CPE、 MBS、ACR 抗冲改性效果的对比
- 格式:doc
- 大小:598.50 KB
- 文档页数:4
MBS树脂-PVC抗冲改性剂生产方法MBS树脂是在粒子设计概念下合成的一种新型高分子材料,由甲基丙烯酸甲酯(M)、丁二烯(B) 及苯乙烯(S)采用乳液接枝聚合法制备而成。
在亚微观形态上具有典型的核-壳结构,核心是1个直径为10~100 nm的橡胶相球状核,外部是苯乙烯和甲基丙烯酸甲酯组成的壳层。
由于甲基丙烯酸甲酯与聚氯乙烯(pvc)的溶解参数相近,在PVC树脂和橡胶粒子间起到界面粘接剂的作用,在与PVC加工混炼过程中形成均相,而橡胶相则以粒子状态分布于PVC连续介质中,呈现海岛结构,这种特殊结构赋予了制品优异的抗冲击性能。
当PVC中加入5%~ 10%的MBS树脂时,可使制品的冲击强度提高4~ 15倍,同时,还可改善制品的耐寒性和加工流动性,且能够保持PVC树脂原有的光学性能,因此,MBS 树脂作为PVC树脂的抗冲改性剂具有广泛的应用前景。
1 MBS树脂的生产方法MBS又称为透明ABS,由于两者的生产方法相似,早期许多生产厂家使用相同的工艺路线,甚至在同一条生产线上生产这两种产品。
随着技术的发展,工艺过程日趋完善,各生产厂家的生产工艺略有差异,但基本原理是一样的,即丁二烯和苯乙烯作为单体在水和乳化剂中进行乳化,在引发剂的引发作用下进行聚合,生产丁苯胶乳(SBR胶乳),再加入苯乙烯和甲基丙烯酸甲酯进行乳液接枝聚合,得到MBS 树脂接枝胶乳(MBS树脂胶乳),最后经过凝聚、脱水和干燥处理后得到MBS粉料。
在MBS树脂的整个生产工艺过程中,SBR胶乳的合成技术、MBS胶乳的合成技术以及MBS胶乳的凝聚技术是生产的三大关键技术。
1.1丁苯胶乳的制备[1-2]丁苯胶乳的合成,一般采用乳液聚合法。
为了满足抗冲击性和透明性的要求,必须控制SBR胶乳的粒径、粒径分布及交联度,同时,折光指数必须与PVC相匹配。
从理论上讲,橡胶相玻璃温度越低,增韧效果越好,常选择在-40℃以下。
大多数厂家在丁苯胶乳制备中,丁二烯质量分数选择大于70%,但也有厂家选用纯丁二烯胶乳。
四、填加剂CaCO3在型材变色中的注意事项PVC型材填加CaCO3,目的是提高制品的硬度、耐磨性、热变形温度、热稳定性、降低制品的成型收缩率,减小离模膨胀,降低成本,还有提高热溶体刚度、改善成型,使制品易定型等作用。
但CaCO3粒径较大,用量较多时会降低冲击强度、影响型材光泽和颜色。
另外CaCO3硬度很高,其尖锐的棱角会对设备的成型辊、螺杆、料筒壁、口模、模具、混合机叶片产生较大磨损。
金属表面的连续磨蚀会使物料污染变色,可使异型材变暗、变灰,同时还可能引起过早和未预料的热稳定失效。
大多数填料属亲水性,与聚合物难以相容,如不经表面处理,它们会相间分离。
经过各种偶联处理后,能使填料从亲水性变成有机性。
填料往往含有挥发成份,使用前易干燥处理。
填料经表面处理后,吸湿能力明显降低。
CaCO3表面处理常用的偶然剂有酞酸酯、铝酸酯、硅烷等。
尽管CaCO3经表面处理,但PVC脱氯后,碳酸钙原组分会转化成氯化钙新组分,它分散在氧化降解物层内,形成潜在吸水位置,型材易变色。
PVC型材有的CaCO3粒径一般要小于1.5mm以下,用量在4~6份。
那些用量在20、40、60份以上的钙塑配方无疑将型材推进毁灭的深渊。
钙塑型材比重大、外观坚硬、刚度高、强度低,在一定压力和冲击下易断裂。
钙塑型材无光泽,外观粗糙,颜色泛黄,易老化,在阳光、温度、氧的作用下很快褪色、粉化、降解、断裂。
轻质碳酸钙HG/T2226-2000技术标准要求:五、稳定剂是防止型材变色的首要助剂稳定剂是能防止或抑制PVC树脂在成型和使用过程中由于光热氧和机械作用而引起分解的物质。
PVC稳定剂有热稳定剂、光稳定剂和抗氧稳定剂三大类:热稳定剂的主要作用是阻止或抑制PVC树脂成型加工中受热分解和延长制品使用寿命。
光稳定剂是能够抑制和减弱PVC树脂及其它助剂光降解的物质。
抗氧剂主要是能够延缓抑制PVC及其他助剂氧化降解的物质。
PVC树脂是一种微粒球状的颗粒弹性小体。
ACR 学习资料整理一、产品分类ACR 抗冲改性剂ACR 抗冲改性剂的结构,核-壳结构的ACR 抗冲改性剂含有丙烯酸酯类交联弹性体组成的核,核外是甲基丙烯酸甲酯-丙烯酸乙酯共聚物组成的壳。
PVC/ACR 制品冲击强度较高,表面光洁,耐老化性能优良。
通常硬质聚氯乙烯户外制品多用ACR 抗冲改性剂。
丙烯酸类交联弹性体的作用主要体现在:耐候性和高抗冲能力。
甲基丙烯酸甲酯-丙烯酸乙酯共聚物作用主要体现在:与PVC resin 的相融性,提高流动性。
ACR 加工助剂1.ACR 加工助剂根据原材料可以分为如下三类:(1)纯酯加工助剂:甲基丙烯酸甲酯和丙烯酸丁酯。
(2)苯乙烯加工助剂:苯乙烯和丙烯腈(3)苯乙烯,丙烯腈,双甲酯。
2.ACR 润滑剂:175系列产品原料:甲酯和苯乙烯此产品为低分子量的产品主要可以改善熔体的加工性能,金属热脱模,减少熔体破裂以及提高加工效率。
分子量低与PVC 的相融性不好,附着于pvc表面,起到润滑的作用。
3.ACR 发泡调节剂产品的档次主要划分依据高档次产品:甲基丙烯酸甲酯和丙烯酸丁酯低档次产品:甲基丙烯酸甲酯、丙烯酸丁酯、苯乙烯等。
此产品为高分子量的产品主要用于pvc发泡领域,包括异型材,管材芯层发泡和发泡片材等。
二、误区:1.产品牌号和档次划分的标准(1)产品的牌号是通过产品的用途,通过原材料的配比划分的,因此价格也是有略微的差别。
(2)跟CPE 一样,填充物含量的增加,必然会影响产品价格。
这里的填充物,不仅仅局限在钙粉上,可以是其他软单体含量部分取代BA含量,或者添加PVC RESIN 等。
2.指标的概念ACR 所有产品的指标均为物理指标。
Bulk Density:表观密度:指的是产品的颗粒形态(越大越好)为产品运输过程中的一个参考数值比如:0.48g/cc 表示480KG/M3Particle size 粒径;主要用生产过程中产品过振动筛(比如40目)时候的通过率来表示。
CPE和ACR对PVC-U型材加工性能的影响
张宇;杜超
【期刊名称】《聚氯乙烯》
【年(卷),期】2006(000)005
【摘要】从抗冲改性机理、微观形态、加工性能、冲击性能及老化性能等方面对PVC-U冲击改性剂氯化聚乙烯(CPE)和丙烯酸酯类(ACR)进行比较,客观地分析了各自性能的优劣.
【总页数】4页(P22-25)
【作者】张宇;杜超
【作者单位】大连实德集团研究院,辽宁,大连,116113;大连实德集团研究院,辽宁,大连,116113
【正文语种】中文
【中图分类】TQ325.3
【相关文献】
1.PVC/ACR及PVC/ACRCPE共混体系对型材加工工艺、型材物理性能及表面光泽的影响 [J], 吴郁
2.CPE、ACR等加工助剂对PVC-U流变性能的影响 [J], 史彦勇;王奋中;徐生智;吴明静
3.转矩流变仪测试稀土稳定剂、CPE、CaCO3对PVC-U共混体系的影响 [J], 苗乃芬;韩正;杨秀岭
4.润滑剂对PVC-U型材料加工性能的影响研究 [J], 苑会林;李军;马沛岚;刘键
5.CPE在UPVC异型材配方中的加工性能研究 [J], 周洪荣;黄勇
因版权原因,仅展示原文概要,查看原文内容请购买。
一、ACR简介ACR树脂是由甲基丙烯酸甲酯及丙烯酸酯类单体经乳液聚合得到的一种热塑型接枝聚合物,兼具有抗冲击改性和加工改性双重功能的塑料助剂。
主要用于硬、半硬聚氯乙烯(PVC)制品中特别是化学建材,如异型材、管材管件、板材、发泡材料(管材、板材)、木塑等。
它不仅能提高制品的抗冲击性能而且可以明显地改善树脂的熔体流动性、热变形性、耐候性及制品表的光泽等显示出优异的综合性能。
可分为加工改性剂和抗冲改性剂两大类:以改善塑料冲击性能为目的而使用的助剂称为抗冲改性剂,具有核-壳结构;加工型ACR以改善PVC的加工性能为主要目的。
二、ACR在PVC加工中的应用⑴促进PVC的熔融。
一般用于由悬浮聚合和本体聚合生产的PVC,颗粒状直径为100微米左右,颗粒中的初级粒子大小约为1微米。
为了使加工成有用的熔融状态需要加热和增加剪切力以使PVC 颗粒分散为初级粒子,并通过初级粒子界于分子间的相互扩散形成熔体,但是粒状PVC对热量和剪切力的传递不佳,使得形成的熔融体不均匀,有的部分已经全部熔化,而另一部分还可能保持颗粒状态。
ACR加工助剂通过增加热量和剪切力的传递促进PVC熔融,因加工助剂与PVC具有混熔性和较高的分子量,其颗粒在PVC体系中增加摩擦力,使熔融过程加速,并使熔融体更加均一,使模制品等缺陷减少,表面状态和外观得以改善,PVC制品的物理机械性能得到提高。
⑵改进熔融流变性PVC熔融体系为粘弹性流体既有粘性,阻滞熔融体流动;又有弹性,变形后倾向回复初始状态。
这两种性能皆在很大程度上依赖于PVC体系聚合物分子的缠结状态ACR加工助剂分子插入分子链之间,起着缠结和交联作用。
因此可以明显增加PVC熔融体的粘性和弹性。
⑶改进润滑性能许多聚合物因其本身化学性质决定在加工过程中易于粘结到热的金属表面,添加润滑剂可以减少或避免此类问题。
目前已经有很多常规润滑剂可以使用。
但ACR不仅能促进PVC 加工改性,而且有促进外部润滑的作用,使用有润滑作用的ACR对PVC的透明性并无影响,也不会产生加工后的迁移。
1MBS树脂编辑MBS(Methyl methacrylate-Butadiene-Styrene)树脂是甲基丙烯酸甲酯(M),丁二烯(B)及苯乙烯(S)的三元共聚物,它具有典型的核-壳结构。
由于其溶度参数与PVC 相近,故两者的热力学相容性好,表现为PVC在室温或低温下具有很高的抗冲击强度。
并且由于它与PVC折光指数相近,故当两者共混熔融以后,容易达到均一的折射率,因此用MBS做PVC的抗冲改性剂不会影响PVC的透明性。
所以MBS是PVC制取透明制品的最佳材料。
另一方面,由于其与PVC相容性好,在室温或低温下具有很高的抗冲击性,故也适用于非透明性的各种制品。
据资料介绍,当PVC中加入的MBS树脂时,可使其制品的抗冲击强度提高,同时还可以改善制品的耐寒性和加工流动性。
因此,MBS作为PVC抗冲改性剂得到了广泛应用。
此外,它还具有良好的着色性,可用于制作盛装容器、管材、板材、室内装饰板和软质制品等。
但因其含有不饱和结构的丁二烯、易受氧和紫外线的作用而老化,故耐候性差,不适用于制作室外长期使用的制品。
2MBS树脂的使用情况编辑现今科技发达国家多以MBS(ACR)为主导型抗冲击改性剂,主要应用于聚氯乙烯(PVC)及少量其他种类合成树脂所加工的塑料中(如ABS等)。
因MBS树脂兼有加工改性及增韧效能,故倍受重视。
亚洲的日本是生产与使用MBS树脂抗冲击改性剂的重要国家,其生产MBS树脂的产量(品种)高,而在PVC加工消耗MBS树脂的比例占抗冲击改性剂总量的40-5O%圈。
1985年日本耗MBS树脂抗冲击改性剂达16kt,1988年达18kt,到1991年增至27kt。
而1996年为31.3kt,在1991—1996年度该国MBS树脂消费增长率为3%。
欧洲(西部为主)是全球MBS树脂生产及消耗的热点地区之一。
由于文化艺术水平及建筑装潢工业建设材料水准高和需求旺盛,故欧洲的年耗量比较可观。
据统计,1990年消耗ABS/MBS/MABS总量达78kt,其中MBS树脂在三者中占显著比例值。
CPE协效增强增韧剂——SPA-36——纳米自组装技术完美的结晶☞赋予PVC优秀的韧性☞大幅度提高PVC制品强度、模量、刚性☞更优异的耐候性☞显著改善PVC制品表面光泽☞更宽的加工性能☞赋予PVC更高的品质☞降低企业成本SPA-36系列增强型PVC抗冲改性剂一、技术背景聚氯乙烯(PVC)是含氯原子强极性高分子聚合物,以其成型方便、阻燃性、耐候性而获得广泛应用。
PVC分子链强极性导致分子间较强分子间力,其玻璃化温度比较高,低温冲击强度非常低,PVC复合材料发脆。
为了改善PVC的抗冲击性能,国内硬质PVC制品中通过添加CPE弹性体进行增韧。
CPE是以特种HDPE为原料,通过氯化而获得的弹性体。
CPE其玻璃化温度较高,PVC硬制品要达到使用要求,通常要加入较大份数(8~12份)才能获得较好的韧性。
由于CPE为弹性体,在PVC制品中大量加入CPE弹性体,PVC材料的强度、刚性、模量、维卡软化点大幅度降低,也就是说,CPE增韧PVC是以材料的强度、刚性、模量、维卡软化点大幅度损失为代价。
CPE含有约36%氯原子,普通的稳定剂不能抑制CPE的脱氯分解,所以PVC制品中加入CPE会导致PVC复合材料的热稳定性和光稳定性下降,耐候性变差。
同时,CPE与PVC相容差,加工熔体粘度大,一般须配合ACR加工助剂才能满足加工性能,加工温度窄、塑化效果差。
添加CPE弹性体的PVC 复合材料表面光泽度、硬度亦大幅度下降。
SPA-36是基于CPE增韧PVC固有缺陷而专门设计CPE协效剂,它是以微乳聚合法和纳米自组装技术而开发出有机/无机纳米杂化材料。
SPA-36协效增韧剂与CPE复合使用时,可提CPE在PVC复合材料中的分散性,改善CPE与PVC界面粘结性能和相容性,将CPE的互穿网络增韧与粒子点阵拓扑增韧特征集于一身,使PVC的强度、刚性、模量、维卡软化点下降幅度较小,PVC复合材料的强度与韧性达到更好的平衡,亦即,SPA-36协效剂可使PVC复合材料在获得很好冲击韧性的同时,又具有很高的强度。
韩国增韧剂MBS EM500 A韩国LG化学的MBS抗冲改性剂,具有较高的性价比优势。
我们提供的牌号有MB S EM-500/EM—500A,可做为耐寒增韧剂、相容剂、抗冲击改性剂使用。
韩国L G化学PC,PC/ABS耐寒增韧剂MBS EM500 A为甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物,是核——壳结构抗冲击改性剂。
用于提高PC、PBT、PET、ABS、PC/ PBT 合金、PC/ABS 合金、PVC 的冲击性能。
PC/ABS混合-物性• EM500室温下的冲击强度相比于EXL稍差,但低温冲击强度比罗门哈斯EXL 2 620及日本钟渊M521好。
• EM500A比竞争对方及EM500的抗冲击强度.• EM500A颜色改善要比竞争对方及EM500的要好.• EM500A更具价格优势,在同行列竞争产品当中。
如E920、EXL 2620.配方:PC:ABS:MBS =70 : 25 : 5PC/ABS,PBT工程塑料合金用进口增韧改性剂,主要品牌有罗门哈斯,钟渊化学,LG化学等。
主要型号有KM355P,EXL-2330,IM808A,IM810,IM812等ACR类增韧剂;以及EXL—2620,2691,EM500,M521,M511等MBS类增韧剂。
详细信息LG化学出品的EM600系列ACR类增韧剂主要用于透明PMMA 塑料增韧,也可用于PC合金等,效果良好,产品独特.MBS EM500 A为甲基丙烯酸甲酯-丁二烯-苯乙烯三元共聚物,是核——壳结构抗冲击改性剂。
用于提高PC、PBT、PET、ABS、PC/PBT 合金、PC/ABS 合金、PVC 的冲击性能. 韩国LG化学的MBS抗冲改性剂,具有较高的性价比优势.我们提供的牌号有MBS EM-500/EM-500A,可做为增韧剂、相容剂、抗冲击改性剂使用。
EM500室温下的冲击强度相比于EXL要差,但低温冲击强度比EXL好,而EM500A比竞争对方抗冲击强度、颜色改善要好.进口韩国LG公司PC及合金抗冲击改性剂EM500A1) 有效改善PC及PC/ABS、PC/聚酯的抗冲击性能;2)通过改善热稳定剂来改善黄变问题;3)降低异味;进口韩国LG公司MBS 耐寒增韧剂EM500AMBS类型增韧剂,相比较罗门哈斯的2691A,后者更具有成本上的竞争力。
CPE、 MBS、ACR 抗冲改性效果的对比
------兼谈硬质聚氯乙稀型材抗冲改性剂的应用技术
姜铁竹龚以行韩风董军宁
为了提高产品的抗冲击性能,在生产过程中要添加抗冲改性剂。
用于硬质PVC型材行业的抗冲改性剂主要有CPE、MBS和ACR。
其中CPE、ACR改性剂的分子结构中不含双键,耐候性能好,广泛用于户外建筑材料。
目前就CPE和ACR对PVC冲击改性的效果讨论很多,国外对ACR性能的推荐,除强调它对低温冲击强度的大幅度提高外,还强调它对耐候性、加工性能的改性,而CPE对加工温度的敏感性也已被生产实际所证实。
因此,目前在欧洲、美国以丙稀酸酯为主导来改进PVC的抗冲击性。
在我国,由于只有少数厂家生产抗冲ACR改性剂,品种和牌号均不能满足市场需要,而且质量尚欠稳定,价格偏高。
因而,目前我国绝大多数(90%)异型材厂仍以CPE作抗冲改性剂,CPE依然占主导地位,丙稀酸酯应用较少,还有的厂家采用MBS。
在此,我们对CPE与ACR、MBS进行一下对比试验,对它们进行全面的了解,评价各项性能孰优孰劣,以便扬长避短,合理使用。
实验部分
1、实验用主要原料、规格:
(1)树脂:聚氯乙稀PVCSG-5型,潍坊亚星化学股份有限公司产。
(2)抗冲击改性剂:CPE:型号3135,潍坊亚星化学股份有限公司产。
ACR:KM355P,吴羽化学公司产品。
MBS:台湾产。
(3)稀土稳定剂:型号REC-E,广东广洋高科技实业有限公司产。
(4)钛白粉:型号R105,美国杜邦公司产。
(5)轻质碳酸钙:淄博华信化工股份有限公司产。
(6)加工助剂:ACR-201型,山东曙光集团塑胶制品厂产。
2、实验用主要设备及测试仪器:
(1)高速混合机:型号GH-10DY,桨叶转速1250/2500转/分,北京华新科塑料机械有限公司产。
(2)哈克密炼机和挤出机:德国哈克公司产。
(3)万能制样机:河北承德试验机厂产。
(4)电子拉力试验机:DXLL-3000型,上海化工机械四厂产。
(5)冲击试验机:河北承德试验机厂产。
3、实验流程及条件:
实验流程:配料→捏合→挤出→制样→测试
PVC中各种助剂用量如表1所示。
是变量。
(1)捏合:将定量的PVC与助剂倒入捏合机内,高速运转,物料温度达
到120℃时放出物料,冷却后装袋。
(2)密炼:将定量的PVC共混料加入哈克密炼机中进行密炼,条件为温度180℃,转速30rpm。
(3)挤出:将PVC共混料加入哈克双螺杆挤出机中挤出,工艺条件为:温度TS-E1184℃,TS-E2187℃,TS-E3190℃;TS-D1191℃。
螺杆转速30rpm。
4、试样制作与性能测试:
(1)抗冲击性能:采用国标GB/T8814-1998测试。
(2)拉伸性能:采用国标GB/T8814-1998测试。
结果与讨论
1、不同改性剂对PVC共混料的流变性能的影响:
用抗冲改性剂CPE、ACR、MBS改性的PVC共混料的流变曲线如图1所示。
图1改性共混料流变曲线
图1表明采用CPE塑化稍慢,但扭矩最低。
共混料流变曲线中,最大扭矩可作为加工设备所需要的传动功率大小的度量,而平衡扭矩则决定了加工设备生产时的功率消耗,它们都是极重要的流变特性参数。
平衡扭矩值平稳表明配方中助剂与树脂相容性好,塑化时间长短可决定设备的一些参数。
扭矩低,可使挤出功率降低。
2、各类抗冲改性剂对硬质PVC共混料挤出加工性能的影响:
不同改性剂不同份数的挤出性能曲线如图2所示。
图2不同份数改性的挤出性能
由图2可见,随着改性剂份数的增加,挤出扭矩都要增加。
这说明改性剂用量增加,会使物料的粘度增加,导致扭矩升高。
其中CPE挤出扭矩最低,MBS次之,ACR最高。
这说明用CPE作改性剂时,加工设备生产时的功率消耗低,有利于节能和降低成本。
3、各类抗冲改性剂对硬质PVC共混料力学性能的影响:
各类抗冲改性剂改性硬质PVC共混料的力学性能对比如表2所示。
降。
三种改性剂达到8份时都能满足GB/T8814-1998的要求。
但CPE具有最佳低温抗冲性能,而且价格最低。
因此,采用CPE对PVC改性,将使制品的成本大幅下降。
4、我国硬质PVC异型材抗冲改性剂的应用技术:
据资料介绍,目前学术上将改性剂的增韧理论分为两大类:一类网络聚合物:是指抗冲改性剂在PVC基体材料中形成抵御外界冲击的弹性网,这类弹性体改性机理是在PVC材料中形成网络。
另一类“核—壳”结构共聚物:这类聚合物由两部分组成,构成通常所称的“核—壳”结构,其核是一类低度交联的弹性体,
壳是具有较高玻璃化温度的高聚物,粒子之间容易分离,可均匀地分散至PVC基体中,并能和PVC基体相互作用,因而可改进PVC抗冲击性能。
CPE、MBS、ACR抗冲改性剂改性PVC的性能比较如表3所示。
其它性能指标CPE均优于或等于ACR。
因此只要确定好成型工艺条件,并在生产实践中严格执行,所制得的制品性能价格比就是最优的。
而且,目前国内的CPE厂也在大力开发CPE新品种新牌号,使其具有塑化快、热稳定性好的特性,以适应PVC型材高速挤出的要求。
结论
(1)采用CPE作PVC抗冲改性剂时塑化稍慢,但扭矩最低,有利于节能。
(2)随着改性剂用量的增加,挤出扭矩均增加,但CPE的挤出扭矩最低,表明功率消耗低。
(3)三种改性剂达到8份时均能满足国标要求,但CPE价格最低。
(4)通过对各种抗冲改性剂改性性能的比较,除了ACR在加工方面略占优势外,CPE和ACR均能满足PVC型材的性能要求。
参考文献
[1]李志英编,《硬聚氯乙烯塑料异型材和塑料窗制造与应用》,中国建材工业出版社,1997。
[2]丁浩主编,《塑料工业实用手册》(第二版),化学工业出版社,2000。