当前位置:文档之家› 高考数学一轮复习 双曲线基础知识检测 理

高考数学一轮复习 双曲线基础知识检测 理

高考数学一轮复习 双曲线基础知识检测 理
高考数学一轮复习 双曲线基础知识检测 理

双曲线

基础热身

1.与椭圆x 2

4+y 2

=1共焦点且过点P (2,1)的双曲线方程是( )

A.x 2

4-y 2

=1 B.x 2

2-y 2

=1 C.x 23-y 2

3=1 D .x 2

-y 2

2=1

2.如图K49-1,已知点P 为双曲线x 216-y 2

9

=1右支上一点,F 1、F 2分别为双曲线的左、右

焦点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则λ的值为( )

A.58

B.45

C.43

D.34

3.设双曲线的—个焦点为F ,虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )

A. 2

B. 3

C.3+12

D.5+1

2

4.已知双曲线x 2a 2-y 2b

2=1(a >0,b >0)与抛物线y 2

=8x 有一个公共的焦点F ,且两曲线的一

个交点为P ,若|PF |=5,则双曲线的渐近线方程为( )

A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D .2x ±y =0

能力提升

5. 若点O 和点F (-2,0)分别是双曲线x 2a

2-y 2

=1(a >0)的中心和左焦点,点P 为双曲线右

支上的任意一点,则OP →2FP →

的取值范围为( )

A .[3-23,+∞) B.[3+23,+∞) C.??????-74,+∞ D.????

??74,+∞ 6.已知双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物

线y 2

=24x 的准线上,则双曲线的方程为( )

A.x 236-y 2108=1

B.x 29-y 2

27=1 C.

x 2108-y 236=1 D.x 227-y 2

9

=1

7.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程式为( )

A.x 23-y 26=1

B.x 24-y 25=1

C.x 26-y 2

3=1 D.x 25-y 2

4=1

8.已知抛物线y 2

=2px (p >0)的焦点F 为双曲线x 2a -y 2

b

=1(a >0,b >0)的一个焦点,经过两

曲线交点的直线恰过点F ,则该双曲线的离心率为( )

A. 2 B .1+ 2 C. 3 D .1+ 3

9.点P 在双曲线上x 2a 2-y 2

b

2=1(a >0,b >0)上,F 1,F 2是这条双曲线的两个焦点,∠F 1PF 2=

90°,且△F 1PF 2的三条边长成等差数列,则此双曲线的离心率是( )

A .2

B .3

C .4

D .5

10.已知双曲线x 2a 2-y 2

b

2=1左、右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双曲

线一个交点为P ,且∠PF 1F 2=π

6

,则双曲线的渐近线方程为________.

11.双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线交双曲线的左支

于A ,B 两点,且|AB |=m ,则△ABF 2的周长为__________.

12.已知F 1、F 2分别为双曲线C :x 29-y 2

27

=1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),

AM 为∠F 1AF 2的平分线,则|AF 2|=________________________________________________________________________.

13.已知点(2,3)在双曲线C :x 2a 2-y 2

b

2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为

________.

14.(10分) 双曲线E 经过点A (4,6),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =2.

(1)求双曲线E 的方程;

(2)求∠F 1AF 2的角平分线所在直线的方程.

15.(13分)已知两定点F 1(-2,0),F 2(2,0),满足条件|PF 2|-|PF 1|=2的点P 的轨迹是曲线E ,直线y =kx -1与曲线E 交于A ,B 两点.如果|AB |=63,且曲线E 上存在点C ,使OA →+OB →=mOC →

,求m 的值和△ABC 的面积S .

难点突破

16.(12分)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,右焦点为F ,直线x =a 2

c (c =

a 2+

b 2)与x 轴交于点B ,且与一条渐近线交于点C ,点O 为坐标原点,又OA →

=2OB →,OA →2OC →

2,过点F 的直线与双曲线右支交于点M 、N ,点P 为点M 关于x 轴的对称点.

(1)求双曲线的方程;

(2)证明:B 、P 、N 三点共线; (3)求△BMN 面积的最小值. 答案解析

【基础热身】

1.B [解析] 椭圆x 2

4+y 2

=1的焦点坐标是(±3,0).设双曲线方程为x 2a 2-y 2

b

2=1(a >0,

b >0).因为点P (2,1)在双曲线上,所以4a 2-1

b

2=1,a 2+b 2=3,解得a 2=2,b 2=1,所以所求

的双曲线方程是x 22

-y 2

=1.

2.B [解析] 根据S △IPF 1=S △IPF 2+λS △IF 1F 2,即|PF 1|=|PF 2|+λ|F 1F 2|,即2a =

λ2c ,即λ=a c =4

5

.

3.D [解析] 设F 为左焦点,结合图形可知k FB =b c

,而对应与之垂直的渐近线的斜率为

k =-b a ,则有b c ? ??

??

-b a =-1,即b 2=ac =c 2-a 2,整理得c 2-ac -a 2=0,两边都除以a 2可得e 2

-e -1=0,解得e =1±52,由于e >1,故e =1+52

.

4.B [解析] F (2,0),即c =2,设P (x 0,y 0),根据抛物线的定义x 0+2=5,得x 0=3,

代入抛物线方程得y 20=24,代入双曲线方程得9a 2-24b

2=1,结合4=a 2+b 2

,解得a =1,b =3,

故双曲线的渐近线方程是3x ±y =0.

【能力提升】

5.B [解析] 因为F (-2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2

=3,所以双曲线方程为x 2

3-y 2

=1.设点P (x 0,y 0),则有x 20

3-y 2

0=1(x 0≥3),解得y 20

=x 20

3

-1(x 0≥3).因

为FP →=(x 0+2,y 0),OP →=(x 0,y 0),所以OP →2FP →=x 0(x 0+2)+y 2

0=x 0(x 0+2)+x 203-1=4x 2

03

+2x 0

-1,此二次函数对应的抛物线的对称轴方程为x 0=-34

,因为x 0≥3,所以当x 0=3时,OP →2FP

取得最小值43

33+23-1=3+23,故OP →2FP →

的取值范围是[3+23,+∞).

6.B [解析] ∵抛物线y 2=24x 的准线方程为x =-6,则在双曲线中有a 2+b 2=(-6)

2

=36①,又∵双曲线x 2a 2-y 2b 2=1的渐近线为y =3x ,∴b

a =3②,联立①②解得?

????

a 2=9,

b 2=27,所

以双曲线的方程为x 29-y 2

27

=1.

7.B [解析] 设A (x 1,y 1),B (x 2,y 2),双曲线方程为x 2a 2-y 2

b 2=1.∵AB 过F ,N ,∴斜率

k AB =1.

∵x 21a 2-y 21b 2=1,x 22a 2-y 22

b 2=1,∴两式相减,得 x 1-x 2 x 1+x 2 a 2- y 1-y 2 y 1+y 2 b 2=0,∴4b 2=5a 2,又∵a 2+b 2=9,∴a 2=4,b 2

=5.

8.B [解析] 设双曲线的一个焦点坐标为(c,0),则p

2

=c ,即p =2c ,抛物线方程为y

2

=4cx ,根据题意c 2a 2-y 2b 2=1,y 2=4c 2c ,消掉y 得c 2a 2-4c 2b

2=1,即c 2(b 2-4a 2)=a 2b 2,即c 2(c

2

-5a 2)=a 2(c 2-a 2),即c 4-6a 2c 2+a 4=0,即e 4-6e 2+1=0,解得e 2

=6+322=3+22,故e

=1+ 2.

9.D [解析] 不妨设|PF 1|,|PF 2|,|F 1F 2|成等差数列,则4c 2=|PF 1|2+|PF 2|2

,由2|PF 2|

=2c +|PF 1|,且|PF 2|-|PF 1|=2a ,解得|PF 1|=2c -4a ,|PF 2|=2c -2a ,代入4c 2=|PF 1|2

|PF 2|2,得4c 2=(2c -2a )2+(2c -4a )2,化简整理得c 2-6ac +5a 2

=0,解得c =a (舍去)或者c =5a ,故e =c a

=5.

10.y =±2x [解析] 根据已知|PF 1|=2b 2

a 且|PF 2|=

b 2

a ,故2

b 2

a -

b 2

a =2a ,所以

b 2

a 2=2,b

a

2.

11.4a +2m [解析] 由???

??

|AF 2|-|AF 1|=2a ,

|BF 2|-|BF 1|=2a

?|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=4a ,又

|AF 1|+|BF 1|=|AB |=m ,∴|AF 2|+|BF 2|=4a +m .则△ABF 2的周长为|AF 2|+|BF 2|+|AB |=4a

+2m .

12.6 [解析] 根据角平分线的性质,||AF 2||AF 1=||MF 2||MF 1=1

2

.又||AF 1-||AF 2=6,故||AF 2=6.

13.2 [解析] 方法一:点(2,3)在双曲线C :x 2a 2-y 2b 2=1上,则4a 2-9

b

2=1.又由于2c =4,

所以a 2+b 2=4.解方程组???

??

4a 2-9b 2=1,a 2+b 2=4

得a =1或a =4.由于a

e =c

a

=2. 方法二:∵双曲线的焦距为4,∴双曲线的两焦点分别为F 1(-2,0),F 2(2,0),点(2,3)到两焦点的距离之差的绝对值为2,即2a =2,∴a =1,离心率e =c a

=2.

14.[解答] 依题意,可设双曲线方程为x 2a 2-y 2b

2=1(a >0,b >0),c 2=a 2+b 2

(c >0).

(1)由A 在曲线上及e =2得?????

16a 2

-36b 2

=1,

a 2

+b

2a 2

=4

?????

?

b 2=3a 2

,16a 2-12

a

2=1??????

a 2

=4,b 2

=12,c 2=16,

∴双曲线E 的方程为x 24-y 2

12

=1.

(2)设F 1(-4,0),F 2(4,0),由A (4,6),∴AF 2⊥x 轴, 设∠F 1AF 2的平分线所在直线交x 轴于点M (m,0)(|m |<4),

则点M 到直线F 1A ,F 2A 的距离相等,直线F 1A ,F 2A 的方程分别为3x -4y +12=0,x =4,

所以得|3m +12|5

=4-m ,解得m =1,即M (1,0),

故所求直线方程为y =6-0

4-1(x -1),即y =2x -2.

15.[解答] 由双曲线的定义可知,曲线E 是以F 1(-2,0),F 2(2,0)为焦点的双曲线的左支,

且c =2,a =1,易知b =1,

故曲线E 的方程为x 2-y 2

=1(x <0).

设A (x 1,y 1),B (x 2,y 2),由题意建立方程组?

???

?

y =kx -1,x 2-y 2=1,

消去y ,得(1-k 2)x 2

+2kx -2=0,

又已知直线与双曲线左支交于两点A ,B ,有

?????

1-k 2

≠0,

Δ= 2k 2

+8 1-k 2

>0,x 1

+x 2

=-2k 1-k

2

<0,x 1x 2

=-21-k 2

>0,

解得-2

又∵|AB |=1+k 2

2|x 1-x 2| =1+k 22 x 1+x 2 2

-4x 1x 2

=1+k 2

2

? ??

??-2k 1-k 22-43-21-k 2

=2

1+k 2

2-k 2

1-k 2

2

, 依题意得2 1+k 2

2-k 2

1-k 2

2

=63,整理后得 28k 4-55k 2

+25=0,

∴k 2=57或k 2

=54,又-2

故直线AB 的方程为

5

2

x +y +1=0. 设C (x c ,y c ),由已知OA →+OB →=mOC →

, 得(x 1,y 1)+(x 2,y 2)=(mx c ,my c ),

∴(x c ,y c )=? ??

??x 1+x 2m ,y 1+y 2m (m ≠0).

又x 1+x 2=2k k 2-1=-45,y 1+y 2=k (x 1+x 2)-2=2k 2

k 2-1-2=2

k 2-1

=8,

∴点C ?

??

??

-45m

,8m ,将点C 的坐标代入曲线E 的方程,得80m 2-64m

2=1,得m =±4,

但当m =-4时,所得的点在双曲线的右支上,不合题意,∴m =4,

C 点的坐标为(-5,2),C 到AB 的距离为??????523 -5 +2+1? ??

??522+12

=1

3,

∴△ABC 的面积S =1236331

3

= 3.

【难点突破】

16.[解答] (1)由题意得?????

a =2a 2

c ,a 3=2c ,

解得?

????

a 2

=4,

c 2

=16,

∴b 2

=c 2

-a 2

=12,∴双曲线方程为x 24-y 2

12

=1.

(2)证明:由(1)可知得点B (1,0),设直线l 的方程为:x =ty +4,

由?????

x 24-y 2

12=1,x =ty +4,

可得(3t 2-1)y 2

+24ty +36=0.

设M (x 1,y 1),N (x 2,y 2),则P (x 1,-y 1), 所以?????

y 1

+y 2

=-24t

3t -1,y 1y 2

=36

3t 2

-1,

所以BP →=(x 1-1,-y 1),BN →

=(x 2-1,y 2),

因为(x 1-1)y 2+y 1(x 2-1)=x 1y 2+y 1x 2-y 1-y 2 =2ty 1y 2+3(y 1+y 2)

=2t 363t 2-1+3-24t 3t 2-1

=0,

所以向量BP →,BN →

共线.所以B ,P ,N 三点共线. (3)因为直线l 与双曲线右支相交于M ,N ,

所以x 1x 2=(ty 1+4)(ty 2+4)>0,所以t 2<1

3,

S △BMN =12|BF ||y 1-y 2|=181+t 2

|3t 2-1|=633+3t 2

1-3t

2

, 令u =1-3t 2

,u ∈(0,1],

S △BMN =634-u u =634u 2-1

u

=63

4? ????1u -182-1

16

, 由u ∈(0,1],所以1

u

∈[1,+∞),

当1

u

=1,即t =0时,△BMN 面积的最小值为18.

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

高考数学一轮复习重点攻略

2019高考数学一轮复习重点攻略 一、高三数学复习,大体可分四个阶段,每一个阶段的复习方法与侧重点都各不相同,要求也层层加深,因此,同学们在每一个阶段都应该有不同的复习方案,采用不同的方法和策略。 1.第一阶段,即第一轮复习,也称知识篇,大致就是高三第一学期。在这一阶段,老师将带领同学们重温高一、高二所学课程,但这绝不只是以前所学知识的简单重复,而是站在更高的角度,对旧知识产生全新认识的重要过程。因为在高一、高二时,老师是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,你学的往往时零碎的、散乱的知识点,而在第一轮复习时,老师的主线索是知识的纵向联系与横向联系,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,侧重点在于各个知识点之间的融会贯通。所以大家在复习过程中应做到:①立足课本,迅速激活已学过的各个知识点。(建议大家在高三前的一个暑假里通读高一、高二教材)②注意所做题目使用知识点覆盖范围的变化,有意识地思考、研究这些知识点在课本中所处的地位和相互之间的联系。注意到老师选题的综合性在不断地加强。③明了课本从前到后的知识结构,将整个知识体系框架化、网络化。能提炼解题所用知识点,并说出其出处。④经常将使用最多的知识点总结起来,研究重点知识所在章节,并了解各章节在课本中的地位和作用。 2.第二轮复习,通常称为方法篇。大约从第二学期开学到四月中旬结束。在这一阶段,老师将以方法、技巧为主线,主要研究数学思想方

法。老师的复习,不再重视知识结构的先后次序,而是以提高同学们解决问题、分析问题的能力为目的,提出、分析、解决问题的思路用配方法、待定系数法、换元法、数形结合、分类讨论等方法解决一类问题、一系列问题。同学们应做到:①主动将有关知识进行必要的拆分、加工重组。找出某个知识点会在一系列题目中出现,某种方法可以解决一类问题。②分析题目时,由原来的注重知识点,渐渐地向探寻解题的思路、方法转变。③从现在开始,解题一定要非常规范,俗语说:不怕难题不得分,就怕每题都扣分,所以大家务必将解题过程写得层次分明,结构完整。④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。 3.第三轮复习,大约一个月的时间,也称为策略篇。老师主要讲述选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对减缩思维的要求。②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。 4.最后,就是冲刺阶段,也称为备考篇。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以

高考数学 双曲线

第51讲 双曲线 1.双曲线的定义 平面内与两个定点F 1,F 2的__距离的差的绝对值__等于常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做__双曲线的焦点__,两焦点间的距离叫做__双曲线的焦距__. 集合P ={}M ||| ||MF 1-||MF 2=2a ,||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0. (1)当__a <c __时,点P 的轨迹是双曲线; (2)当__a =c __时,点P 的轨迹是两条射线; (3)当__a >c __时,点P 不存在. 2.双曲线的标准方程和几何性质 x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R

3.常用结论(1)双曲线的焦点到渐近线x a 2-y b 2=0(a >0,b >0)的距离为b .如右图△OFH 是分别以边a ,b ,c 为边长的直角三角形. (2)如下图: x 2a 2+y 2b 2=1(a >b >0) x 2a 2-y 2 b 2=1(a >0,b >0) 则有:P 1,P 2两点坐标都为????c ,b 2 a ,即||FP 1=||FP 2=b 2 a . 1.思维辨析(在括号内打“√”或“×”). (1)平面内到点F 1 (0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( × ) (2)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (3)方程x 2m -y 2 n = 1(mn >0)表示焦点在x 轴上的双曲线.( × ) (4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n = 0.( √ ) 解析 (1)错误.由双曲线的定义知,应为双曲线的一支,而非双曲线的全部. (2)错误.因为||||MF 1-||MF 2=8=||F 1F 2,表示的轨迹为两条射线. (3)错误.当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

2020高考数学第一轮复习全套讲义

第一章 集合与简易逻辑 第1课时 集合的概念及运算 【考点导读】 1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用. 2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义. 3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础练习】 1. 集 合 {(, )0 2,02,,} x y x y x y Z ≤≤≤<∈用列举法表示{ ( , ) , ( 0,. 2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ?=?. 3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ?=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8 或2___. 【范例解析】 例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ?=, {01R B C A x x ?=<<或23}x <<,求集合B . 分析:先化简集合A ,由R B C A R ?=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题. 解:(1) {12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ?=, R A C A R ?=, 可得A B ?. {0,2}

高考数学基础知识梳理

高考数学基础知识、常见结论详解 一、集合与简易逻辑 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 集合元素的互异性:如:)}lg(,,{xy xy x A =,}|,|,0{y x B ,求A ; (2)集合与元素的关系用符号∈,?表示。 (3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有 理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 注意:区分集合中元素的形式:如: } 12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ; }12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F ;},12|{2x y z x x y z G =++== (5)空集是指不含任何元素的集合。(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:条件为B A ?,在讨论的时候不要遗忘了φ=A 的情况。 如:}012|{2 =--=x ax x A ,如果φ=+ R A I ,求a 的取值。 二、集合间的关系及其运算 (1)符号“?∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“??,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。 (2)_}__________{_________ =B A I ;____}__________{_________=B A Y ; _}__________{_________=A C U (3)对于任意集合B A ,,则: ①A B B A Y Y ___;A B B A I I ___;B A B A Y I ___;

高考数学双曲线

2021年新高考数学总复习第九章《平面解析几何》 双曲线 1.双曲线定义 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. (1)当2a<|F1F2|时,P点的轨迹是双曲线; (2)当2a=|F1F2|时,P点的轨迹是两条射线; (3)当2a>|F1F2|时,P点不存在. 2.双曲线的标准方程和几何性质 标准方程 x2 a2- y2 b2=1 (a>0,b>0) y2 a2- x2 b2=1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a) 渐近线y=± b a x y=± a b x 离心率e= c a,e∈(1,+∞),其中c=a 2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双 曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做 双曲线的虚半轴长 a,b,c 的关系 c2=a2+b2 (c>a>0,c>b>0) 概念方法微思考

1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么? 提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在; 当2a =0时,动点的轨迹是线段F 1F 2的中垂线. 2.方程Ax 2+By 2=1表示双曲线的充要条件是什么? 提示 若A >0,B <0,表示焦点在x 轴上的双曲线;若A <0,B >0,表示焦点在y 轴上的双曲线.所以Ax 2+By 2=1表示双曲线的充要条件是AB <0. 3.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0b >0时,10时, e =2(亦称等轴双曲线),当0 2. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × ) (3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±y n =0.( √ ) (4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) (5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22 =1(此条件中两条双曲线称为共轭双曲线).( √ ) 题组二 教材改编 2.若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2 答案 A 解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±y b =0,即bx ±ay =0,

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

高考数学常用基础知识点

高考数学常用知识点 一.集合函数 1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 2. U U A B A A B B A B C B C A =?=????U A C B ?=Φ U C A B R ?=. 3.若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。 4. 二次函数c bx ax y ++=2 的图象的对称轴方程是a b x 2- =,顶点坐标是??? ? ??--a b ac a b 4422,。 二次函数的解析式的三种形式 ①一般式2 ()(0)f x ax bx c a =++≠; ② 顶 点 式 2()()(0) f x a x h k a =-+≠;③两点式 12()()()(0)f x a x x x x a =--≠. 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果 0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ?+=-(2)()f a x f x ?-=.②若函数()y f p =的图象与函数 ()z f q =对称则其对称轴为x=2 p q + 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直 线2a b x m +=对称.③函数)(x f y =和)(1 x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =(0,,a m n N * >∈,且1n >). 1m n m n a a -=(0,,a m n N * >∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>.

高考数学-圆锥曲线-双曲线题型总结

二、双曲线 1、(21)(本小题满分14分)08天津 已知中心在原点的双曲线C的一个焦点是()0,3 1 - F,一条渐近线的方程是0 2 5= -y x. (Ⅰ)求双曲线C的方程; (Ⅱ)若以()0≠k k为斜率的直线l与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐 标轴围成的三角形的面积为 2 81 ,求k的取值范围. (21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分. (Ⅰ)解:设双曲线C的方程为 22 22 1 x y a b -=(0,0 a b >>).由题设得 229 a b b a ?+= ? ? = ? ? ,解得 2 2 4 5 a b ?= ? ? = ?? ,所以双曲线方程为 22 1 45 x y -=. 的方程为y kx m =+(0 k≠).点 11 (,) M x y, 22 (,) N x y的坐标满足方程组(Ⅱ)解:设直线l 22 1 45 y kx m x y =+ ? ? ? -= ?? 将①式代入②式,得 22 () 1 45 x kx m + -=,整理得222 (54)84200 k x kmx m ----=. 此方程有两个一等实根,于是2 50 4k -≠,且222 (8)4(54)(420)0 k m k m ?=-+-+>.整理得22 540 m k +->.③ 由根与系数的关系可知线段MN的中点坐标 00 (,) x y满足 12 02 4 254 x x km x k + == - , 002 5 54 m y kx m k =+= - . 从而线段MN的垂直平分线方程为 22 514 () 5454 m km y x k k k -=-- -- . 此直线与x轴,y轴的交点坐标分别为 2 9 (,0) 54 km k - , 2 9 (0,) 54 m k - .由题设可得22 19981 |||| 254542 km m k k ?= -- .整理得 22 2 (54) || k m k - =,0 k≠. 将上式代入③式得 22 2 (54) 540 || k k k - +->,整理得22 (45)(4||5)0 k k k --->,0 k≠.

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

高考第一轮复习数学知识点

高考第一轮复习数学知识点 第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。 主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。 第二:平面向量和三角函数。 重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。 第三:数列。 数列这个板块,重点考两个方面:一个通项;一个是求和。 第四:空间向量和立体几何。 在里面重点考察两个方面:一个是证明;一个是计算。 第五:概率和统计。 这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。 第六:解析几何。 这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2021年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。 第七:押轴题。 考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学专题复习:双曲线(含解析)

【学习目标】 1.理解双曲线的定义、几何图形和标准方程以及它的简单几何性质. 2.理解数形结合的思想. 3.了解双曲线的实际背景及其简单应用. 【高考模拟】 一、单选题 1.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则() A. B. C. D. 【答案】B 【解析】 【分析】 根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可. 【详解】

【点睛】 本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键. 2.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点, , ,, 为坐标原点,则 A . B . C . D . 【答案】D 【解析】 【分析】 先求出双曲线的方程为,再求出点P 的坐标,最后求 . 【详解】 【点睛】 (1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些

知识的掌握水平和分析推理计算能力.(2) 双曲线的通径为. 3.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为() A. B. C. D. 【答案】D 【解析】 【分析】 根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率. 【详解】 直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴, 根据双曲线的对称性,设点,, 则,即,且, 又直线的倾斜角为, 直线过坐标原点,, ,整理得,即,解方程得,(舍) 故选D. 【点睛】 本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题. 圆锥曲线离心率的计算,常采用两种方法: 1、通过已知条件构建关于的齐次方程,解出. 根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.

高考数学(理)二轮练习【专题6】(第2讲)椭圆、双曲线、抛物线(含答案)

第2讲椭圆、双曲线、抛物线 考情解读 1.以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特别是离心率),以及圆锥曲线之间的关系,突出考查基础知识、基本技能,属于基础题.2.以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,常常在知识的交汇点处命题,有时以探究的形式出现,有时以证明题的形式出现.该部分题目多数为综合性问题,考查分析问题、解决问题的能力,综合运用知识的能力等,属于中、高档题,一般难度较大. 圆锥曲线的定义、标准方程与几何性质 |x|≤a,|y|≤b |x|≥a x≥0

热点一 圆锥曲线的定义与标准方程 例1 若椭圆C :x 29+y 2 2=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 2|=4则∠F 1PF 2等于( ) A .30° B .60° C .120° D .150° (2)已知抛物线x 2=2py (p >0)的焦点与双曲线x 2-y 2=-1 2的一个焦点重合,且在抛物线上有一 动点P 到x 轴的距离为m ,P 到直线l :2x -y -4=0的距离为n ,则m +n 的最小值为________. 思维启迪 (1)△PF 1F 2中利用余弦定理求∠F 1PF 2;(2)根据抛物线定义得m =|PF |-1.再利用数形结合求最值. 答案 (1)C (2)5-1 解析 (1)由题意得a =3,c =7,所以|PF 1|=2. 在△F 2PF 1中, 由余弦定理可得cos ∠F 2PF 1=42+22-(27)22×4×2=-12. 又因为cos ∠F 2PF 1∈(0°,180°),所以∠F 2PF 1=120°. (2)易知x 2=2py (p >0)的焦点为F (0,1),故p =2, 因此抛物线方程为x 2=4y . 根据抛物线的定义可知m =|PF |-1, 设|PH |=n (H 为点P 到直线l 所作垂线的垂足), 因此m +n =|PF |-1+|PH |. 易知当F ,P ,H 三点共线时m +n 最小, 因此其最小值为|FH |-1=|-1-4| 5 -1=5-1. 思维升华 (1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与到准线的距离相等的转化. (2)注意数形结合,画出合理草图. (1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 2 .双曲线x 2-y 2=1的渐近线与椭 圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 2 2=1 B.x 212+y 2 6=1 C.x 216+y 2 4 =1 D.x 220+y 2 5 =1

数学高考第一轮复习规划与建议

数学高考第一轮复习规划与建议 一、高三期间复习阶段分析 第一轮复习一般从8月到12月,以教材的知识体系作为复习的主要线索,以帮助同学们回忆、回顾以前学习过的知识为主,对知识面进行全方位的覆盖,以及对基本方法、基本题型进行总结、反思; 第二轮复习大概从2月到4月中旬,在此阶段打破了教材的体系,主要是对高中数学的六大板块进行专题性的复习,在第一轮复习的基础上进一步加强综合性运用,提高解题的准确性、速度性和解答题的规范性; 第三轮复习一般从4月中旬到5月中旬,此阶段主要是同学们进行高考试题的模拟考试、训练,以培养同学们的答题技巧、答题方法、考场应变能力。5月下旬到6月5日期间则是同学们自主复习,以回归教材、错题反思、方法的进一步归纳总结。 所以在整个高三的复习中,第一轮复习所用的时间是最长的,它的复习成效将直接影响后面的复习效果。 二、数学第一轮复习建议 一、端正态度,切忌浮躁,忌急于求成 在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为: 1对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。 2复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。 3在第一轮复习阶段,学习的重心应该转移到基础复习上来。 因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。 二、注重教材、注重基础,忌盲目做题

高考数学真题专题(理数) 双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C .D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2, 过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则C 的 离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

相关主题
文本预览
相关文档 最新文档