当前位置:文档之家› 【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

一、选择题

1.下列各式中能用完全平方公式进行因式分解的是( ) A .x 2+x+1 B .x 2+2x ﹣1

C .x 2﹣1

D .x 2﹣6x+9

2.在△ABC 中(

2cosA-2)2

+|1-tanB|=0,则△ABC 一定是( )

A .直角三角形

B .等腰三角形

C .等边三角形

D .等腰直角三角形

3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )

A .5{152x y x y =+=-

B .5{1+52

x y x y =+=

C .5

{

2-5

x y x y =+=

D .-5

{

2+5

x y x y ==

4.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )

【典型题】中考数学试卷带答案

A .③④

B .②③

C .①④

D .①②③

5.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为

( ) A .24y x =-

B .24y x =+

C .22y x =+

D .22y x =-

6.分式方程

()()31112x x x x -=--+的解为( )

A .1x =

B .2x =

C .1x =-

D .无解

7.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( )

【典型题】中考数学试卷带答案

A .1

B .2

C .3

D .4

8.估计10+1的值应在( ) A .3和4之间 B .4和5之间

C .5和6之间

D .6和7之间

9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠

DBC 的度数为( )

【典型题】中考数学试卷带答案

A .10°

B .15°

C .18°

D .30°

10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )

【典型题】中考数学试卷带答案

A .

tan tan α

β

B .

sin sin β

α

C .

sin sin α

β

D .

cos cos β

α

11.如图,将?ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若

ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )

【典型题】中考数学试卷带答案

A .102o

B .112o

C .122o

D .92o

12.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,

中位数分别是( )

【典型题】中考数学试卷带答案

A .15.5,15.5

B .15.5,15

C .15,15.5

D .15,15

二、填空题

13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.

14.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.

【典型题】中考数学试卷带答案

15.

如图,添加一个条件:

,使△ADE ∽△ACB ,(写出一个即可)

【典型题】中考数学试卷带答案

16.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=

2

x

【典型题】中考数学试卷带答案

的图像上,则菱形的面积为_______.

17.若一个数的平方等于5,则这个数等于_____.

18.不等式组3241112

x x x x ≤-??

?--<+??的整数解是x= .

19.若a ,b 互为相反数,则22a b ab +=________.

20.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果

AB 2

BC 3

=,那么

tan∠DCF的值是____.

【典型题】中考数学试卷带答案

三、解答题

21.计算:

2

1

9(34)0245

2

-

???

?

??

22.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.

表1:四种款式电脑的利润

电脑款式A B C D

利润(元/台)160200240320

表2:甲、乙两店电脑销售情况

电脑款式A B C D

甲店销售数量(台)2015105

乙店销售数量(台)88101418

试运用统计与概率知识,解决下列问题:

(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.

23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:

等级成绩(s)频数(人数)

A90<s≤1004

B80<s≤90x

C70<s≤8016

D s≤706

根据以上信息,解答以下问题:

(1)表中的x= ;

(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;

(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.

【典型题】中考数学试卷带答案

24.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.

(1)求该旅行团中成人与少年分别是多少人?

(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.

①若由成人8人和少年5人带队,则所需门票的总费用是多少元?

②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.

25.问题:探究函数y=x+的图象和性质.

小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:

(1)函数的自变量x的取值范围是:____;

(2)如表是y与x的几组对应值,请将表格补充完整:

x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;

【典型题】中考数学试卷带答案

(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.D

解析:D

【解析】

根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:

A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;

B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;

C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;

D、x2﹣6x+9=(x﹣3)2,故选项正确.

故选D.

2.D

解析:D

【解析】

【分析】

根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A、∠B 的度数,根据直角三角形的判定,可得答案.

【详解】

解:由(2)2+|1-tanB|=0,得

2,1-tanB=0.

解得∠A=45°,∠B=45°,

则△ABC一定是等腰直角三角形,

故选:D.

【点睛】

本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.

3.A

解析:A

【解析】

【分析】

设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.

【详解】

设索长为x尺,竿子长为y尺,

根据题意得:

5

1

5 2

x y

x y

=+

?

?

?

=-

??

故选A.

【点睛】

本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.

4.C

解析:C

【解析】

试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解:①当x=1时,y=a+b+c=0,故本选项错误;

②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;

③由抛物线的开口向下知a<0,

∵对称轴为1>x=﹣>0,

∴2a+b<0,

故本选项正确;

④对称轴为x=﹣>0,

∴a、b异号,即b>0,

∴abc<0,

故本选项错误;

∴正确结论的序号为②③.

故选B.

点评:二次函数y=ax2+bx+c系数符号的确定:

(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0; (2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号; (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值.

5.A

解析:A 【解析】

【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.

【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.

【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.

6.D

解析:D 【解析】

分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.

详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .

点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.

7.C

解析:C 【解析】 【详解】

①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x =

=﹣1,∴b =2a <0,∵抛

物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac

④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .

8.B

解析:B 【解析】

解:∵3104<<,∴41015<<.故选B .

10 的取值范围是解题关键.

9.B

解析:B 【解析】 【分析】

直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案. 【详解】

由题意可得:∠EDF=45°,∠ABC=30°, ∵AB ∥CF ,

∴∠ABD=∠EDF=45°, ∴∠DBC=45°﹣30°=15°. 故选B. 【点睛】

本题考查的是平行线的性质,熟练掌握这一点是解题的关键.

10.B

解析:B 【解析】 【分析】

在两个直角三角形中,分别求出AB 、AD 即可解决问题; 【详解】

在Rt △ABC 中,AB=AC

sin α

, 在Rt △ACD 中,AD=AC

sin β

, ∴AB :AD=AC

sin α:AC sin β=sin sin βα

故选B . 【点睛】

本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.

11.B

解析:B 【解析】 【分析】

由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1

BDF DBC DFC 202

∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果. 【详解】

AD //BC Q ,

ADB DBC ∠∠∴=,

由折叠可得ADB BDF ∠∠=,

DBC BDF ∠∠∴=,

又DFC 40∠=o Q ,

DBC BDF ADB 20∠∠∠∴===o ,

又ABD 48∠=o Q ,

ABD ∴V 中,A 1802048112∠=--=o o o o ,

E A 112∠∠∴==o , 故选B . 【点睛】

本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.

12.D

解析:D 【解析】 【分析】 【详解】

根据图中信息可知这些队员年龄的平均数为:

132146158163172181

268321

?+?+?+?+?+?+++++=15岁,

该足球队共有队员2+6+8+3+2+1=22人,

则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .

二、填空题

13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半

解析:2 【解析】

分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可. 详解:扇形的圆心角是120°,半径为6, 则扇形的弧长是:

1206

180

π?=4π, 所以圆锥的底面周长等于侧面展开图的扇形弧长是4π, 设圆锥的底面半径是r , 则2πr =4π, 解得:r =2.

所以圆锥的底面半径是2.

故答案为2.

点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.

14.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】

【典型题】中考数学试卷带答案

【解析】 【分析】

【典型题】中考数学试卷带答案

根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值. 【详解】 ∵∠A =45°, ∴∠BOC=90° ∵OB=OC ,

由勾股定理得,OC ,

【典型题】中考数学试卷带答案

∴cos ∠OCB =

2OC BC ==

.

【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

. 【点睛】

本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.

15.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;

解析:∠ADE=∠ACB (答案不唯一) 【解析】 【分析】 【详解】

相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件: 由题意得,∠A=∠A (公共角),

则添加:∠ADE=∠ACB 或∠AED=∠ABC ,利用两角法可判定△ADE ∽△ACB ; 添加:

AD AE

AC AB

=,利用两边及其夹角法可判定△ADE ∽△ACB. 16.4【解析】【分析】【详解】解:连接AC 交OB 于D ∵四边形OABC 是菱形∴A

C⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积= 4×△AOD的面积=4故答案为:4

解析:4

【解析】

【分析】

【详解】

解:连接AC交OB于D.

【典型题】中考数学试卷带答案

∵四边形OABC是菱形,

∴AC⊥OB.

∵点A在反比例函数y=2

x

的图象上,

∴△AOD的面积=1

2

×2=1,

∴菱形OABC的面积=4×△AOD的面积=4

故答案为:4

17.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质

解析:5

【解析】

【分析】

根据平方根的定义即可求解.

【详解】

若一个数的平方等于5,则这个数等于:5

故答案为:5

【点睛】

此题主要考查平方根的定义,解题的关键是熟知平方根的性质.

18.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【

解析:﹣4.

【解析】

【分析】

先求出不等式组的解集,再得出不等式组的整数解即可. 【详解】

解:3241

112

x x x x ≤-??

?--<+??①②, ∵解不等式①得:x≤﹣4, 解不等式②得:x >﹣5, ∴不等式组的解集为﹣5<x≤﹣4, ∴不等式组的整数解为x=﹣4, 故答案为﹣4. 【点睛】

本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.

19.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数

解析:0 【解析】 【分析】

先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0. 【详解】

解:∵22a b ab += ab (a+b ),而a+b=0, ∴原式=0. 故答案为0, 【点睛】

本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.

20.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点

解析:

2

【典型题】中考数学试卷带答案

. 【解析】 【分析】 【详解】

解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,

∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC ,

AB 2BC 3=,∴CD 2

CF 3

=.∴设CD =2x ,CF =3x ,

∴.

【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

∴tan ∠DCF =

DF CD =.

【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

故答案为:2

【典型题】中考数学试卷带答案

. 【点睛】

本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.

三、解答题

21.1 【解析】 【分析】

直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案. 【详解】

解:原式=4﹣3+12

【典型题】中考数学试卷带答案

【典型题】中考数学试卷带答案

=2﹣1 =1. 【点睛】

此题主要考查了实数运算,正确化简各数是解题关键. 22.(1)3

10

(2)应对甲店作出暂停营业的决定 【解析】 【分析】

(1)用利润不少于240元的数量除以总数量即可得;

(2)先计算出每售出一台电脑的平均利润值,比较大小即可得. 【详解】

解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为

1053

201510510

+=+++,

故答案为

310

; (2)甲店每售出一台电脑的平均利润值为1602020015240103205

50

?+?+?+?=204

(元),

乙店每售出一台电脑的平均利润值为1608200102401432018

50

?+?+?+?

=248

(元),

∵248>204,

∴乙店每售出一台电脑的平均利润值大于甲店;

又两店每月的总销量相当,

∴应对甲店作出暂停营业的决定.

【点睛】

本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.

23.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为1

6

【解析】

【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;

(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;

(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.

【详解】(1)∵被调查的学生总人数为6÷15%=40人,

∴x=40﹣(4+16+6)=14,

故答案为14;

(2)∵m%=4

40

×100%=10%,n%=

16

40

×10%=40%,

∴m=10、n=40,

C等级对应的扇形的圆心角为360°×40%=144°,

故答案为10、40、144;

(3)列表如下:

【典型题】中考数学试卷带答案

a1和b1的有2种结果,

∴恰好选取的是a1和b1的概率为

21 126

=.

【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,

读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.

24.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少. 【解析】 【分析】

(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;

(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可. 【详解】

解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得

103212x y x y ++=??=+?,解得17

5

x y =??

=?. 答:该旅行团中成人17人,少年5人. (2)∵①成人8人可免费带8名儿童,

∴所需门票的总费用为:()10081000.851000.6108=1320?+??+??-(元).

②设可以安排成人a 人、少年b 人带队,则11715a b ,剟

剟. 当1017a 剟

时, (ⅰ)当10a =时,10010801200b ?+?,∴5

2b ?, ∴2b =最大值,此时12a b +=,费用为1160元. (ⅱ)当11a =时,10011801200b ?+?,∴54

b ?, ∴1b =最大值,此时12a b +=,费用为1180元.

(ⅲ)当12a …

时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a

(ⅰ)当9a =时,100980601200b ?++?,∴3b ≤, ∴3b =最大值,此时12a b +=,费用为1200元.

(ⅱ)当8a =时,100880601200b ?++?,∴7

2

b ≤, ∴3b =最大值,此时1112a b +=<,不合题意,舍去. (ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.

综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;

成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.

【点睛】

本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.

25.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.

【解析】

【分析】

(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;

【详解】

(1)因为分母不为零,

∴x≠0;

故答案为a≠0.

(2)x=1时,y=3;

x=2时,y=3;

故答案为3,3.

(3)如图:

【典型题】中考数学试卷带答案

(4)此函数有最小值和最大值;

【点睛】

本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.

下载文档原格式(Word原格式,共17页)
相关文档
  • 中考数学试卷含答案

  • 中考数学试卷带答案

  • 中考数学试卷和答案

  • 东莞市中考数学试卷

  • 温州市中考数学试卷

  • 厦门市中考数学试卷