最全最新高考数学一轮复习知识思维导图
- 格式:docx
- 大小:3.09 MB
- 文档页数:14
《解析几何》思维导图,值得收藏的高考数学一轮复习资料也许会有人觉得思维导图对于提高数学成绩毫无用处,但是对于有着多年教学经验的老师,或是非常善于学习的同学来说,他们对思维导图是爱不释手。
因为相比于去看书复习,思维导图有着无可比拟的优势,它条理清晰,能够极大地节约大家的时间,并且扩展方便,大家可以根据自身实际情况增减内容。
将此图存入手机随时随地方便自己复习回顾。
可谓一图在手,天下我有。
本文我们就一起来通过思维导图的方式回顾下高中数学《解析几何》模块所学内容。
如果,通过这张概括性的提纲大家能够回想起每个章节的内容,就可以不用下面看了。
如果感觉某些地方一时想不起来,可以重点记忆备注。
接下来,我们就分章节详细来看下。
一、直线的方程直线的方程这章,大家务必要掌握好直线的位置关系(平行、垂直)、直线的方程、点到直线的距离、平行线之间的距离。
二、圆的方程圆的方程这章,重点要掌握圆的方程的各种形式及其应用,掌握圆的切线方程(过圆上一点圆的切线方程和过圆外一点圆的切线方程),这两类题型在选择题中出现的概率比较大,在大题中通常以动点的轨迹的形式出现。
三、圆锥曲线及对称性问题圆锥曲线这块,历来是高考数学的一个重点和难点之一,重点应该掌握椭圆、双曲线、抛物线等的离心率、准线等知识。
这些考点在选择题和大题中都有可能出现。
而对称性问题一般出现在选择题和填空题中,偶尔会出现在大题中。
喜欢本文的朋友记得点击收藏,需要x mind思维导图源文件以便在电脑上查看的老师或家长可以在文末留言,我们无偿提供给大家。
对于思维导图软件的下载和使用有问题的朋友,也欢迎一起探讨交流。
至于高考数学一轮复习其它章节的思维导图,请查看我们历史文章并持续关注我们后续更新即可。
第19讲导数中同构与放缩的应用思维导图-----知识梳理同构法是将不同的代数式(或不等式、方程)通过变形,转化为形式结构相同或者相近的式子,通过整体思想或换元等将问题转化的方法,这体现了转化思想.此方法常用于求解具有对数、指数等混合式子结构的等式或不等式问题.当然,用同构法解题,除了要有同构法的思想意识外,对观察能力,对代数式的变形能力的要求也是比较高的,脑洞(常见考法):浮光掠影,抑或醍醐灌顶考法一部分同构携手放缩法(同构放缩需有方,切放同构一起上)思维导图-----方法梳理在学习指对数的运算时,曾经提到过两个这样的恒等式:(1)当a >0且a ≠1时,有log a x xa ,(2)当a >0且a ≠1时,有log xax a再结合指数与对数运算法则,可以得到下述结论(其中x >0)(“e x ”三兄弟与“ln x ”三姐妹)(3)ln xx xxee,ln ln ()x x x xe(4)ln xx xxee,ln lnx x x xe(5)ln x x xxee,ln lnxxx x e再结合常用的切线不等式:1x x e,e x x e,l n 1x x ,ln xx e等,可以得到更多的结论(6)ln ln 1xx xxx x ee,ln ln ()e 1xxx x x x e.ln (ln )xx xx x x eee,1eln ln ()xxx x x x xx e=ee.(7)ln ln 1xx xx x xee,ln ln x x x x x x ee-1,ln (ln )x x xx x x eee,1ln ln x x x x x xee(8)ln ln 1x x xxx x ee,ln lnx x xx x x-1ee,ln (ln )x xx x x x eee,1ln ln x x x xx x ee围观(典型例题):一叶障目,抑或胸有成竹例1.已知f(x)=ln x +x −x ex+1,则函数()f x 的最大值为________.解析1ln 1()ln ln ln (ln 2)2x x x f x x x x xx xx x xee.(当且仅当x +ln x +1=0取等号).例2.函数ln 1()xxf x xe的最小值是________.解析ln ln 1ln 1ln 1ln 1ln 1()1xx xxxx x x x x x f x xx x xeee(当且仅当x +ln x =0取等号).例3.函数22ln ()1xx xf x xe的最小值是________.解析22ln 2ln 2ln 2ln 12ln ()1111xx xx x x x x xf x x x xee(当且仅当x +2ln x =0取等号).例4.不等式ln 10xxa x x e恒成立,则实数a 的最大值是________.解析m ineln 1eln 1ln 10()xxx x x x x x a x x a xxe恒成立ln eln 1x xx xln 1ln 11xx x x,当且仅当x +ln x =0等号成立.例5.不等式x ex−a(x +ln x +1)≥0恒成立,则正数a 的取值范围是________.解析ln (ln 1)0(ln 1)0(ln 1)xx x x x a x x x a x x a x x eee,当x +ln x +1≤0时,原不等式恒成立,当x +ln x +1>0时,ln ln 1x xa x x e,由于ln ln 1=1ln 1ln 1x x x x x x x x e,当且仅当x +ln x =1等号成立,所以a 1,故0a <1.例6.已知函数()ln 1(1)b xf x x a x x x e,其中b >0,若()0f x 恒成立,则实数a 与b 的大小关系是________.解析ln ln 1()0ln 11ln ln x b xbxx b xx f x x a x x x a x a xeee,由于ln 1ln 11ln ln x b xx xb x x b xxe,当且仅当x +b ln x =0等号成立,所以ab.例7.已知函数()ln 1xf x a x e,若()0f x 恒成立,则实数a 的取值范围是________.解析ln 1ln 10xxxa x aee,由于ln x +1≤x ,e x ≥e x ,两者都是当且仅当x =1等号成立,则ln 11e e xxx xe,所以a 1e.例8.已知不等式1ln xk x x e,对任意的正数x 恒成立,则实数k 的取值范围是________.解析elne 1ln xxxk x x k xxe,由于e x≥e x ,lne x ≤x ,两者都是当且仅当x =1等号成立,所以xxee,lne 1xx则elne 1xxxxe,所以k ≤e-1.例9.已知不等式ln 10a x a x xx e,对任意的正数x 恒成立,则实数a 的取值范围是________.解析ln ln 1ln 1ln 1ln 10a xa x xx a x x a x x a x x a x x ee,当且仅当-a x +ln x =0,即ln xa x时等号成立,由ln xa x有解,易得1ae.例10.已知函数()(ln )xf x x a x x e有两个零点,则实数a 的取值范围是________.解析f(x)=x ex−a(x +ln x)=ex+ln x−a(x +ln x),令ln ,t x x t R ,显然该函数单调递增,即e 0ta t 有两个根,即eta t有两个根,令e()tg t t,()g t 在(-∞,1)单调递减,在(1,+∞)单调递增.m i n ()(1)e g t g ,e a .例11.(2020届太原二模)已知函数()ln 1f x x a x .(1)若函数()f x 有两个零点,求实数a 的取值范围;(2)若()e xf x x 恒成立,求实数a 的取值范围.解析(1)()f x 定义域是(0,) ,1()f x a x,①当0a 时,()0f x ,()f x 在定义域上单调递增,不可能有两个零点;②当0a 时,由1()0f x a x,得10x a,当1(0,)x a时,()0f x ,()f x 在定义域上单调递增,当1(,+)x a时,()0f x ,()f x 在定义域上单调递减,所以当1xa时,()f x 取得极大值.当0x 时,()f x ,当x 时,()f x ,因为()f x 有两个零点,所以1()0f a,解得10a .(2)要使()e xf x x 恒成立,只要ln x +ax +1e xx 恒成立,只要eln 1xx x a x恒成立,令eln 1()xx x g x x,则eln 1xx x xln eln 1ln 1ln 11x xx xx x xx,当且仅当时取等号.所以()e xf x x 恒成立,实数a 的取值范围为1a .套路(举一反三):手足无措,抑或从容不迫1.函数f(x)=x ex−x−ln x 的最小值为________.解析f(x)=x ex −x−ln x =ex+ln x−x−ln x ≥x +ln x +1−x−ln x =1,当且仅当x +ln x =0等号成立.2.函数ln ()1xx xf x x e的最小值为________.解析ln ln ln ln 1ln ()1111xx xx x x x x xf x x x xee,当且仅当x +ln x =0等号成立.3.函数()(ln 1)x f x x x x e的最大值是________.解析ln ln 1ln 1()(ln 1)x x xxx xxx x x x f x x x x eeeeeln 1(ln 1)0x x x x x e(当且仅当x +ln x =0取等号).4.已知不等式x ex−a(x +1)≥ln x ,对任意正数x 恒成立,则实数a 的取值范围是________.解析ln (1)ln 1xxx x x a x x a xee,由于ln ln ln 11x x xx x x x x eeln 1ln 11x x xx ,所以a 1.5.已知函数()(ln 1)xf x x a x x ee,若()0f x 恒成立,则实数a 的取值范围是________.解析f(x)≥0⇔x ex +e≥a(x +ln x +1)⇔ex+ln x+e≥a(x +ln x +1),当x +ln x +1≤0时,原不等式恒成立,当x +ln x +1>0时,ln ln 1x xa x x ee,由于ln (ln )=ln 1ln 1x x x x x x x x eeeee,当且仅当x +ln x =1等号成立,所以a ≤e,故0<a ≤e.6.已知函数f(x)=a e2x−ln x−1,若()0f x 恒成立,则实数a 的取值范围是________.解析f(x)=a e2x−ln x−1⇔a ≥ln x+1e2x,由于ln x +1≤x ,e 2x≥2e x ,两者都是当且仅当x =1等号成立,则2ln 112e 2ex xx xe,所以2a1e.7.已知a ,b 分别满足ae a=e 2,b(ln b−1)=e 3,则ab =________.解析同构化处理,并利用函数的单调性.222ln 232e e e e e e e ln e (ln 1)eln e e e e ea a a ba a ab b b b b ,ln e e ln e e b a b a ,令()e xf x x ,显然该函数单调递增,即()(ln)eb f a f,即ln eba,则ab =e 3.8.已知x 0是函数f(x)=x 2e x−2+ln x−2的零点,则e2−x 0+ln x 0=________.解析22222222eeeeeln 2e2ln e lnln ln (ln ())ln ()x x xx x xx x x x xxxx=0,所以2eln ()x x,即2−ln x =x ,或e2−x =x ,则e 2−x 0+ln x 0=x 0+ln x 0=2.考点二整体同构携手脱衣法在成立或恒成立命题中,很有一部分题是命题者利用函数单调性构造出来的,如果我们能找到这个函数模型(即不等式两边对应的同一个函数),无疑大大加快解决问题的速度,找到这个函数模型的方法,我们就称为整体同构法.如,若F (x )≥0能等价变形为f [g (x )]≥f [h (x )],然后利用f (x )的单调性,如递增,再转化为g (x )≥h (x ),这种方法我们就可以称为同构不等式(等号成立时,称为同构方程),简称同构法.1.地位同等同构(主要针对双变量,合二为一泰山移)(1)f x 1 -f x 2x 1-x 2>k (x 1<x 2) f (x 1)-f (x 2)<k x 1-k x 2 f (x 1)-k x 1<f (x 2)-k x 2 y =f (x )-k x 为增函数;(2)f x 1 -f x 2 x 1-x 2<k x 1x 2(x 1<x 2) f (x 1)-f (x 2)>k (x 1-x 2)x 1x 2=k x 2-k x 1 f (x 1)+k x 1>f (x 2)+k x 2 y =f (x )+k x为减函数;含有地位同等的两个变x 1,x 2或p ,q 等的不等式,进行“尘化尘,土化土”式的整理,是一种常见变形,如果整理(即同构)后不等式两边具有结构的一致性,往往暗示单调性(需要预先设定两个变量的大小)2.指对跨阶同构(主要针对单变量,左同右同取对数)(1)积型:ln e(ln )e ()e eln e ln eln ()ln ln ln ln (ln )()ln abx aaaa b f x x a b b b bf x x xaa b b f x x x构造函数三种同构方式构造函数构造函数同左同右取对如,322222ln ln eln ln m mm mxxxxm xxme xxxxe xe,后面的转化同(1)说明;在对“积型”进行同构时,取对数是最快捷的,同构出的函数,其单调性一看便知.(2)商型:ln eee()ln ee()ln ln eln ln ln ln ln (ln )()ln abxaaaf x abx bbxf x abbxaa b b f x x x构造函数三种同构方式构造函数构造函数同左同右取对(3)和差:ln e e ln ()e eln eln e ln ()ln a b x aaa ab f x xa b b b b f x x x构造函数两种同构方式构造函数同左同右如;ln (1)ln (1)1ln (1)ln (1)a x a xx a x x x a x x a x x eee.3.无中生有同构(主要针对非上型,凑好形式是关键)(1)eln e ln 21a xx a x a x a x x x 同乘(无中生有),后面的转化同();(2)ln ln 1e ln ()eln (1)1e ln ln (1)1e +ln xxx a x x aa a x a a a x a x x a a同加(无中生有)ln (1)ln (1)1ln (1)ln ln (1)x xx x xa xe+;(3)a x >log a x⇔exln a>ln x ln a⇔(xln a)e xln a>xln x ,后面的转化同2(1).围观(典型例题):一叶障目,抑或胸有成竹例1.若1201x x ,则()A .2121ee ln ln x x x x B .2121ee ln ln x x x x C .1221ee x xx x D .1221ee x xx x 解析设()e ln xf x x ,则1()e xf x x,故()f x 在(0,1)上有一个极值点,即()f x 在(0,1)上不是单调函数,无法判断1()f x 与2()f x 的大小,故A 、B 错;构造函数()xeg x x,2(1)()xe xg x x,故()g x 在(0,1)上单调递减,所以12g x g x,选C .例2.若120x x a,都有211212ln ln x x x x x x 成立,则a 的最大值为()A .21B .1C .eD .2e解析121221ln ln 11x x x x x x,即121122ln ln 11x x x x x x,令ln 1()xf x xx,则()f x 在(0,)a 上为增函数,()0f x 在(0,)a 上恒成立,2ln ()xf x x,令()0f x ,解得x =1,()f x 在(0,1)上为增函数,在(1,) 上为减函数,1a,a 的最大值为1,选B .例3.已知f(x)=a ln (x +1)−x 2,在区间(1,2)内任取两实数p ,q ,且p ≠q ,不等式(1)(1)1f pf q p q恒成立,则实数a 的取值范围为________.解析①当p >q 时,(1)(1)(1)(1)f pf qp q即(1)(1)(1)(1)f pp f qq,令()(1)(1)g x f xx,则(1)(1)g p g q ,()g x 在(1,2)递减,即2()ln (2)(1)(1)g x a x x x ,在(1,2)递减,()0x g在(1,2)上恒成立,()2(1)102a x x xg在上恒成立,2276a x x 在(1,2)上恒成立,∴a ≤(2x 2+7x +6)min .②当p <q 时,同理可得出28a ,综上所述(,15][28,)a 例4.对下列不等式或方程进行同构变形,并写出相应的一个同构函数(1)log 2x −k ⋅2kx≥0解析log 2x−k ⋅2kx≥0⇔xlog 2x ≥kx ⋅2kx⇔(log 2x)⋅2log 2x≥kx ⋅2kx,()2x f x x .(2)x 2ln x −m em x≥0解析x 2ln x−m emx≥0⇔xln x ≥m x em x ⇔ln x +ln (ln x)≥m x +ln mx,f(x)=x +ln x .(3)a(eax+1)≥2(x +1x)ln x 解析22221(1)2()ln 2ln 2ln ln ln a xa x a xa x xa x a x x x x a x a x x x x xeee22ln 2ln ln ()a x xx a x a x x x f x x xee,e(4)x +a ln x +e−x≥x a(x >1)解析x +aln x +e−x≥x a ⇔x +e−x≥x a −ln x a ⇔e−x −ln e−x≥x a −ln x a,()ln f x x x .(5)x 2ex+ln x =0解析2ln 1111ln 0lnln lnxx x x x xx x x x xxxxxeeeee,()ln f x x x .例5.已知不等式log (0,1)x a a x aa,对任意正数x 恒成立,则实数a 的取值范围是________.解析ln ln ln log e (ln )e ln ln xx a x a a x ax x a x x aln ln ln ln (ln )e (ln )e ()e (1)e ln eln ()ln (2)ln ln (ln )ln ln (ln )()ln (3)x a x x x ax ax a x f x x x x f x x x x a x a x x f x x x(三种模式,只要写一种),由(3)得,xln a >ln x ,即ln ln xax,由导数法可得1ln ae,从而所以a >e 1e .例6.已知函数()ln (1)33f x m x x ,若不等式()3e x f x m x 在(0,) 上恒成立,则实数m 的取值范围是()A .0≤m ≤3B .m ≥3C .m ≤3D .m ≤0解析mln (x +1)−3(x +1)>mx−3e x=mln e x−3e x(同构),令()ln 3g x m x x ,由(1)(e )x g x g ,且11e x x ,知()g x 在(1,) 为减函数,所以()3033m g x m x m x.故选C .例7.对任意x >0,不等式2a e 2x−ln x +ln a ≥0恒成立,则实数a 的最小值为________.解析2222eln ln 02e ln2e ln2ln 2ln ln (ln)xx x x x x x x a x a a x x x aaa aa(积型同构取对数),令()ln f x x x ,则()f x 为增函数,由(2)(ln)x f x f a,得2lnx xa,即2x xae恒成立,令2()x xg xe,则212()xx g xe,易得m a x 11()()22e g x g ,所以实数a 的最小值为12e.例8.已知函数f(x)=ex−a ln (ax−a)−a(a >0),若关于x 的不等式()0f x 恒成立,则实数a 的取值范围是()A .2(0,e ]B .2(0,e )C .2[1,e ]D .2(1,e ]解析f(x)=ex −aln (ax−a)−a >0⇔1aex>ln a(x−1)−1⇔ex−ln a −ln a >ln (x−1)−1⇔ex−ln a +x−ln a >eln (x−1)+ln (x−1)(和差型同构),令g(x)=e x+x ,显然()g x 为增函数,则原命题等价于g(x−ln a)>g(ln (x−1))⇔x−ln a >ln (x−1)⇔ln a <x−ln (x−1),由于ln (1)(2)x x x x ,所以ln a <2,即得0<a <e 2.例9.对任意0x,不等式1(e 1)2()ln a xa x x x恒成立,则实数a 的最小值为________.解析22221(e1)2()ln (e 1)(1)ln (e 1)ln e (1)ln a xa x a x a x a x xa x x x x x x(积型同构),令()(1)ln f x x x ,则1()ln xf x x x,22111()=xf x xxx,易知()f x 在(0,1)上递减,在(1,)上递增,所以()(1)20f x f ,所以()f x 在(0,) 上单调递增,则22(e 1)ln e(1)ln (e )a xa xa xx x f 222ln ()e 2ln a x xf x x a x x a x,由导数法易证2ln 2exx,所以2ea.例10.已知不等式1ln ea xx a x x 对任意的(1,)x 恒成立,则实数a 的最小值为()A .eB .e 2C .eD .2e解析11ln ln ln e ln e ln eea a a a x x a a xxxa x x x x a x x x x x,令()ln f x x x ,则1()xf x x,易知()f x 在(0,1)上递减,在(1,) 上递增,所以(e)()xaf f x,(1,)x ,1e (0,)e x.根据选项只讨论a <0的情况,当a <0时,(0,1)a x ,∴e−x≤x a,ln xa x.令()ln xh x x,则21ln ()(ln )xh x x,所以()h x 在(1,e )上递增,在(e ,) 上递减,则m a x ()(e )e h x h ,即e a ,故选C .例11.已知函数ln (1)()xf x x.(1)判断()f x 在(0,) 上的单调性;(2)若x >0,证明:(e x−1)ln (x +1)>x 2.解析(1)2ln (1)1()xx xf x x,令()ln (1)1x g x x x,2()0(1)xg x x,()g x 在(0,) 上单调递减,()(0)0g x g ,即()0f x ,()f x 在(0,) 上单调递减.(2)要证2(e 1)ln (1)x x x ,即证:2ln (1)e1xx x即证:ln (1)e1xxx x即证:ln (1)ln (e11)e 1xxxx,令ln (1)()xh x x,即证:ℎ(x)>ℎ(e x−1),由(1),()h x 在(0,) 上单调递减,即证:e 1x x .令s(x)=e x−x−1,s '(x)=e x−1>0,()s x 在(0,) 上单调递增,∴s(x)>s(0)=0,∴e x −x−1>0,即x <e x−1.例12.(2020·新高考Ⅰ)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解析(1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x -1x ,∴f ′(1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2,∴切线与两坐标轴的交点坐标分别为(0,2),-2e -1,0(),∴所求三角形面积为12×2×-2e -1||=2e -1.(2)解法一:∵f (x )=a e x -1-ln x +ln a ,∴f ′(x )=a e x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=a e x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f ′(1)=0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=1,∴f (x )≥1成立;当a >1时,1a <1,∴11e a<1,∴f ′1a()f ′(1)=11(e 1)(1)0a a a ,∴存在唯一x 0>0,使得f ′(x 0)=a e x 0-1-1x 0=0,且当x ∈(0,x 0)时f ′(x )<0,当x ∈(x 0,+∞)时f ′(x )>0,∴a e x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=a e x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0=2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不恒成立.综上所述,a 的取值范围是[1,+∞).解法二:f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e ln x +ln x ,令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ),显然g (x )为单调递增函数,∴又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-xx,在(0,1)上h ′(x )>0,h (x )单调递增;在(1,+∞)上h ′(x )<0,h (x )单调递减,∴h (x )ma x =h (1)=0,ln a ≥0,即a ≥1,∴a 的取值范围是[1,+∞).套路(举一反三):手足无措,抑或从容不迫1.已知函数()ln()xf x m x m R e,若对任意正数x 1,x 2,当x 1>x 2时,都有1212()()f x f x x x成立,则实数m 的取值范围是________.解析由1212()()f x f x x x得,1122()()f x x f x x,令()()g x f x x,12()()g x g x ,()g x 在(0,) 单调递增,又()()xg x f x x m x xe,()10xm g x xe,在(0,) 上恒成立,即(1e)xm x,令()(1e )x h x x ,则()e (1)10x h x x ,()h x 在(0,) 单调递减,m a x ()0h x (但取不到). m ≥0.2.已知函数()xf x a x xe,(0,)x ,当x 2>x 1时,不等式1221()()0f x f x x x恒成立,则实数a的取值范围是()A .(,e ]B .(,e )C .e (,)2D .e (,]2解析由1221()()0f x f x x x,得1122()()x f x x f x ,令()()g x x f x ,则()g x 在(0,) 上单调递增,又2()xg x a x e,()20xg x a x e在(0,) 上恒成立,即e2xa x,令e()2xh x x,则2e (1)()2xx h x x,令()0h x ,则()h x 在(0,1)单调递减,在(1,) 单调递增,m i n e ()(1)2h x h ,选D .3.对不等式21ln 0xxe进行同构变形,并写出相应的一个同构函数.解析2222ln 11ln0ln 2ln 2(ln )2xxx x xxxx x x x xeeeee4.对方程2ln 0xx x e进行同构变形,并写出相应的一个同构函数.解析2ln 0ln ln ln x x x xx x x x x x x -eeee.5.对不等式ln (1)2(1)2xa x x a x e进行同构变形,并写出相应的一个同构函数.解析ln (1)2(1)2ln (1)2(1)ln 2x x xa xx a x a x x a eee6.设实数0 ,若对任意的(0,)x ,不等式ln 0xxe恒成立,则 的最小值为________.解析ln ln 0ln 0ln ln xx x xxx x x x x x xeeee,令()e xf x x ,易知()f x 在(0,) 上递增,所以()(ln )f x f x,ln x x ,ln xx.令ln ()xh x x,则21ln ()xh x x,所以()h x 在(0,e )上递增,在(e ,) 上递减,则m a x 1()(e )eh x h,即1e.7.已知函数1()ln (0)x f x a a x a a e,若关于x 的不等式()0f x 恒成立,则实数a 的取值范围是________.解析1111()ln 0ln (ln 1)x x x x f x a a x a a a x a a a x x eeee(lna x 1)a xeln 1(ln 1)e a x a x,ln 1e >(ln 1)e xa x x a x,令()e x g x x ,显然()g x 为增函数,则原命题等价于()g x (ln 1)ln 1ln ln 1g a xx a x a x x ,令()ln 1h x x x ,则1()xh x x,所以()h x 在(0,1)上递减,在(1,) 上递增,则m i n ()(1)2h x h ,所以ln 2a ,即得20e a .8.已知对任意0x,不等式1(e 1)(1)ln 0k x k xx恒成立,则实数k 的取值范围为________.解析1(e1)(1)ln 0(e 1)(1)ln e ln k xk x k x k xk x x x k x k x x x x x,即ln e ln e ln k x x k x k x x x .令()e xf x x x ,则()f x 在(0,) 上递增,所以()(ln )f k x f x,所以ln k x x ,则ln xk x,由导数法易证ln 1exx,所以1ek.9.已知0a ,不等式1ln 0a xxa x e,对任意的实数1x恒成立,则实数a 的最小值是()A .12eB .1eC .eD .2e解析1ln ln 0ln a x xaaaa xxa x x x xxee,即ln ln e axa x xx e,令()e xf x x ,则()f x 在(1,) 单调递增,即()(ln )af x f x,即ln a x x ,ln xa x.令()ln xg x x,由导数法知m i n ()(e )e g x g ,e a .故选C .10.已知函数13()2ln ()m xf x xxm x e,当e x时,()0f x 恒成立,则实数m 的取值范围为()A .(,4e ]B .(,3e ]C .(,2e ]D .3e (,]2解析1113222()02ln ()2ln (1)ln (1)m m mxxxm m f x xxm x xxx xxxeee,即12ln ln e(1)mxx m xxe,令()e x g x x ,则()g x 在[e ,) 单调递增,即2(ln )(1)m g x g x,当0m 时,12ln ln e(1)mxx m xxe恒成立,当0m 时,2ln 12ln m x m x x x x,令()2ln h x x x x ,则()2ln 30h x x ,()h x 在[e ,) 上单调递增,m i n ()(e )3e h x h .故选B .考点三分离含参式同构思维导图-----方法梳理参变分离法是将不等式变形成一个一端是f (a ),另一端是变量表达式g (x )的不等式后,若f (a )≥g (x )在x ∈D 上恒成立,则f (a )≥g (x )ma x ;若f (a )≤g (x )在x ∈D 上恒成立,则f (a )≤g (x )min .特别地,经常将不等式变形成一个一端是参数a ,另一端是变量表达式g (x )的不等式后,若a ≥g (x )在x ∈D 上恒成立,则a ≥g (x )ma x ;若a ≤g (x )在x ∈D 上恒成立,则a ≤g (x )min .利用分离参数法来确定不等式f (x ,a )≥0(x ∈D ,a 为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(a )≥f 2(x )或f 1(a )≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(a )≥f 2(x )ma x 或f 1(a )≤f 2(x )min ,得到a 的取值范围.围观(典型例题):一叶障目,抑或胸有成竹例1.(2020·新高考Ⅰ)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.解析(1)当a =e 时,f (x )=e x -ln x +1,∴f ′(x )=e x -1x ,∴f ′(1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴曲线y =f (x )在点(1,f (1))处的切线方程为y -e -1=(e -1)·(x -1),即y =(e -1)x +2,∴切线与两坐标轴的交点坐标分别为(0,2),-2e -1,0(),∴所求三角形面积为12×2×-2e -1||=2e -1.(2)解法一(同构后参变分离)f (x )=a e x -1-ln x +ln a =e ln a +x -1-ln x +ln a ≥1等价于e ln a +x -1+ln a +x -1≥ln x +x =e ln x +ln x ,令g (x )=e x +x ,上述不等式等价于g (ln a +x -1)≥g (ln x ),显然g (x )为单调递增函数,∴又等价于ln a +x -1≥ln x ,即ln a ≥ln x -x +1,令h (x )=ln x -x +1,则h ′(x )=1x -1=1-xx,在(0,1)上h ′(x )>0,h (x )单调递增;在(1,+∞)上h ′(x )<0,h (x )单调递减,∴h (x )ma x =h (1)=0,ln a ≥0,即a ≥1,∴a 的取值范围是[1,+∞).解法二(最值分析法+隐零点法)∵f (x )=a e x -1-ln x +ln a ,∴f ′(x )=a e x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=a e x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f ′(1)=0,则f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=1,∴f (x )≥1成立;当a >1时,1a <1,∴11e a <1,∴f ′1a()f ′(1)=11(e 1)(1)0a a a ,∴存在唯一x 0>0,使得f ′(x 0)=a e x 0-1-1x 0=0,且当x ∈(0,x 0)时f ′(x )<0,当x ∈(x 0,+∞)时f ′(x )>0,∴a e x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=a e x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0·x 0=2ln a +1>1,∴f (x )>1,∴f (x )≥1恒成立;当0<a <1时,f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不恒成立.综上所述,a 的取值范围是[1,+∞).例2.已知函数f (x )=x -a ln x .(1)若曲线y =f (x )+b (a ,b ∈R )在x =1处的切线方程为x +y -3=0,求a ,b 的值;(2)求函数g (x )=f (x )+a +1x(a ∈R )的极值点;(3)设h (x )=1a f (x )+a e x -xa+ln a (a >0),若当x >a 时,不等式h (x )≥0恒成立,求a 的最小值.解析(1)由f (x )=x -a ln x ,得y =x -a ln x +b ,∴y ′=f ′(x )=1-ax .由已知可得f ′(1)=-1,f (1)+b =2,{即1-a =-1,1+b =2,{∴a =2,b =1.(2)g (x )=f (x )+a +1x =x -a ln x +a +1x ,∴g ′(x )=1-a x-a +1x 2=(x +1)[x -(a +1)]x 2(x >0),当a +1≤0,即a ≤-1时,g ′(x )>0,g (x )在(0,+∞)上为增函数,无极值点.当a +1>0,即a >-1时,则有,当0<x <a +1时,g ′(x )<0,当x >a +1时,g ′(x )>0,∴g (x )在(0,a +1)上为减函数,在(a +1,+∞)上为增函数,∴x =a +1是g (x )的极小值点,无极大值点.综上可知,当a ≤-1时,函数g (x )无极值点,当a >-1时,函数g (x )的极小值点是a +1,无极大值点.(3)(同构后参变分离)h (x )=1a f (x )+a e x -xa+ln a =a e x -ln x +ln a (a >0),由题意知,当x >a 时,a e x -ln x +ln a ≥0恒成立,又不等式a e x -ln x +ln a ≥0等价于a e x ≥ln x a ,即e x ≥1a ln x a ,即x e x ≥x a ln xa.①①式等价于x e x ≥ln x a ·eln x a ,由x >a >0知,x a >1,ln xa >0.令φ(x )=x e x (x >0),则原不等式即为φ(x )≥φlnxa(),又φ(x )=x e x (x >0)在(0,+∞)上为增函数,∴原不等式等价于x ≥lnxa,②又②式等价于e x ≥x a,即a ≥xe x (x >a >0),设F (x )=x e x (x >0),则F ′(x )=1-xex ,∴F (x )在(0,1)上为增函数,在(1,+∞)上为减函数,又x >a >0,∴当0<a <1时,F (x )在(a ,1)上为增函数,在(1,+∞)上为减函数.∴F (x )≤F (1)=1e .要使原不等式恒成立,须使1e ≤a <1,当a ≥1时,F (x )在(a ,+∞)上为减函数,F (x )<F (1)=1e.要使原不等式恒成立,须使a ≥1e ,∴当a ≥1时,原不等式恒成立.综上可知,a 的取值范围是[1e ,+∞),a 的最小值为1e .例3.已知实数a ∈R ,设函数f (x )=ln x -a x +1.(1)求函数f (x )的单调区间;(2)若f (x )≥a (x +1-x 2)x+1恒成立,求实数a 的取值范围.解析(1)由题意得定义域为(0,+∞),f ′(x )=1x -a =1-a x x.当a ≤0时,f ′(x )>0恒成立,所以函数f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,解得x =1a,所以当0,1a ()时,f ′(x )>0,函数f (x )单调递增;当1a,+∞()时,f ′(x )<0,函数f (x )单调递减.(2)因为x >0,所以f (x )≥a (x +1-x 2)x+1恒成立等价于x ln x ≥a x +1恒成立.设h (x )=ln x -1-1x(),则h ′(x )=1x -1x 2=x -1x 2,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=0.即ln x ≥1-1x ,所以x ln x ≥x 1-1x()=x -1恒成立,问题等价于x -1-a x +1≥0恒成立,分离参数得a ≤x -1x +1恒成立.设t =x +1∈(1,+∞),函数g (t )=t 2-2t,则g ′(t )=1+2t 2>0,所以函数g (t )在(1,+∞)上单调递增,所以g (t )>g (1)=-1,所以a ≤-1,故实数a 的取值范围为(-∞,-1].套路(举一反三):手足无措,抑或从容不迫1.已知函数f (x )=e a x -x .(1)若曲线y =f (x )在点(0,f (0))处切线的斜率为1,求f (x )的单调区间;(2)若不等式f (x )≥e a x ln x -a x 2对x ∈(0,e ]恒成立,求a 的取值范围.解析(1)f ′(x )=a e a x -1,则f ′(0)=a -1=1,即a =2.∴f ′(x )=2e 2x -1,令f ′(x )=0,得x =-ln 22.当x <-ln 22时,f ′(x )<0;当x >-ln 22时,f ′(x )>0.故f (x )的单调递减区间为-∞,-ln 22(),单调递增区间为-ln 22,+∞().(2)(同构后参变分离)由f (x )≥e a x ln x -a x 2,即a x 2-x ≥e a x (ln x -1),有a x -1ea x≥ln x -1x ,故仅需ln e a x-1ea x≥ln x -1x 即可.设函数g (x )=ln x -1x ,则ln e a x-1ea x≥ln x -1x 等价于g (e a x )≥g (x ).∵g ′(x )=2-ln xx 2,∴当x ∈(0,e ]时,g ′(x )>0,则g (x )在(0,e ]上单调递增,∴当x ∈(0,e ]时,g (e a x )≥g (x )等价于e a x ≥x ,即a ≥ln xx恒成立.设函数h (x )=ln x x,x ∈(0,e ],则h ′(x )=1-ln xx 2≥0,即h (x )在(0,e ]上单调递增,∴h (x )ma x =h (e )=1e ,则a ≥1e 即可,∴a 的取值范围为1e ,+∞[).2.已知函数f (x )=1+a e x ln x .(1)当a =1时,讨论函数f (x )的单调性;(2)若不等式f (x )≥e x (x a -x )(a <0),对x ∈(1,+∞)恒成立,求实数a 的取值范围.解析(1)f (x )的定义域为(0,+∞),当a =1时,f ′(x )=e x ln x +1x (),令g (x )=ln x +1x ,则g ′(x )=1x-1x 2=x -1x 2,当x ∈(0,1)时,g ′(x )<0,g (x )单调递减,当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增,∴当x =1时,g (x )取得极小值即最小值g (1)=1,∴f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增.(2)(同构后参变分离)不等式f (x )≥e x (x a -x )⇔e -x +x ≥x a -a ln x ⇔e -x -ln e -x ≥x a -ln x a ,设k (t )=t -ln t ,即k (e -x )≥k (x a ),(*)∵k ′(t )=1-1t =t -1t ,∴当t ∈(0,1)时,k ′(t )<0,k (t )在(0,1)上单调递减;当t ∈(1,+∞)时,k ′(t )>0,k (t )在(1,+∞)上单调递增,∵x∈(1,+∞),0<e-x<e-1<1,当a<0时,0<x a<1,且k(t)在(0,1)上单调递减,则(*)式⇔e-x≤x a⇒-a≤xln x ,令h(x)=xln x(x>1),则h′(x)=lnx-1(ln x)2,当x∈(1,e)时,h′(x)<0,h(x)单调递减;当x∈(e,+∞)时,h′(x)>0,h(x)单调递增,∴h(x)min=h(e)=e,则-a≤e,∴a≥-e,又a<0,∴a的取值范围是[-e,0).3.已知函数f(x)=e-x-a x,g(x)=ln(x+m)+a x+1.(1)当a=-1时,求函数f(x)的最小值;(2)若对任意的x∈(-m,+∞),恒有f(-x)≥g(x)成立,求实数m的取值范围.解析(1)当a=-1时,f(x)=e-x+x,则f′(x)=-1e x+1.令f′(x)=0,得x=0.当x<0时,f′(x)<0,当x>0时,f′(x)>0,∴函数f(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,最小值为f(0)=1.(2)由(1)得e x≥x+1恒成立.f(-x)≥g(x)⇔e x+a x≥ln(x+m)+a x+1⇔e x≥ln(x+m)+1.故x+1≥ln(x+m)+1,即m≤e x-x在(-m,+∞)上恒成立.当m>0时,在(-m,+∞)上,e x-x≥1,得0<m≤1;当m≤0时,在(-m,+∞)上,e x-x>1,m≤e x-x恒成立.于是m≤1.∴实数m的取值范围为(-∞,1].考点四双变量问题之转化同构思维导图-----方法梳理若问题的不等式或等式中含有1x ,2x 两个变量,我们称这类题型为双变量问题,双变量问题有若干细分题型,本节先分析其中一种:若对任意的1x ,2x 在区间D 上,某关于1x 和2x 的具有轮换对称性的不等式恒成立,求参数取值范围.这类问题一般将原不等式等价转化为12f x f x这种同构形式,根据函数f x 的单调性来研究参数的取值范围.围观(典型例题):一叶障目,抑或胸有成竹例1.已知函数12ln f x x x.(1)求曲线yf x在点1,1f 处的切线方程;(2)若对任意的 12,0,x x ,不等式121211f x f x mx x恒成立,求实数m 的取值范围.【解析】(1)由题意, 221f x xx,所以 13f ,11f ,故所求切线方程为 131y x ,整理得:34yx .(2)由(1)知 2210f x x x,所以f x 在 0, 上单调递增,不妨设120x x ,则12f x f x,所以121211f x f x mx x等价于2112m m f x f x x x,即1212m m f x f x x x①,令m g x f x x,则由①知g x 在 0, 上单调递增,所以 22210m g x xxx恒成立,从而21mx ,故1m ,所以实数m 的取值范围为 ,1 .【反思】本题的不等式121211f x f x mx x具有轮换对称性,这种情况一般考虑将1x ,2x 分离到不等号两侧,化为同构形式,运用函数的单调性解决问题.例2.已知函数 xf x e ,其中 2.71828e 为自然对数的底数.(1)设函数223g x x a x a f x ,a R ,试讨论函数 g x 的单调性;(2)设函数2h x f x m x x,m R ,若121,,22x x且12x x ,都有21121221x h x x h x x x x x 成立,求实数m 的取值范围.【解析】(1)由题意, 22313x xg x e x a x a e x x a ,当4a 时, 210x g x e x 在R 上恒成立,所以 g x 在R 上单调递增;当4a 时, 03g x x a 或1x , 031g x a x ,所以 g x 在 ,3a 上单调递增,在 3,1a 上单调递减,在 1, 上单调递增;当4a 时, 01g x x 或3x a , 013g x x a ,所以 g x 在 ,1 上单调递增,在 1,3a 上单调递减,在 3,a 上单调递增.(2)由题意,22x h x f x m x x e m x x,当1x 、21,22x时, 21121221x h x x h x x x x x 等价于121212h x h x x x x x ,因为12x x ,令11xh x eF x x m x xx,则问题等价于Fx 在1,22上单调递增,所以2110xe xF x m x在1,22上恒成立,从而211xe x m x,令211xe xHx x122x,则 23110xex H x x,所以H x 在1,22上单调递增,从而 m i n1122Hx H e,故实数m 的取值范围为 ,12e.套路(举一反三):手足无措,抑或从容不迫1.(多选)若正实数a 、b 满足ln ln s i n s i n b a b a b a ,则下列不等式可能成立的有()A .01a bB .1b a C .01b a D .01a b 【答案】AD 【解析】ln ln ln ln s i n s i n s i n s i n b b a aba b a b a b b a a,设 ln 0f x x x x , s i n g x x x 0x ,则 1xf x x,所以 001f x x , 01f x x ,从而f x 在 0,1上 ,在 1, 上 ,而 1co s 0g x x ,所以 g x 在 0, 上 ,因为s i n s i n b b a a ,所以 g b g a ,故b a ,又ln ln b b a a ,所以f b f a,A 项,作出f x 的大致图象如图,由图可知A 项正确;B 项,若1b a ,则f b f a,故B 项错误;C 项,因为b a ,所以C 项错误;D 项,若01a b ,则 f b f a ,故D 项正确.2.已知函数s i n f x x a x ,若对任意12,x x R 且12x x,不等式1212f x f x a x x恒成立,则实数a 的取值范围为()A .1,2B .1,2C .1,2D .1,2。
2024年高考数学第一轮复习知识点总结一、函数与方程(约占25%)1. 函数的概念与性质:定义域、值域、单调性、奇偶性、周期性等。
2. 一次函数与二次函数:斜率、截距、图像特征、解析式、三要素表示法。
3. 指数函数与对数函数:性质、特征、解析式。
4. 三角函数:正弦函数、余弦函数、正切函数的性质、图像、周期与频率等。
5. 幂函数与反比例函数:性质、图像、变化规律。
6. 组合与复合函数:定义、性质、计算方法。
7. 方程与不等式:一元一次方程、一元二次方程、一元高次方程的解法、根的判别、关系式、二次函数与方程。
二、空间与向量(约占15%)1. 点、直线与平面:空间几何图形的基本概念、关系与性质。
2. 空间向量:向量的表示、运算、模与单位向量、数量积与向量积的意义与计算。
3. 空间直线与平面的方程:点线面关系、夹角与距离、平面投影问题。
4. 空间几何证明:基本证明方法与技巧。
三、导数与微分(约占15%)1. 函数的导数:导数的定义与性质、基本导数公式、导数的几何意义、高阶导数。
2. 导数的计算:四则运算法则、链式法则、乘法法则、常见函数的导数。
3. 函数的微分:微分的定义与计算、微分与导数的关系、微分中值定理。
4. 导数应用:切线、法线、函数的极值与最值、函数的单调性、函数的凹凸性与拐点、不定积分、定积分等。
四、概率与统计(约占15%)1. 随机事件与概率:事件的概念、样本空间、事件的运算、概率的定义与性质、基本事件、条件概率与乘法定理。
2. 随机变量:离散型与连续型随机变量、分布函数、概率分布列、概率密度函数、期望与方差。
3. 概率分布:离散型随机变量的分布、二项分布、泊松分布、连续型随机变量的分布、均匀分布、正态分布。
4. 统计与抽样:参数与统计量、抽样方法与数据处理、样本均值与总体均值的关系、抽样分布与中心极限定理。
五、数列与数列极限(约占13%)1. 数列与数列极限:数列的概念与性质、数列极限的定义与性质、等差数列、等比数列、收敛性判定、数列极限的性质。
x^n=a,则x叫做a的n次根,求方根的过程叫做开方运算,正数a的正n次方根
理数指数幂适用于有理数指数幂的法则
数函数的底判断是增函数还是减函数;实际问题中函数
叫做真数,读作以a为
,自然常数e,叫做ln
性质:
1.值域是实数集R
2.在定义域内,当a>1时是增函数,当0<a小于1时是减
函数
3.图象都通过点(1,0)
指数函数和对数函数的关系当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,称之为反函数
反函数。
基本不等式实际是对勾函数的特例,可以考虑利用对勾实际应用题考虑解析式有意义且考虑实际问题有意义
解析式表示的斜率、截距、距离等几何意义一般适用含有绝对值的函数
6种基本函数及其加减形式
形如f[g(x)]
确定函数的定义域.
将复合函数分解成基本初等函数y =f(u),u =g(x).分别确定这两个函数的单调区间.如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,对称轴是两个横坐标的中点
对称中心为函数对称两点的中点,可以利用中点坐标
如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有奇偶性的判断利用奇偶性求解析式公
众
么
难。