当前位置:文档之家› 高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题及详解
高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题

含答案

一、选择题

1.(文)(2017·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π

4),x ∈R ,则函数f (x )

是( )

A .最小正周期为π的奇函数

B .最小正周期为π的偶函数

C .最小正周期为π

2的奇函数

D .最小正周期为π

2的偶函数

[答案] A

[解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π

2=π.

(理)(2017·辽宁锦州)函数y =sin 2x +sin x cos x 的最小正周期T =( ) A .2π

B .π

C.π2

D.π3

[答案] B

[解析] y =sin 2x +sin x cos x =

1-cos2x 2+1

2

sin2x =12+2

2sin ????2x -π4,∴最小正周期T =π. 2.(2017·重庆一中)设向量a =(cos α,22)的模为3

2

,则cos2α=( ) A .-1

4

B .-1

2

C.12

D.3

2

[答案] B

[解析] ∵|a |2=cos 2α+??

?

?222

=cos 2α+12=34,

∴cos 2α=14,∴cos2α=2cos 2α-1=-1

2.

3.已知tan α

2=3,则cos α=( )

A.45

B .-45

C.4

15

D .-35

[答案] B

[解析] cos α=cos 2α2-sin 2α

2=cos 2α2-sin 2

α2cos 2α2+sin

2α2

=1-tan 2

α

21+tan 2

α2

=1-91+9=-4

5

,故选B.

4.在△ABC 中,若sin A sin B =cos 2C

2,则△ABC 是( )

A .等边三角形

B .等腰三角形

C .直角三角形

D .既非等腰又非直角的三角形 [答案] B

[解析] ∵sin A sin B =cos 2C

2

∴12[cos(A -B )-cos(A +B )]=1

2(1+cos C ), ∴cos(A -B )-cos(π-C )=1+cos C , ∴cos(A -B )=1,

∵-π

5.(2017·绵阳市诊断)函数f (x )=2sin(x -π2)+|cos x |的最小正周期为( )

A.π2

B .π

C .2π

D .4π

[答案] C

[解析] f (x )=-2cos x +|cos x |

=?

????

-cos x cos x ≥0-3cos x cos x <0,画出图象可知周期为2π. 6.(2017·揭阳市模考)若sin x +cos x =13,x ∈(0,π),则sin x -cos x 的值为( )

A .±

17

3

B .-

173

C.13

D.

173

[答案] D

[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-8

9<0,∴x ∈????π2,π, ∴(sin x -cos x )2=1-sin2x =17

9

且sin x >cos x , ∴sin x -cos x =

17

3

,故选D. 7.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( )

A .x ≤y

B .x <y

C .x ≥y

D .x >y

[答案] D

[解析] ∵π>A +B >π

2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选

D.

(理)(2017·皖南八校)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,如果cos(2B +C )+2sin A sin B <0,那么a 、b 、c 满足的关系是( )

A .2ab >c 2

B .a 2+b 2

C .2bc >a 2

D .b 2+c 2

[答案] B

[解析] ∵cos(2B +C )+2sin A sin B <0,且A +B +C =π, ∴cos(π-A +B )+2sin A ·sin B <0,

∴cos(π-A )cos B -sin(π-A )sin B +2sin A sin B <0, ∴-cos A cos B +sin A sin B <0,即cos(A +B )>0, ∴0π2

由余弦定理得,cos C =a 2+b 2-c 2

2ab <0,

∴a 2+b 2-c 2<0,故应选B.

8.(2017·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )

A .向左平移π

2个单位长度

B .向左平移π

4个单位长度

C .向右平移π

2个单位长度

D .向右平移π

4个单位长度

[答案] D

[解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,

将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π

4个单位得,sin2????x -π4=sin ????2x -π2=-sin ????π2-2x =-cos2x ,故选D.

9.(2017·浙江金华十校模考)已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈????

π4,π,

若a ·b =2

5

则tan ????α+π

4的值为( ) A.13

B.27

C.17

D.23

[答案] C

[解析] a ·b =cos2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25,∴sin α=3

5,

∵π4<α<π,∴cos α=-45,∴tan α=-3

4, ∴tan ????α+π4=1+tan α1-tan α=1

7. 10.(2017·湖北黄冈模拟)若5π2≤α≤7π

2,则1+sin α+1-sin α等于( ) A .-2cos α2

B .2cos α

2

C .-2sin α

2

D .2sin α

2

[答案] C

[解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π

4.

∴1+sin α+1-sin α =1+2sin α2cos α2+

1-2sin α2cos α

2

(sin α2+cos α2

)2+

(sin α2-cos α2)2 =-(sin α2+cos α2)-(sin α2-cos α

2)

=-2sin α

2.

二、填空题

11.(2017·广东罗湖区调研)若sin ????π2+θ=3

5,则cos2θ=________. [答案] -725

[解析] ∵sin ????π2+θ=35,∴cos θ=35, ∴cos2θ=2cos 2θ-1=-7

25

.

12.(2017·江苏无锡市调研)函数y =tan x -tan 3x

1+2tan 2x +tan 4x

的最大值与最小值的积是

________.

[答案] -1

16

[解析] y =tan x -tan 3x 1+2tan 2x +tan 4x =tan x (1-tan 2x )

(1+tan 2x )2

=tan x 1+tan 2x ·1-tan 2

x 1+tan 2x =sin x cos x

cos 2x +sin 2x +cos 2x -sin 2x cos 2x +sin 2x

=12sin2x ·cos2x =14sin4x , 所以最大与最小值的积为-

1

16

. 13.(2017·浙江杭州质检)函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________. [答案] 1

[解析] y =sin x cos10°+cos x sin10°+cos x cos40°-sin x sin40°=(cos10°-sin40°)sin x +(sin10°+cos40°)cos x ,其最大值为

(cos10°-sin40°)2+(sin10°+cos40°)2 =2+2(sin10°cos40°-cos10°sin40°) =2+2sin (-30°)=1.

14.(文)如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =θ,则tan 2θ

2

=________.

[答案] 1

3

[解析] 设OC =r ,∵AD =3DB ,且AD +DB =2r ,∴AD =3r 2,∴OD =r 2,∴CD =3

2r ,

∴tan θ=CD

OD

=3,

∵tan θ=2tan

θ

2

1-tan 2

θ2,∴tan θ2=3

3

(负值舍去),

∴tan 2θ2=13

.

(理)3tan12°-3

(4cos 212°-2)sin12°

=________.

[答案] -4 3 [解析] 3tan12°-3(4cos 2

12°-2)sin12°=3(sin12°-3cos12°)

2cos24°

sin12°cos12°

23sin (12°-60°)

1

2

sin48°=-4 3.

三、解答题

15.(文)(2017·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π

3

)的值;

(2)求f (x )的最大值和最小值.

[解析] (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-9

4.

(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-7

3

,x ∈R

因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =2

3时,f (x )取最小值

-73

. (理)(2017·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b .

(1)求函数f (x )的最小正周期;

(2)当x ∈????0,π

2时,求函数f (x )的最大值及最小值. [解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =cos2x +sin2x =2???

?22cos2x +22sin2x

=2sin ????2x +π4. ∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π

4

∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π

2时,f (x )有最小值

-1.

16.(文)设函数f (x )=cos ?

???2x +π

3+sin 2x .

(1)求函数f (x )的最大值和最小正周期;

(2)设A 、B 、C 为△ABC 的三个内角,若cos B =13,f (C 2)=-1

4,且C 为锐角,求sin A 的

值.

[解析] (1)f (x )=cos ????2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12-3

2sin2x , 所以函数f (x )的最大值为1+3

2,最小正周期为π.

(2)f (C 2)=12-32sin C =-14,所以sin C =32,

因为C 为锐角,所以C =π3

在△ABC 中,cos B =13,所以sin B =22

3,

所以sin A =sin(B +C )=sin B cos C +cos B sin C =

223×12+13×32=22+3

6

. (理)已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →

=(sin C ,sin B -cos B ),OM →·ON →

=-15

.

(1)求tan2A 的值;

(2)求2cos 2A

2

-3sin A -1

2sin ???

?A +π4的值.

[解析] (1)∵OM →·ON →

=(sin B +cos B )sin C + cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,

∴sin A +cos A =-1

5

两边平方并整理得:2sin A cos A =-24

25,

∵-24

25

<0,∴A ∈????π2,π, ∴sin A -cos A =1-2sin A cos A =75

联立①②得:sin A =35,cos A =-45,∴tan A =-3

4

∴tan2A =2tan A 1-tan 2

A

=-321-916=-24

7. (2)∵tan A =-3

4

∴2cos 2A

2-3sin A -1

2sin ????A +π4=cos A -3sin A cos A +sin A =1-3tan A

1+tan A

=1-3×????-341+???

?-34=13.

17.(文)(2017·厦门三中阶段训练)若函数f (x )=sin 2ax -3sin ax cos ax (a >0)的图象与直线y =m 相切,相邻切点之间的距离为π

2

.

(1)求m 和a 的值;

(2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈????0,π

2,求点A 的坐标. [解析] (1)f (x )=sin 2ax -3sin ax cos ax =

1-cos2ax 2-3

2

sin2ax =-sin ????2ax +π6+12, 由题意知,m 为f (x )的最大值或最小值, 所以m =-12或m =3

2

由题设知,函数f (x )的周期为π

2,∴a =2,

所以m =-12或m =3

2,a =2.

(2)∵f (x )=-sin ?

???4x +π6+1

2, ∴令sin ????4x +π6=0,得4x +π

6=k π(k ∈Z ), ∴x =k π4-π

24

(k ∈Z ),

由0≤k π4-π24≤π

2 (k ∈Z ),得k =1或k =2,

因此点A 的坐标为????5π24,12或????

11π24,12.

(理)(2017·广东佛山顺德区检测)设向量a =(sin x,1),b =(1,cos x ),记f (x )=a ·b ,f ′(x )是f (x )的导函数.

(1)求函数F (x )=f (x )f ′(x )+f 2(x )的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+2sin 2x

cos 2x -sin x cos x 的值.

[解析] (1)f (x )=sin x +cos x , ∴f ′(x )=cos x -sin x , ∴F (x )=f (x )f ′(x )+f 2(x ) =cos 2x -sin 2x +1+2sin x cos x

=cos2x +sin2x +1=1+2sin ?

???2x +π4, ∴当2x +π4=2k π+π2,即x =k π+π

8(k ∈Z )时,F (x )max =1+ 2.

最小正周期为T =2π

2

=π.

(2)∵f (x )=2f ′(x ),∴sin x +cos x =2cos x -2sin x , ∴cos x =3sin x ,∴tan x =1

3

∴1+2sin 2x cos 2x -sin x cos x =3sin 2x +cos 2x cos 2x -sin x cos x =3tan 2x +11-tan x =2.

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

三角恒等变换考点典型例题

江苏省成化高级中学09届一轮复习三角专题(二) 三角恒等变换 一、考点、要点、疑点: 考点:1、掌握两角和与差的正弦、余弦、正切; 2、理解二倍角的正弦、余弦、正切; 3、了解几个三角恒等式; 要点: 1、 两角和与差的正弦、余弦、正切公式及其变形 2、 二倍角的正弦、余弦、正切公式及其变形 3、 )sin(cos sin 22?ωωω++= ?+=x B A y x B x A y 4、 几个三角恒等式的推导、证明思路与方法 疑点: 1、在三角的恒等变形中,注意公式的灵活运用,要特别注意角的各种变换. (如,)(αβαβ-+=,)(αβαβ+-= ?? ? ??--??? ??-=+βαβαβα222 等) 2、三角化简的通性通法:从函数名、角、运算三方面进行差异分析,常用的技巧有: 切割化弦、用三角公式转化出现特殊角、 异角化同角、异名化同名、高次化低次 3、辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符 号确定,θ角的值由a b =θtan 确定)在求最值、化简时起着重要作用。 二、激活思维: 1、下列等式中恒成立的有 ① βαβαβαsin cos cos sin )sin(?-?=- ② βαβαβαsin sin cos cos )cos(?-?=- ③ )]sin()[sin(21 cos sin βαβαβα-++=? ④ )]cos()[cos(2 1 sin sin βαβαβα--+=? 2、化简: ① 0 53sin 122sin 37sin 58cos += ② )sin()sin()cos()cos(βαβαβαβα+-++?-= 3、已知),2 ( ,5 3cos ππ θθ∈-=,则)3 cos( θπ -= ,)23 cos( θπ -= 4、若αtan 、βtan 是方程0652 =-+x x 的两根,则)tan( βα+=

三角恒等变换 高考专题

例1:快速写出下列运算结果,思考如何应用公式。 (1). cos80cos 20cos10sin 20o o o o += ▲ ; (2). ()()()()cos 27cos 33sin 27sin 33o o o o αααα+--+-= ▲ ; (3). ()()sin cos cos sin αβααβα+-+= ▲ ; (4). sin14cos31sin17o o o += ▲ ; (5). 1tan151tan15 o o -=+ ▲ ; (6). sin 67.5cos67.5o o = ▲ ; (7). 22cos sin 8 8 π π -= ▲ ; (8). 2 1 cos 122 π - = ▲ ; (9). cos 20cos 40cos60cos80o o o o = ▲ ; 例2 求解以下3道小题,然后总结求解此类问题的入手点和注意问题。 (1) 已知3tan 4α= ,5 cos 13β=-,()0,αβπ∈、,求()sin αβ+、()cos αβ-、tan 2α; (2) ()4cos 5αβ+= ,1 cos 7 β=-,()0,αβπ∈、,求sin α; (3) 已知()4cos 5αβ-=- ,()4cos 5αβ+=,且,2παβπ??-∈ ???,3,22παβπ?? +∈ ??? ,求cos 2α。 例3 已知tan tan αβ、是方程26510x x -+=的两个根,()0,αβπ∈、,求αβ+。 例4 (1)求证:tan 20tan 25tan 20tan 251o o o o ++=,你还能写出类似的式子吗? (2)已知A B 、都是锐角,求证()()1tan 1tan 2A B ++=是4 A B π += 的充要条件。 (3)已知三个电流瞬时值函数式分别是122s i n I t ω =,() 222sin 120o I t ω=-, ()322sin 120o I t ω=+。求证:1230I I I ++=。 课堂练习。 (1) 已知2 sin cos 3 θθ+= ,求sin 2θ的值; (2) 已知A B C 、、都是锐角,且tan 0.5A =,tan 0.2B =,tan 0.125C =,求证:45o A B C ++=;

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

高中数学三角恒等变换精选题目(附答案)

高中数学三角恒等变换精选题目(附答案) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47- B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-= 的图像( )

A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113π B 、x = 53π C 、53x π=- D 、3 x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数( )cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上) 17. 已知02 π α<< ,15tan 2 2tan 2 α α + = ,试求sin 3πα? ?- ?? ?的值. 18. 求) 212cos 4(12sin 3 12tan 30 200--的值.

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高三数学9种常用三角恒等变换技巧总结

高中数学:9种常用三角恒等变换技巧总结 三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。 “切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.

遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视. 跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项”. “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.

根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等 变换,也是常用的方法,本题也可以采用降次、和积互化等方法。.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A) 一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r,圆心角是α(弧度)的扇形的面积为________. 2. 若 ,则tan(π+α)=________. 3. 若α是第四象限的角,则π-α是第________象限的角. 4. 适合 的实数m的取值范围是_________. 5. 若tanα=3,则cos2α+3sin2α=__________. 6. 函数 的图象的一个对称轴方程是___________.(答案不唯一) 7. 把函数 的图象向左平移 个单位,所得的图象对应的函数为偶函数,则 的最小正值为___________. 8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.

9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________. 10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________. 11. 函数 的递减区间是___________. 12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么 __________. 13. 若函数y=sin(x+ )+cos(x+ )是偶函数,则满足条件的 为_______. 14. tan3、tan4、tan5的大小顺序是________. 二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知 ,求

的值. 16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx). (1) 求函数f(x)的最小正周期和最大值; (2) 在给出的直角坐标系中,画出函数y=f(x)在区间 上的图象. 17. (本小题满分14分)求函数y=4sin2x+6cosx-6( )的值域. 18. (本小题满分16分)已知函数 的图象如图所示. (1) 求该函数的解析式; (2) 求该函数的单调递增区间. 19. (本小题满分16分)设函数

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

三角恒等变换高考真题

【必修四】第三章 三角恒等变换 一、选择题 1 .(2012年高考(重庆文)) sin 47sin17cos30 cos17- ( ) A .2 - B .12 - C . 12 D . 2 2 .(2012年高考(重庆理))设tan ,tan αβ是方程2 320x x -+=的两个根,则tan()αβ+的值为 ( ) A .3- B .1- C .1 D .3 3 .(2012年高考(陕西文))设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于 1 2 C .0 D .-1 4 .(2012年高考(辽宁文))已知sin cos αα-=,α∈(0,π),则sin 2α= ( ) A .-1 B . C D .1 5 .(2012年高考(辽宁理))已知sin cos αα-=α∈(0,π),则tan α= ( ) A .-1 B .- C D .1 6.(2012年高考(江西文))若sin cos 1 sin cos 2 αααα+=-,则tan2α= ( ) A .-34 B .34 C .-43 D . 43 7.(2012年高考(江西理))若tan θ+1 tan θ =4,则sin2θ= ( ) A .15 B .14 C .13 D .12 8.(2012年高考(大纲文))已知α为第二象限角,3 sin 5 α=,则sin 2α= ( ) A .2425- B .1225- C .1225 D . 2425 9 .(2012年高考(山东理))若42ππθ?? ∈? ??? ,,sin 2=8θ,则sin θ= ( ) A . 3 5 B . 45 C D . 34

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系

(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos( )cos cos sin sin cos cos sin sin cos( ) (3) tan( tan tan 去分母得 tan tan i tan( )(1 tan tan ) 1 tan tan tan tan tan( )(1 tan tan 、倍角公式的推导及其变形: (1) sin 2 sin( ) sin cos cos sin 2 sin cos sin 1 . cos — sin 2 2 2 1 sin 2 (sin cos (2) cos 2 cos( ) cos cos sin sin cos 2 sin 2 cos 2 cos 2 sin 2 (cos sin )(cos sin ) cos 2 2 ? 2 cos 厶 sin 2 2 COS (1 cos ) 把1移项得 1 cos2 2 cos 2 或 -4- GQS -2- c 2 cos 2 1 2 【因为 是-的两倍,所以公式也可以写成 2 cos 2 cos 2 一 1 或 1 cos 2 cos 2 或 - 1 cos — cos 2 2 2 2 2 因为4 是2的两倍,所以公式也可以写成 cos 4 2 cos 2 2 1 或 1 2 Once 厶 或 nee? O 1 2 cos 2 2 2 cos sin (1 sin 2 ) sin 2 把1移项得1 cos 2 2s in 2 或 -4- 1 2sin 2 2 【因为 是—的两倍,所以公式也可以写成 2 cos 1 2 sin 2— 或 1 cos 2 sin 2 或 4 ---- eos- sin 2 2 2 2 2 因为4 是2 的两倍,所以公式也可以写成 2 1、和差公式及其变形: 2 ) ) 2 sin 2

三角恒等变换练习题一

三角恒等变换练习题一 一、选择题 1.(2014年太原模拟)已知53 )2sin(=+θπ,则=-)2(cos θπ( ) A. 2512 B .2512- C .25 7 - D. 257 2.若54cos -=α,且α在第二象限内,则)4 2cos(π α+为( ) A .50231- B. 50231 C .50217- D. 50 217 3.(2013年高考浙江卷)已知2 10 cos 2sin ,= +∈αααR ,则=α2tan ( ) A. 34 B. 43 C .34- D .4 3 - 4.已知),0(,2cos sin πααα∈=-,则=α2sin ( ) A .1- B .22- C. 2 2 D .1 5.(2014年云南模拟)已知53 )4sin(=-πx ,则x 2sin 的值为( ) A .25 7 - B. 257 C. 259 D. 2516 6.计算??-??13sin 43cos 13cos 43sin 的结果等于( ) A. 2 1 B.33 C.22 D.23 7.函数)sin (cos sin )(x x x x f -=的最小正周期是( ) A. 4π B. 2 π C .π D .π2 8.(2014年郑州模拟)函数)24(2cos 3)4(sin 2)(2π ππ≤≤-+=x x x x f 的最大值为( ) A .2 B . 3 C .32+ D .32- 9.(2010理)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6 y x π =+的图像( ) A. 向左平移4π个长度单位 B. 向右平移4 π 个长度单位

相关主题
文本预览
相关文档 最新文档