瘤、降低胆固醇、抗辐 射以及治愈创伤等生物活性和医学特性 [3] ,日益引 起人们的关注。 β-葡聚糖是细胞壁最重要的结构物质,对侵入 人和动物体内的微生物具有防御功能。一些研究表 明,磷酸化葡聚糖的医疗价值在于它能与所感染的 致病细菌、真菌和病毒结合,从而起到缓解病情的作 用。β-葡聚糖是葡萄糖的一种聚合物,β-1,3-D-葡 聚糖构成了它的骨架,β-1,6-D-葡聚糖作为它的侧

酿酒酵母不对称遗传分析(设计)

酿酒酵母不对称遗传分析 生物科学10300700042 周博言周五下午108 注:这个实验设计我上传了百度文库,老师如果在百度发现和我这个一模一样的设计不要误会,那个就是我设计的,不是我抄袭。 原理 在酵母细胞出芽过程中,细胞衰老造成的损伤在母细胞和子细胞之间的分配是不对称的,绝大部分损伤被母细胞所保留。然而,这种不对称遗传也不总是这样,在母细胞衰老到达一定程度时,它所产生的子细胞将不可避免地带有母细胞的部分衰老物质。 酿酒酵母很早就被当做研究衰老的模式生物,早在1989年,Egilmez和Jazwinski就提出了“细胞质衰老因子”假说。1997年,Sinclair等人提出了酵母复制衰老的ERC积累学说,认为染色体外rDNA环——ERC可能就是“细胞质衰老因子”。酿酒酵母rDNA座占整个基因组的10%,由编码rRNA的9.1kb重复单元串联重复100~200个拷贝组成,定位于染色体ⅩⅡ。ERC可以通过胞内DNA加工系统的作用,由串联重复的rDNA经同源重组从基因组中切出。而ERC具有自身ARS(autonomously replicating sequence),能在每一次S期复制1次,而在母细胞内呈指数型增长。同时由于酵母细胞出芽分裂的不对称遗传,ERC在分裂时保留在母细胞中而不进入子细胞,从而使母细胞中大量积累ERCs。但随着母细胞持续地衰老,这种不对称遗传将无法维持下去,最终极度衰老的母细胞产生的子细胞中也将不可避免地带有ERCs。 本实验将通过培养酿酒酵母,分离检测ERCs,对比不同代数母细胞产生的子细胞及衰老母细胞中ERCs的含量,验证酿酒酵母的不对称遗传。 注: 关于ERCs的不对称遗传的机制,Shcheprova等人提出了一种氯苄乙胺依赖的细胞核扩散屏障,它阻碍了母细胞核孔通向子细胞的通道。而环形DNA分子,比如ERCs,缺乏一种着丝粒序列而无法通过该屏障,最终被留在了母细胞中。 尽管ERCs如何造成酵母细胞衰老的机制尚未明确,但很多假说已被提出。一种猜测是,ERCs会与那些在复制、转录过程中起重要作用的因子发生物理上的相互作用,从而使它们无法行使正常的功能。另一种可能性是,过多的ERCs导致了rRNA和核糖体蛋白之间数量的不平衡,进一步削弱了核糖体其本身的功能。而Ganley等人的研究则认为,ERCs通过诱导rDNA使其不稳定性限制了酵母细胞的RLS(复制型寿命),并且,他们认为这正是衰老的最根本的原因。 材料 酿酒酵母细胞 培养基1(单位均为g):葡萄糖25、酵母浸粉2、(NH4)2SO42、KH2PO45、MgSO4?7H2O0.4、CaCl20.2、1000ml蒸馏水 培养基2(单位均为g):葡萄糖10、酵母浸粉2、(NH4)2SO42、KH2PO45、MgSO4?7H2O0.4、CaCl20.2、1000ml蒸馏水 仪器与试剂 1.仪器

6.1酵母工艺流程

酵母生产工艺流程示意图 冷藏) 鲜酵母成品 干酵母成品

1.原辅材料验收:按《采购控制程序》选择合格的原、辅材料厂家,入厂时按公司制定的相应原材料标准进行验收,因为原材料加入之前要用高温灭菌、热水配制,有灭菌过程,所以卫生方面主要控制重金属含量; 2.包装材料:内包装材料按公司制定的标准验收,并按《包装材料的管理》检验其杂菌数。 3.空气:酵母发酵是有氧发酵,需要大量空气进入发酵液,空气首先经过甲醛消毒,然后经过粗效、精效过滤器过滤除杂菌。 4.辅助材料的配制:辅助原材料用90 ℃以上热水溶配,并在贮罐60 ℃以上保温,然后泵入发酵、干燥使用,流加原料,每周检测各配制原料的杂菌数。 5.糖蜜处理:糖蜜先经过≥80 ℃加热(时间≥2小时)分离除渣,然后经125-135 ℃高温瞬时灭菌(时间:9秒),泵入发酵罐。输送管线糖蜜循环,以保证管线温度高,而不残存杂菌。每周检测各配制原料的杂菌数。 6.菌种选育:菌种按《菌种选育操作规程》选育菌种,菌种选育最重要的要求保证操作过程中不能染菌,菌种无杂菌,然后经过三角瓶、卡氏瓶扩大培育,接入纯培养罐。 7.纯培养罐培养:将糖蜜加入PC罐里,经过121℃ 30分钟灭菌后,降温至30℃,接入卡氏瓶菌种,经过通风纯培养,发酵液达到乙醇和湿重指标后,转入种子培养罐培养。

8.种子罐发酵:发酵罐加入工艺水、转入纯培养菌种、流加入N、P营培盐,通风扩大培养,按发酵工艺规程规定的时间和指标发酵。 9.酵母分离:种子发酵液培养结束后,通过分离机把酵母和水等分开,成干物质20%左右的酵母乳,进入酵母乳贮罐。 10.商品培养:在商品发酵加入工艺底水,接入种子酵母乳、流加N、P、硫酸镁、硫酸锌等营养盐,通风发酵。 11.商品酵母分离:按9方法将商品酵母液分离成酵母乳,进入酵母乳贮罐。 12 酵母乳贮存:分离后酵母乳进入贮罐,然后泵入真空转鼓过滤. 13.过滤:商品酵母乳加入盐水,泵入真空转鼓过滤器,通过真空转鼓抽滤,把酵母乳抽滤成含水量为36%左右的酵母泥。流加乳化剂与酵母泥混合后造粒. 14.造粒:通过造粒机把酵母泥挤压成很细酵母面条以增大表面积,便于热交换。造粒后酵母进入干燥床. 15.干燥:酵母粒通过在沸腾干燥床中和干燥的热空气进行交换,迅速脱水干燥成干酵母。 16.震荡筛:干燥后酵母,通过20目震荡筛除去干燥过程中结团的酵母。过筛后的酵母送入干酵母贮罐. 17.干酵母均质:将干酵母贮罐里的酵母分批放入均质器里,开搅拌器均质,送入包装机.

各种酵母特性

一、酿造干白葡萄酒的酵母 (一)、VL1 (1)葡萄品种:用于各种白葡萄品种 (2)酿酒特性:酒精发酵过程中生成的乙烯苯酚特别少,尤其遇到光照不足、降雨量多的年份,部分腐烂的葡萄用该菌种是最佳的首选,可限制乙烯苯酚的产生。 (3)风格:该菌种能最大限度地将葡萄含有的天然芳香物质和产地的种植土壤特点在酒中得以还原。从而使获得的葡萄酒幽雅芬芳,丰满肥硕。 (4)酿酒类型:浓郁高端耐久存干白。 (二)、VL3 (1)葡萄品种:霞多丽等。 (2)酿酒特性:该菌种可以显示和优化各种白葡萄酒的芳香潜力。通过它对葡萄酒中香味母体的作用,其酶促结构使它显示各种特性香味。 (3)风格:具有黄杨和黑醋栗的芽等香味,浓郁丰富,令人喜爱。 (4)酿酒类型:浓郁顶级耐久存干白。 (三)、ST (1)葡萄品种:琼瑶浆等。 (2)酿酒特性:该菌种和SO2的结合潜力低,并且非常灵敏,容易使发酵停止,具有达到15%酒精发酵能力,挥发酸、硫化氢聚集较少。 (3)风格:完美和谐,口感均衡。 (4)酿酒类型:高档甜型葡萄酒。 (四)、BO213 (1)葡萄品种:各种白葡萄 (2)酿酒特性:适用于低温发酵的甜葡萄酒和白葡萄酒,具有抵抗高酒度的良好特性。特别是具有再启动停止发酵的巨大潜力。 (3)酿酒类型:停止发酵的再启动。 (五)、CY3079 (1)葡萄品种:霞多丽、雷司令、贵人香、白品乐等。 (2)酿酒特性:起酵缓慢、发酵平稳,挥发酸、硫化氢聚集较少,泡沫低、沉淀好,发酵结束后具有陈酿的酒泥香。 (3)风格:新鲜的黄油味、烤面包、蜂蜜、坚果、香子兰和杏仁等香味,陈酿的酒泥香伴有烤面包、榛子和木质对等香气特点。 (4)酿酒类型:浓郁顶级耐久存干白。 (六)、R-HST (1)葡萄品种:雷司令、贵人香。 (2)酿酒特性:发酵力强,在较低温度下迅速启动,既能保留葡萄品种固有的新鲜果香,又能提高结构感,也适合陈酿。 (3)风格:能展露出雷司令、贵人香等品种的典型性香气,果香浓郁、醇和爽口、酒体完整、回味延绵,陈酿后表现亦佳。 (4)酿酒类型:醇香中短期陈酿高档干白。

(完整版)馒头发酵方法与过程实验报告

馒头发酵方法与过程实验报告 馒头的发酵方法很多,有老面发酵法、酒曲发酵法、化学膨松剂发酵法、酵母发酵法等等。实验证明无论从食品营养的角度,还是从操作的角度,酵母发面都有很强的优势。用酵母发面不仅适合家庭和工业化生产线,也适合小型作坊式馒头房,特别是对于要求不增加成本的用户也是非常合适的。酵母发酵是馒头生产中最关键的环节,它对于馒头质量的好坏有着直接的关系。 一.常见的酵母发酵工艺 酵母的发酵原理是利用面粉中的糖份与其他营养物质,在适宜的生长条件下繁殖产生大量的二氧化碳气体,使面团膨胀成海绵状结构。 在酵母馒头的生产中,常见的发酵工艺简单的归纳起来主要有以下两种: 1.一次发酵法 原辅料: 和面、压面、成型、发酵、汽蒸 (1)操作方法: 和面: 将所有的原辅料一次加入和成面团,干酵母用量0.3%,鲜酵母用量为1%左右,加水量38-40%,和好的面团温度一般应控制在28℃。 成型: 馒头成型由馒头成型机来完成,家庭制作由手工完成,根据需要制成各种形状和大小的馒头坯。 发酵: 在温度30-32℃,湿度为75-80%的条件下让面团发酵35分钟。没有恒温恒湿条件的,也可以采取其它相应的保温措施。 蒸煮: 面团发酵完成以后,沸水上笼蒸20分钟。 (2)发酵特点: 用一次发酵法生产馒头,具有工艺线路短,生产周期短,生产效率高劳动强度低等许多优点,并且生产出来的馒头有很好的咀嚼感。因此该方法被许多馒头厂家广泛使用。 2.二次发酵法 部分原辅料:第一次和面、第一次发酵、第二次和面 压面、成型、第二次发酵、汽蒸 (1)操作方法: 第一次和面取30%左右的面粉加入所需的干酵母(添加量以第一次所加面粉量的0.16%计)再加上50%左右的水(加水量以第一次所加面粉量计),和成面团。 第一次发酵和好的面团在温度26-28℃,湿度70-80%的条件或温暖的自然条件下发酵8-12小时。发酵时间也可以根据自己生产的实际情况通过调整酵母的用量、两次和面时面粉的配比以及发酵温度、湿度来灵活调节。

6.1酵母工艺流程

酵母生产工艺流程示意图 空气 原糖蜜储罐 酵母菌种 (冷藏) 鲜酵母成品 干酵母成品 1.原辅材料验收:按《采购控制程序》选择合格的原、辅材料厂家,入厂

时按公司制定的相应原材料标准进行验收,因为原材料加入之前要用高温灭菌、热水配制,有灭菌过程,所以卫生方面主要控制重金属含量; 2.包装材料:内包装材料按公司制定的标准验收,并按《包装材料的管理》检验其杂菌数。 3.空气:酵母发酵是有氧发酵,需要大量空气进入发酵液,空气首先经过甲醛消毒,然后经过粗效、精效过滤器过滤除杂菌。 4.辅助材料的配制:辅助原材料用90 ℃以上热水溶配,并在贮罐60 ℃以上保温,然后泵入发酵、干燥使用,流加原料,每周检测各配制原料的杂菌数。 5.糖蜜处理:糖蜜先经过≥80 ℃加热(时间≥2小时)分离除渣,然后经125-135 ℃高温瞬时灭菌(时间:9秒),泵入发酵罐。输送管线糖蜜循环,以保证管线温度高,而不残存杂菌。每周检测各配制原料的杂菌数。 6.菌种选育:菌种按《菌种选育操作规程》选育菌种,菌种选育最重要的要求保证操作过程中不能染菌,菌种无杂菌,然后经过三角瓶、卡氏瓶扩大培育,接入纯培养罐。 7.纯培养罐培养:将糖蜜加入PC罐里,经过121℃30分钟灭菌后,降温至30℃,接入卡氏瓶菌种,经过通风纯培养,发酵液达到乙醇和湿重指标后,转入种子培养罐培养。 8.种子罐发酵:发酵罐加入工艺水、转入纯培养菌种、流加入N、P营培盐,通风扩大培养,按发酵工艺规程规定的时间和指标发酵。 9.酵母分离:种子发酵液培养结束后,通过分离机把酵母和水等分开,成干物质20%左右的酵母乳,进入酵母乳贮罐。

5个酵母电转化方案

5个电转化方案 方法一:高效 1.收集菌体 取1mlGS115过夜培养物(OD约6-10) 分装到1.5ml EP管中,4℃、10000g 离心1min,弃上清,沉淀用无菌水(4℃)洗涤,同样条件下离心,弃上清。 2.菌体处理 加入1ml处理液,室温下放置20min。 处理液: 10mM LiAc 10mM DTT 0.6M sorbitol 10mM TrisHCl(pH7.5) 3.离心,弃上清,加入1ml 1M sorbitol ,离心,弃上清, 4.用1M sorbitol洗涤二次,到最终体积约为80μl.(菌体太多可适当弃去部分) 5.加入10μl.经过BglⅡ酶切处理的工程质粒,混匀后转入电击杯中,冰浴5min. 6.电转. 1.5kv,25μF,200Ω条件下进行电转。 7.电击后立刻加入1mL 1M sorbitol,吸出后于30℃培养2h。 8.取一定量涂平板(YPDS + Zeocin,涂布的量分别为100、200微升,剩余的经离心处理后全部涂在一个平板上) 有一点要注意的是处理液中的DTT是在使用前加入,其它配好后于4度保存,DTT单独于-20度保存,可配成100倍的贮备液。 方法二:按下面步骤转化,开始每个板子只长了一二十菌落;小细节修改后,每个板长了约100个. 步骤如下: 1、目的DNA(pPIC9K),经电泳检测已经线性化(SalI酶切); 2、DNA纯化方法是经酚仿-氯仿两步抽提后,无水乙醇沉淀的,目测定量应足够; 3、GS115甘油菌经新鲜平板复苏后,5ML培养过夜,16h左右后,取菌1:100稀释,接种于70ml菌液扩大培养,14h后测得OD600约1.3左右。 4、将sorbital、水和菌液均冰浴; 5、菌液离心5min-100ml冰水洗涤-50ml冰水洗涤-4ml sorbital洗涤,然后溶解于300ul 冰sorbital; 6、加入约5~10ug的DNA,枪吹匀,置0.2CM电转杯静置5min; 7、电击,1,5KV. 8、立即加入1ml冰浴的sorbital,静止10min。 9、取100ul转化液,涂布10cm的MD平板。 做了一点修改每块板子大概能长100来个菌落(一般需要2天左右): 1、菌液收集时间:以前可能是OD值测得不太准确,我然后把菌液分别做了1、 2、4、8、16倍稀释,看其OD值是否呈线性关系。1、菌液测OD值时,建议将菌液稀释不同浓度测定,这样才准确些。菌液看上去浑浊,但OD值不高,很可能就是你的OD稀释倍数不够!你分别稀释2倍、4倍、8倍、10倍等,每个倍数做3-5个重复,应该可以大致推断OD 值是否准确! 2、我开始是先挑单克隆于5mlYPD中,过夜16h后,转接于50ml YPD中,培养大概18个小时吧。OD值是否测准可以这样估算:OD600为40左右时,菌体湿重(6000rpm离心

酵母细胞壁生产工艺.

酵母细胞壁工艺流程及说明 徐州赛傅生物科技有限公司生产工艺流程 一、工艺流程 1、预处理工艺 酵母泥→过滤→加水稀释→过滤除杂→沉淀分离 2、酵母细胞壁的加工工艺 脱苦→除臭→离心分离→自溶→酶解→破碎→酶处理→灭酶灭菌→离心分离→浓缩→喷雾干燥→包装 二、工艺流程说明 1、对酵母泥进行简单过滤,除去一些较大杂质。 2、加水稀释:为了酵母泥筛分顺利进行,必须将酵母泥加水稀释,以减少筛分的阻力。 3、过筛除杂:将稀释的酵母泥充分搅拌均匀,用不同目数的两层滤网过滤,即可除去酵母泥中的全部可见杂质。 4、沉降分离:经过筛分后的酵母乳液,静止一定时间,使自动沉淀,倾出上清液,即得不含杂质的酵母。 5、脱苦、脱臭:在啤酒生产过程中,由于酒花的苦味物质及一些代谢产物吸附在酵母泥中,使酵母泥带有令人不愉快的苦味和气味,故要进行脱苦脱臭处理。其方法:将上述酵母用无菌水以与酵母量一定比例进行清洗数次,再用一定比例NaCl

溶液洗一次,即可达到脱苦脱臭的目的。 6、离心分离:经脱苦脱臭的酵母乳进行离心分离,即得脱苦脱臭的酵母泥。 7、自溶:将上述酵母泥和水按一定比例混合,搅拌均匀,使干酵母比例在一定范围,调pH值为M,并加入助溶剂,然后在A温度水浴放置几十分钟,再调温至B℃保持Q小时,注意每间隔一段时间开动搅拌一下。 8 、酶解:自溶结束后,调整pH值至中性,调整温度到合适指标,加入一定标准的蛋白酶,进行酶解一定时间, 9、破碎:酶解结束后,利用超声波设备对酵母细胞进行破碎 10、酶处理:破碎结束后,加入另外的一种复合酶进行进一步酶解,达到指定指标。 11、灭菌灭酶:在一定温度条件下加热H分钟,达到灭酶灭菌的效果。 12、离心分离: 把酵母细胞壁与抽取物分离出来。 13、浓缩:采用真空浓缩(一定压力),将其浓缩为一定比例。 14、喷雾干燥:采用离心喷雾干燥设备,对浓缩物进行喷雾干燥,至成品。 关键因素 1、自溶过程中的时间、温度、pH值、助溶剂成分组成及浓度等参数会影响到 破碎的效果 2、酶解过程中的酶制剂选择及参数的控制会影响到主要成分的含量 3、破碎设备参数的控制会影响到成品的纯度 4、酶处理过程处理的质量影响到主要成分活性功效。

酵母工艺与生产 化验室检验操作规程

目录 一、原辅材料的分析 (一)糖蜜及糖质原料分析 1、锤度 2、灰分 3、总糖 4、还原糖 5、色度 7、胶体物质 (二)化工原料分析 1、硫酸铵 2、尿素 3、磷酸氢二铵 4、硫酸 5、纯碱 (三)土豆淀粉的分析 1、水分的测定 2、灰分的测定 3、蛋白质的测定 4、斑点的测定 5、细度的测定 (四)乳化剂的分析 1、酸值的测定 2、皂化值的测定 3、羟值的测定 二、生产过程中的分析 (一)纯种培养种子分析 1、糖度 2、酸值与PH 3、残余还原糖 4、酵母湿重 5、酵母成熟标准的确定

(二)流加糖分析 1、非发酵性还原物质和可发酵性糖的测定 2、可发酵性氮 (三)发酵液分析 三、酵母成品分析 1、水分分析 2、灰分分析 3、酸度分析 4、蛋白质分析 5、五氧化二磷分析 6、海藻糖分析 7、发酵力(高糖、低糖、无糖)分析 8、粗脂肪分析 四、酵母生产废水的测定 1、总固形物 2、酸度的测定 3、化学需氧量

一、原辅材料的分析 (一)糖蜜及糖质原料分析 一、锤度 1.仪器: 比重计、糖度计 2.操作步骤: 将200g糖蜜与等重量的蒸馏水均匀混合,调节温度至20℃,补加蒸馏水至总重正好为糖蜜重量的2倍,测定温度。将测定值(Bg或°Bx)乘以因子2即得未稀释糖蜜的密度。糖蜜检测中视检测糖蜜的浓度,若浓度高,则还可稀释,如100g糖蜜加水至400g,这样测量值应乘以4。 由于密度和温度相关,所以表示密度应在标准温度下,即在20℃情况下,高于或低于此温度,均要加一个修正值。 二、灰分 1.仪器: 分析天平(0.1mg)、坩埚(30mL)、马弗炉(800℃)、本生灯、干燥器等 2.试剂: 浓硫酸(AR) 3.操作步骤: (1)先把干净的坩埚放在800℃高弗炉中保温15min,取出冷至 200℃左右后放在干燥器中冷却至室温。 (2)对冷却的坩埚称重,精确至0.1mg,然后称取3.0g的糖蜜。 (3)在糖蜜中加入0.5mL浓硫酸,水平振荡仪上振荡混合,使硫酸和糖蜜充分混合。 (4)用本生灯把糖蜜烧成灰烬,注意调节本生灯火焰温度,防止杯中糖蜜起泡。 (5)待杯中糖蜜灰化后,把坩埚放到约550℃的高弗炉中,直到前面形成的炭黑完全氧化,不留痕迹。 (6)从高弗炉中取出坩埚,放在空气中冷却,加入3滴浓硫酸,再把它放到800℃的高弗炉中。 (7)在800℃保温30 min后,把坩埚从高弗炉中取出,放在干燥器中冷却,称重,然后再放回高弗炉中800℃保持15min,取出放在干燥器中冷却称重,直至坩埚恒重。大多数情况下,30 min的保温能使样品重量在0.5mg范围内波动。 (8)从灰分的重量数据即可计算出原糖蜜中灰分的重量百分比,这种灰分一般被认为是硫酸盐。 三、总糖 1.原理 首先将试样进行处理,使用中型醋酸铅和脱铅剂将试样中的可还原性的非糖分及钙盐等杂质清除干净,然后用盐酸使双糖转化为还原性单糖,单糖在一定碱度的斐林溶液中使二价铜还原为一价铜,从而求出糖蜜中的总糖。 2.仪器:

酵母抽提物生产流程

酵母提取物 前处理和自溶: 废酵母→清水洗涤→过滤→酵母泥→加水调至含干酵母10%~15%→调pH至4.5→夹层热保温45℃~55℃→自溶24小时。 自溶期间每隔1小时开动搅拌2~5分钟,搅拌有利于酶类和酵母内大分子物质充分接触,提高单位接触面底物的浓度,从而加快细胞内酶的反应速度。 为了加速细胞的自溶,还可添加2%~3%的氯化钠,其对提高抽提物得率和上清液氨基氮含量有一定促进作用。 酶解: 自溶结束后,在自溶酵母液中加入0.2%复合酶,调整物料pH为7.0,在50℃条件下酶解24小时。酶解结束后,经纳米对撞机在150MP~200MP下进行破碎。其作用原理是:物料形成150MP以上的高压射流,经分流装置被分成两股,然后,两股高压射流体在一个腔体内发生对撞,产生瞬时高压使振荡片振荡,形成频率高达20000赫兹以上的超声波,酵母细胞在对撞和超声波的强大压力的共同作用下发生纳米级破碎。经纳米对撞机处理后,用显微镜检测,混合物料中大多数为空腔细胞和大量碎片,酵母细胞壁的破碎率可达97.9%,抽提物得率为91.8%。破碎液经进一步纯化、浓缩后可制得淡黄色的胶木抽提物制品。 采用上述方法制得的酵母抽提物,肌苷酸(I)含量为1.27g/100g,鸟苷酸(G)含量为1.498g/100g牞(I+G)为2.76g/100g。与日本日研公司同类产品相比,指标分别提高294.4%、626.82%、413.96%。

具体工艺:废酵母预处理【120目过筛→脱苦→调整母液浓度(10%~15%)→加促进剂(2%Nacl)→自溶(温度50℃,pH5.2~6.0,24h)】→酶解(0.2%,pH7.0,50℃,24h)→纳米对撞机破碎(150MP~200MP,循环2~4次)→加麦芽根酶解酶(70℃,3~4h)→加热灭酶(95℃,10分钟)→离心分离→酵母上清液浓缩→酵母抽提物产品。 以上所述啤酒酵母抽提物的提取技术,其关键点是将传统的自溶、酶解方法与先进的纳米破碎技术相结合,利用高压撞击作用破碎酵母细胞壁,从而使其

酵母多糖的分离提取

一.实验目的 1.初步了解微生物胞外多糖的概念。 2.学习并掌握显微操作技术及无菌操作技术。 3.掌握酵母菌株的摇瓶液体发酵技术。 4.学习微生物胞外多糖分离提取及测定的基本方法。 二.实验流程 菌株活化→液体种子培养→液体发酵培养→过程监测(形态、生物量、Ph、产物) 产物分离提取(上清、菌体) 培养基优化培养条件优化 三.实验材料 1.菌株:酵母菌 2.试剂:葡萄糖(AR)、酵母粉(BR)、蛋白胨(BR)、硫酸铵(AR)、丙三醇(AR)、 KH 2PO 4 (AR)、MgSO 4 `7H 2 0(AR)、3,5-二硝基水杨酸(CP)、NaOH(AR)、KOH (AR)。 3.仪器设备:电热恒温培养箱、数显恒温摇床、压力蒸汽灭菌锅、低速离心机、 高速离心机、电子精密天平、Ph数显酸度计、电子恒温水浴锅、可见分光光度计、电脑型生物显微镜、超净工作台、旋转蒸发仪、气相色谱仪。 4.培养基 YPD培养基:1% Yeast Extract(酵母膏),2% Peptone(蛋白胨),2% Dextrose (glucose)(葡萄糖),若制固体培养基,加入2%琼脂粉。 种子培养基。葡萄糖10g,蛋白胨5 g,酵母膏15 g,氯化钠4g,pH7.0。 基础发酵培养基。葡萄糖20 g/L、硫酸铵8g/L、蛋白胨5g/L、KH 2P0 4 2.5 g/L、 MgSO 4·7H 2 0 0.5 g/L。 四.实验过程 1.条件优化及发酵培养 1.1.菌株活化 将保藏的菌株接种到固体平板培养。 1.2.制备种子液

进行液体种子培养,向装有150ml种子液体培养基的250ml的摇瓶中接入平板上的种子,30℃、150r/min震荡培养24h。 1.3.发酵培养 将活化好的种子液按培养条件的正交表接入100ml的基础发酵培养基,通过测定发酵培养条件的优化结果用于下一步的发酵培养基的优化。 1.4.培养优化 1.4.1.培养基的优化 温度、接种量、培养时间进行三水平三因素正交实验无交互作用。 1.4. 2.培养条件的优化 酵母发酵培养基的正交试验设计由葡萄糖、硫酸铵、KH 2P0 4 以及MgS04组成 发酵优化培养基,根据之前试验数据对每种成分设定4种水平,进行四因素四水平的正交实验,对培养基成分进一步优化,无交互作用。 1.5.发酵生产酵母多糖 将优化好的所有条件计算完成后按照优化好的培养基、培养条件发酵生产酵母多糖共生产400ml。 2.酵母多糖的分离提取及测定 2.1.试剂

酵母菌在废水处理中的应用

酵母菌在废水处理中的应用 编撰:杨历佳 一、基本概念 什么是酵母菌: 酵母菌属于兼性厌氧菌,是异养菌。 什么是兼性厌氧菌?兼性厌氧菌指在有氧、缺氧环境中都能生长繁殖。只是获取能量的方式不同。在 有氧环境中,酵母菌把糖分解成CO2和H2O,且酵母菌生长快;缺氧环境中,酵母菌把糖分解成酒精和二氧化碳。 什么是异养菌呢?它的概念是针对自养菌的。你可以理解为异养菌是吃肉的,需要大量能量。而自养菌是吃素的,给点“狗粮”就能活下去。 暂未发现专性厌氧的酵母菌。 酵母菌的生长: 酵母菌是单细胞真核(真菌)微生物的统称,种类复杂、形态多样、代谢特点存在很大差异,系统进化地位也不尽相同。目前已知的酵母菌有1000多种,如酿酒酵母、葡萄汁酵母等。 酵母菌具有单细胞生长快,能形成良好絮体,又具有真菌细胞大、代谢旺盛、耐酸、耐高渗透压、耐高浓度有机底物的特性。 酵母菌可以在pH值3.0~7.5的范围生长,但比较适合在pH3.5~6。(从此点能够得出,酵母菌并不适合用于常见的生物处理工艺。因为常见的生物处理工艺的pH值一般都在中性。) 酵母菌具有以下几个基本特征: (1)个体一般以单细胞状态存在; (2)多数以出芽方式繁殖; (3)能发酵多种糖类; (4)细胞壁常含有甘露聚糖(多以α-1,6-甘露糖为骨架链,被认为是一种多糖储存形式); (5)喜在含糖较高、酸性的环境中生长。 根据呼吸类型主要分成两类: 一是发酵型酵母,这种酵母可以利用六碳糖等进行酒精发酵,大部分酵母菌属于这一类;

二是氧化性酵母,在氧气充足的环境中主要以出芽生殖的方式快速增殖。大约每1.5~2小时增殖一代。这种酵母菌可以利用体内的氧化分解酶分解多种有机物,如糖类、有机酸、有机醇等。在水处理中,氧化性酵母除了拥有强悍的代谢能力,因为菌体较大,沉降性能还好。 什么是酵母粉及主要成分: 干酵母主要成分就是酵母菌,是处于休眠状态的酵母菌。酵母在低水分下(一般6%以下)会进入休眠状态,真空、干燥、和隔光等条件,来保证酵母的活性。当加入水后,酵母会从休眠中复活,被激活酵母菌进行正常生命活动; 酵母是一种真菌,其富含蛋白质、维生素、氨基酸、脂肪、糖、酶等多种营养成份和某些促生长因子的活性物质;其蛋白质的含量占细胞干重的35%~60%,碳水化合物的含量在35%~60%,脂类物质的含量在1%~5%。所以可以说即便不使用酵母的发酵功能,它也是一款营养丰富的物质。 酵母和发酵粉的区别: 酵母和发酵粉虽然都有发酵的功能,但有着本质的区别。 酵母是一种纯生物的蓬松剂,是一种活性微生物。是一种单细胞的兼性厌氧真核微生物,添加到面团后,可以通过自身的新陈代谢产生二氧化碳气体达到蓬松的目的,这个过程通常就叫发酵。 而发酵粉则是一种化学蓬松剂,如小苏打(碳酸氢钠)、臭粉(碳酸氢铵)、明矾(硫酸钾铝或硫酸铝钾)、泡打粉等。 二、酵母菌在废水处理中的应用: 目前我国已经开发出以酵母菌群为核心的污水处理技术。该技术比传统的活性污泥法处理效率能够高出数倍,已应用于去除有机污染物、有机含油、重金属离子、处理高毒性等废水处理工艺中。 有机物的分解过程: 酵母菌对有机污染物的降解和去除原理与活性污泥法的菌种一样,也是通过生物吸附→氧化的两步实现的。 有机大分子物质先通过细胞表面的水解酶分解成小分子简单有机物,产生少量ATP能量;发酵型酵母菌,通过酒精发酵作用将小分子简单有机物转化成乙醇和CO2,产生大量ATP能量;而氧化型酵母菌,将小分子简单有机物转化成CO2和H2O等小分子物质,也会产生大量ATP能量。 当然酵母菌处理有机污染物之前,也同其它微生物处理有机污染物一样,针对一些高分子物质和难降解物质应先进行预处理(例如水解等),以增强可生化性。 酵母菌的培养与驯化: 1、pH值

相关主题
文本预览
相关文档 最新文档