当前位置:文档之家› 两个方阵行列式相乘性质证明释疑

两个方阵行列式相乘性质证明释疑

两个方阵行列式相乘性质证明释疑

两个方阵行列式相乘性质证明释疑

下图是线代同济五版p41页的内容(只是截图,详细内容请参看教材)

可能有些初学者脑壳都抠大了,都想不明白图中画红线处是怎么一回事,特别是所说的乘是如何相乘的,我开始也想不明白,最后试了半天,终于把这个问题搞懂了,其实很简单:所谓的

并不是说b第一行每个数分别乘以第一列中的每个数,b第二行每个数分别乘以第二列中的每个数……其实这个j 是个定值,也就是根据上图中画圈处的j来确定,比如我们要加到第n+1列,那么n+1列的数据就是:b11乘第1列+b21乘第2列……+b n1乘第n列。如此一来,便得到矩阵C的结果。希望本文能帮到对此不太明白的读者。

行列式的性质

行列式的性质 基本性质 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。 性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。 性质5 若行列式的某一行(列)的元素都是两数之和,例如第j 列的元素都是两数之和 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 一般利用行列式的定义计算高阶行列式比较繁琐,下面我们将推导出行列式的一些性质,为行列式的计算做准备. 设 111212122212 n n n n nn a a a a a a D a a a = , 112111222212n n T n n nn a a a a a a D a a a = 称行列式T D 为D 的转置行列式.T D 可以看成是D 的元素沿着主对角线旋转180所得,亦可看成是将D 的所有行(列)按序写成所有列(行)所得(即所谓行列互换). 性质1. 1 行列式的值与其转置行列式的值相等,即 111212122212 n n n n nn a a a a a a a a a 112111222212n n n n nn a a a a a a a a a = . 证明 将等式两端的行列式分别记作D 和T D ,对行列式的阶数用数学归纳法. 当2n =时,可以直接计算出T D D =成立,假设结论对小于n 阶的行列式都成立,下面考虑n 阶的情况. 根据定义 1111121211n n D a A a A a A =++ +,

第2讲行列式按行(列)展开及计算

授课时间 第 周 星期 第 节 课次 2 授课方式 (请打√) 理论课□ 讨论课□ 实验课□ 习题课□ 其他□ 课时 安排 2 授课题目(教学章、节或主题): 第二讲 行列式按行(列)展开及计算 教学目的、要求(分掌握、熟悉、了解三个层次): 熟练掌握行列式按行(列)展开;掌握运用行列式的定义与性质计算行列式;熟悉一些典型行列式的计算;熟悉用数学归纳法证明行列式. 教学重点及难点: 重点:行列式按行(列)展开;利用行列式的定义与性质计算行列式 难点:行列式的计算 教 学 基 本 内 容 备注 一、行列式按行(列)展开 引理 一个n 阶行列式,如果其中第i 行所有元素除),(j i 元ij a 外都为零, 那么这行列式等于ij a 与它的代数余子式的乘积. 定理 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ) ,2,1(,),2,1(,22112211n j A a A a A a D n i A a A a A a D nj nj j j j j in in i i i i =++==++= (按行(列)展开法则) 推论 行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠++=,2211 或 .,2211j i A a A a A a D nj ni j i j i ≠++= 例1、3 2 3 1 11024315211 14----= D

解 法 1:241227 1 51271031251 13 4 312014 260211 14-=?-=---=----=------= D 解法2:244 8 224 8 1112021 2 3 5 010******** 14-=-= ---=-----= D 例2、设2 1 3 12 1014112 5 1 014---=D ,(1)求41312111A A A A +--;(2)444342412A A A A +-+。 解:(1)041312111=+--A A A A (2)4444444342414443424133422A A A A A A A A A A -=-+-+=+-+ 61 11 13 1 011121 13=--=---= 二、行列式的计算 例3、n n n n n b a a a a b a a a a b a D +++= 2 1 2212 1 1,其中021≠n b b b 解:n n n n n n n b a a a a b a a a a b a a a a D D +++==+ 2 1 2 212112 11 0001=n n b b b a a a 0 0100100112121---

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

行列式的定义及其性质证明

行列式的定义及其性质证明 摘要:本文给出了与原有行列式定义不同的定义,利用此定义和引理导出定理,进一步导出行列式的性质,给出了行列式性质与以往教材不同的完整证明,形成了有关行列式的新的知识体系,通过定理性质的证明过程,重点在培养同学们的逻辑思维能力、推理能力和创新能力。 关键词:行列式;定义;性质;代数余子式;逆序数 1 基本定理与性质的证明 引理设t为行标排列q1q2…qn与列标排列p1p2…p n的逆序数之和,若行标排列与列标排列同时作相应的对换,则t的奇偶性不变。 证明根据对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。若行标排列与列标排列同时作相应的对换,则行标排列的逆序数与列标排列的逆序数的奇偶性同时改变,因而它们的逆序数之和的奇偶性不变。 定理1 n阶行列式也可定义为 证明由定义1和引理即可证得。 性质1 行列式与它的转置行列式相等(由定理1即可证得)。 (根据性质1知对行成立的性质对列也成立) 性质2 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。 证明利用定理1和代数余子式的定义即可证得。 性质3 如果行列式中有两行(两列)元素对应相等,则此行列式等于零。 证明(利用递推方法来证)设行列式中第k行和第j行的元素对应相等,由性质2可知 又A is=(-1)i+s(s=1,2,…,n),根据性质2,M i+s又可以展开成n-1项的和,每一项都是一实数与n-1阶行列式的乘积,以此类推,M i+s 总可以展开成一个实数与一个二阶行列式的乘积之和,即 (mi为实数,Di为含有原行列式中k行和j行的二阶行列式),这个二阶行列式的两行就是原n阶行列式中的k行j行对应的元素,由于这

工程数学教案12行列式的性质与计算

教案头 教学详案 一、回顾导入(20分钟) ——复习行列式的概念,按照定义计算一个四阶行列式,一般需要计算四个三阶行列式,如果计算阶数较高的行列式利用定义直接计算会比较麻烦,为简化行列式的计算,我们需要研究行列式的主要性质。 二、主要教学过程(60分钟,其中学生练习20分钟) 一、行列式的性质 定义 将行列式D 的行换为同序数的列就得到D 的转置行列式,记为T D 。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。性质4 行列式中如果有两行(列)元素成比例,则此行列式为零。性质5 若行列式的某一列(行)的元素都是两数之和。 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。二、行列式按行(列)展开 定义 在n 阶行列式中,把元素 ij a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素ij a 的余子式,记作ij A 。记ij j i ij M A +-=)1(,叫做元素ij a 的代数余子式。引理 一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那末这行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =。定理 行 列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ),,2,1(,2211n i A a A a A a D in in i i i i =+++=。 推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠+++=,2211 。 行列式的代数余子式的重要性质: ???≠===∑=;,0,,1j i j i D D A a ij n k kj ki 当当δ???≠===∑=;,0, ,1j i j i D D A a ij n k jk ik 当当δ

线性代数之行列式的性质与计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 1212122212n n n n nn a a a a a a D a a a = L L L L L L L 将它的行依次变为相应的列,得 11 21112 222 12n n T n n nn a a a a a a D a a a = L L L L L L L 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记111212122212n n T n n nn b b b b b b D b b b = L L L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L 1212() 12(1)n n p p p T p p np D b b b τ∴=-∑L L 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112112121212 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =L L L L L L L L L L L L L L L L L L L L L L 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;

63、矩阵、行列式的运算及性质

第62课矩阵、行列式的运算及性质 【教学目标】 1. 理解矩阵的概念,掌握矩阵的算法,会利用矩阵解线性方程组。 2. 理解行列式的概念,掌握行列式的算法,会利用行列式判断二元(三元)一次方程组解的情况,了解三阶行列式的性质并能运用于计算。 【教学难点】 1. 会利用矩阵解线性方程组 2. 利用行列式判断二元(三元)一次方程组解的情况。 【教学重点】 1.用矩阵表示实际问题中的相关量,运用矩阵的运算解决实际问题。 2.二阶(三阶)行列式的算法, 利用行列式判断二元(三元)一次方程组解的情 况。 【知识整理】 1.矩阵是一个数表,可以用来表示块状数据; 2.矩阵的运算,如:加法、减法、数乘、乘法等; 3.矩阵的基本变换。 4.行列式是表示特定算式的记号,其结果是一个数; 5.对于给定的方程组,能正确找出D 、x D 、y D ,并根据它们的值判断方程组解的情况,或写出方程组的解。 【例题解析】 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】已知矩阵2 793 1 5A ??= ?--?? ,3 14 026B -?? ?= ? ?-? ?,641 1103C -?? ? = ? ?-? ? ,计算: (1)()A B C +; (2)()B C A +; (3)B A C A +; (4)从上述计算结果中你能得到什么结论? 【解答】(1)11 110()24 13A B C ?? += ?-?? ;(2)15 1842()23 46101311 33B C A ---?? ?+=-- ? ?---? ? ;(3)15 184223 46101311 33BA CA ---?? ?+=-- ? ?---? ? ; (4)矩阵运算不满足交换率,但满足分配率。 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】一家水果店出售5种水果,它们的单价和利润如表1所示。该家水果店的经理要在计算 每笔生意营业额的同时,计算该笔生意的利润额。假设现有3位顾客购买水果,他们的购买量如表2所示。试计算每笔生意的营业额和利润额。 表1: 表2:

行列式按行列展开定理

行列式按行列展开定理 一、 余子式的定义: 在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M 二、 代数余子式: 在n 阶行列式的ij a 余子式ij M 加上符号(1) i j +-,称作ij a 的代数 余子式ij A : (1)i j ij ij A M +=- 三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: i j i j D a A =? 四、 行列式按行(列)展开法则: 定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和: 1122i i i i in in D a A a A a A =?+?+???+? 1122j j j j nj nj D a A a A a A =?+?+???+? (i j ≠) 推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0: 1122i j i j in jn D a A a A a A =?+?+???+? 1122i j i j ni nj D a A a A a A =?+?+???+? (i j ≠)

五、 克拉默法则: 如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++???+= 21122222n n a x a x a x b ++???+= 31132233n n a x a x a x b ++???+= ………………………………… ………………………………… ………………………………… 1122n n nn n n a x a x a x b ++???+= 其系数行列式不等于0,即:1111...... ......0...n n nn a a D a a =≠ 那么,方程组有惟一解: 11D x D =,22D x D =,…n N D x D = 1111,1122,1 1,1............ ....... ...j n j j n n n j nn a b a a b a D a b a a +++= ① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。 ② 定理4':如果含n 个未知数的n 个线性方程组无解或

行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100 200 100 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n n n a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质T A A =,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

习题1-3 行列式的性质

1、用行列式的性质计算下列行列式: () 134215352152809229092 ; 【分析】可见行列式中1,2两列元素大部分数字是相等的,列差同为1000,易于化为下三角行列式,于是, 【解法一】 3421535215280922909221 c c -34215100028092100012 r r -61230 280921000 下三角6123000。 【解法二】 34215352152809229092 12 r r -6123 6123 2809229092 21 c c -6123 280921000 下三角6123000。 () 2ab ac ae bd cd de bf cf ef ---; 【分析】各行、列都有公因,抽出后再行计算。 【 解 】 ab ac ae bd cd de bf cf ef ---123 a r d r f r ←←← b c e adf b c e b c e ---12 3 b c c c e c ←←←1111 111 1 1 adfbce --- 上三角2(1)2abcdef -?-?4abcdef =。 () 31111111111 1 1 1111 ------; 【分析】将第一行加到以下各行即成为上三角行列式, 【解】 1111111111 1 1 1111 ------213141 r r r r r r +++1111022200220002 上三角3 12 ?8=。 2、把下列行列式化为上三角形行列式,并计算其值:

() 12240 4135 31232 051-----; 【解法一】 224 4 1353 1232 5 1 -----21 c c ?2240 143513230 2 5 1 ------21 r r ?1435 2240 13230 2 5 1 ----- 270=-。 【解法二】 2 240 4 1353 1232 5 1 -----1 2 r ←1120 41352 31232 5 1 -----21 c c ?1120 1435 213230 2 5 1 ------ 上三角221(1)(135)??-?-270=-。 () 21234 234134124123 。 【分析】该行列式属于同行元素之和相等的类型,应将2,3,4列加到第1列: 【解】 1234 234134124123 1234 () c c c c +++10234 103411041210123213141 r r r r r r ---10 234011 3 02 22 111 ------ 3242 2 r r r r -+102 340113004 40 4 --- 上三角2 101(4) ??-160=。 3、设行列式 ij a m =(,1,2,,5)i j =L ,依下列次序对ij a 进行变换后,求其结果: 交换第一行与第五行,再转置,用2乘所有元素,再用(-3)乘以第二列加到第四列,最后用4除第二行各元素。 【解】 ()1交换第一行与第五行,行列式变号,结果为m -; ()2再转置,行列式的值不变,m -;

行列式的展开法则

03. 行列式的展开法则 一、按一行(列)展开法则 定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++=L L ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++=L L . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式 1) x y x y y x O O ; 2) 11 11 11 1 21n n ----O O L ; 3)121111 n n n a a x D a x a x ---=-M O O . 解 1)按1c 展开得 原式1111111(1)(1)n n n n n n n xA yA xx y y x y -+-+=+=+-=+-. 2)原式 121 (1) (12)2 n n nn n c c c c n n n A c -++++++++= L L 按展开 . 3)法1 按1r 展开得 法2 在n D 中,元素(21)i a i n ≤≤-的余子式为 1111 1 (1)11i n i i x x M x x x x -----= =---O O O O . 将n D 按1c 展开得 11211211 (1)n i n n n i i n n i D a M a x a x a x a +---==-=++++∑L . 法3 112 1 2121 12121101 ,1,,2 10 i i n n n n n n n n a a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++M O O L L L 12121n n n n a x a x a x a ---=++++L . () 11111(1)(1)(1)1n n n n n A M ++-=-=--= 法4 按n r 展开得 定理3.2 当i j ≠时,

行列式按行列展开定理讲解学习

行列式按行列展开定 理

行列式按行列展开定理 一、 余子式的定义: 在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M 二、 代数余子式: 在n 阶行列式的ij a 余子式ij M 加上符号(1) i j +-,称作ij a 的代数余 子式ij A : (1)i j ij ij A M +=- 三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =? 四、 行列式按行(列)展开法则: 定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和: 1122i i i i in in D a A a A a A =?+?+???+? 1122j j j j nj nj D a A a A a A =?+?+???+? (i j ≠) 推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0: 1122i j i j in jn D a A a A a A =?+?+???+? 1122i j i j ni nj D a A a A a A =?+?+???+? (i j ≠)

五、 克拉默法则: 如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++???+= 21122222n n a x a x a x b ++???+= 31132233n n a x a x a x b ++???+= ………………………………… ………………………………… ………………………………… 1122n n nn n n a x a x a x b ++???+= 其系数行列式不等于0,即:1111...... ......0...n n nn a a D a a =≠ 那么,方程组有惟一解: 11D x D =,22D x D =,…n N D x D = 1111,1122,1 1,1............ ....... ...j n j j n n n j nn a b a a b a D a b a a +++= ① 定理4:如果含n 个未知数的n 个线性方程组的系数 行列式不等于0,则方程一定有解,且解是惟一的。

2.4 矩阵运算的转置、方阵行列式性质

§2.4 矩阵的转置性质和行列式性质 回顾 乘法:记作.C AB = 11221 s ij i j i j is sj ik kj k c a b a b a b a b ==+++=∑ ()1,2,;1,2,,,i m j n == 不是所有矩阵都可以相乘的,必须左边矩阵的列数=右边矩阵的行数。m l l n m n A B C ???=,它们的积为:左边矩阵的各行与右边矩阵的 各列对应元素积的和。 注:①一般地,.AB BA ≠ ②两个非零矩阵的积可能是零矩阵。(实数中不可能有的) (3)若AB=AC ,不一定有B=C 。 说明矩阵相乘,两个矩阵的顺序非常重要。 (4) 乘方()m A m N +∈,A 是n 阶方阵。 0A E =,,m k m k A A A +=().k m mk A A =().k k k AB A B ≠ 新授:矩阵的乘法运算 一、转置运算及性质 1)();T T A A =();T T T A B A B +=+();T T A A λλ=().T T T AB B A = 例6:已知171201,423,132201A B -??-?? ?== ? ??? ??? ().T AB 求 解法一:171201423132201AB -??-?? ?= ? ??? ??? 0143,171310-??= ??? ()0171413.310T AB ?? ?∴= ? ?-?? 解法二:() T T T AB B A =142217*********???? ???= ??? ???--????0171413.310?? ?= ? ?-?? 练习:

行列式的性质

教学单元教案设计

教学单元讲稿 一、复习提问与上次课作业典型问题答疑 1. 二、三阶行列式的定义及计算法则 2. n 阶行列式的定义,并讲解P23 T1(1)(2) P23 T2 T3 二、教学单元名称 第三节 行列式的性质 三、课程导入 复习导入 四、分析思路 首先给出对换的概念及对换如何改变排列的奇偶性,再推导出出行列式的6条性质,最后通过讲解几个例题让学生掌握行列式的性 质。 五、讲授内容 第三节 行列式的性质 对换 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l ΛΛ11 ——b b a b a a l ΛΛ11. 定理1 一个排列中的任意两个元素对换,排列改变奇偶性. 推论

奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 证明 : 由定理1知对换的次数就是排列奇偶性的 变化次数,而标准排列是偶排列(逆序数为0),因此知推论成立 定理2 :n 阶行列式为: .)1(211 21 2322211312 112 1 n p p p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中t 为n p p p Λ21的逆序数. (以4阶行列式为例,对证明过程作以说明) (补充)定理3 n 阶行列式也可定义为 .)1(1 2 121 11 21 2322211312 11n q p q p q p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中n p p p Λ21和 n q q q Λ21是两个n 级排列,t 为行标排列逆序数与列标排列逆序数的和.

线性代数性质公式整理

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 这里表示对所有n阶排列求和。式称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代

数余子式,记为,即。 6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如, 称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则

行列式的性质

教学单元教案设计 授课周次第2周授课时间计划学时数 2 教学单元1-3行列式的性质 授课方式√理论课□实验(实训)课□上机课□其他 教学目标掌握对换的概念; 掌握n阶行列式的性质; 会利用n阶行列式的性质计算n阶行列式的值; 教学重点 及难点 行列式的性质; 教学方法与手段1.教学方法:讲授与讨论相结合; 2.教学手段:黑板讲解与多媒体演示. 教学过程 1.对换的概念及对换如何改变排列的奇偶性 2. 简单推导行列式的6条性质以及性质的应用 课外安排思考题: 1.把排列54132作一次对换变为24135,问相当于作几次 相邻对换?把排列12345作偶数次对换后得到的新排列是奇排列还是偶排列? 2.计算: a b a a a b b a a a b a D . 作业题: ?习题二:P23 T1(3) 7(2)(5)

教研室主任审批意见 教学反思 1.通过学习学员掌握了n阶行列式的定义和对换的概念; 2.对利用n阶行列式的定义和对换等方面的应用有待加强.

教学单元讲稿 一、复习提问与上次课作业典型问题答疑 1. 二、三阶行列式的定义及计算法则 2. n 阶行列式的定义,并讲解P23 T1(1)(2) P23 T2 T3 二、教学单元名称 第三节 行列式的性质 三、课程导入 复习导入 四、分析思路 首先给出对换的概念及对换如何改变排列的奇偶性,再推导出出行列式的6条性质,最后通过讲解几个例题让学生掌握行列式的性 质。 五、讲授内容 第三节 行列式的性质 1.3.1对换 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l 11 ——b b a b a a l 11. 定理1 一个排列中的任意两个元素对换,排列改变奇偶性.

1-5-2 行列式的性质

1-5-2 行列式的性质及计算 一、行列式的基本性质 对方阵A,称AT 的行列式为A 的转置行列式。 1、T A =A ,即)det(T A =)det(A 。 如: d c b a = d b c a =ad-bc。 作用:凡对行列式行成立的性质,对列也成立。 2、每次对换两行(列)的位置,行列式反号。 如: b a d c =- d c b a =bc-ad。 若方阵A?? ???→?) (列对换一次行B,则A=-B。 若方阵A?????→?) (t列次对换行作B,则A=(-1)t B。 3、若方阵A中有两行(列)相同,则A=0。 证明:设A中第i行与第j行相同,对换i,j两行得:A=-A,所 以2A=0,得A=0。 4、 (i)nn n n in i i n a a a ka ka ka a a a 21 21 112 11 =knn n n in i i n a a a a a a a a a 21 2111211(i) 例如: d c b a 22=2 d c b a = d c b a 22。 即:若方阵A?? →?i r k )(B,则B=kA,其中,数k≠0。 注意:数乘行列式kA,与数乘矩阵kA的区别。如:

?? ????d c b a k =kd kc kb ka =k2 d c b a ≠kd c b a 。 推论1:对n阶方阵A,有kA =A k n 。 作业:P76 1(2) 推论2:若A中有零行(列),则det (A )=0。 证明:据行列式定义知,A中每一项均为0,故代数和为0。 推论3:有两行(列)成比例的行列式值为零。 例如:9 2136202 3 191=0 [第1列和第3列成比例] 5、单行(列)可分性:[P42 6-19行] (i)nn n n in in i i i i n a a a c b c b c b a a a 2 1 221 1112 11 +++ =(i)nn n n in i i n a a a b b b a a a 21 21 11211+nn n n in i i n a a a c c c a a a 21 2111211(i) 注意:行列式相加与矩阵相加的不同。如: ???? ??++++2121212 1d d c c b b a a =??????1111 d c b a +?? ? ???22 22 d c b a 。但是 2 12 12121d d c c b b a a ++++= 211211d d c b b a +++ 2 12 212d d c b b a ++ = 1 1 11d c b a + 2 1 21d c b a + 1 2 12d c b a + 2 2 22d c b a ≠ 1 1 11d c b a + 2 2 22d c b a 。 作业:P53 思考题3 P73 16(1) P78 3(3)

行列式按行列展开定理

一、 余子式的定义: 在n 阶行列式中,把()元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M 二、 代数余子式: 在n 阶行列式的ij a 余子式ij M 加上符号(1) i j +-,称作ij a 的代数 余子式ij A : (1)i j ij ij A M +=- 三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =? 四、 行列式按行(列)展开法则: 定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和: 1122i i i i in in D a A a A a A =?+?+???+? 1122j j j j nj nj D a A a A a A =?+?+???+? (i j ≠) 推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0: 1122i j i j in jn D a A a A a A =?+?+???+? 1122i j i j ni nj D a A a A a A =?+?+???+? (i j ≠) 五、 克拉默法则: 如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++???+=

21122222n n a x a x a x b ++???+= 31132233n n a x a x a x b ++???+= ………………………………… ………………………………… ………………………………… 1122n n nn n n a x a x a x b ++???+= 其系数行列式不等于0,即:1111...... ......0...n n nn a a D a a =≠ 那么,方程组有惟一解: 11D x D =,22D x D =,…n N D x D = 1111,1122,11,1... .... .... ...... .....j n j j n n n j nn a b a a b a D a b a a +++= ① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。 ② 定理4':如果含n 个未知数的n 个线性方程组无解或者有两个不同的解,则它的系数行列式必然为0 ③ 定理5:上述方程对应的齐次线性方程组: 11112210n n a x a x a x ++???+= 21122220n n a x a x a x ++???+= 31132230n n a x a x a x ++???+= ………………………………… …………………………………

相关主题
文本预览
相关文档 最新文档